1
|
Maranesi M, Palmioli E, Dall'Aglio C, Marini D, Anipchenko P, De Felice E, Scocco P, Mercati F. Resistin in endocrine pancreas of sheep: Presence and expression related to different diets. Gen Comp Endocrinol 2024; 348:114452. [PMID: 38246291 DOI: 10.1016/j.ygcen.2024.114452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/30/2023] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
Resistin (RETN), a recently discovered adipokine, is a cysteine-rich and secretory protein produced by adipocytes. RETN has been detected in several tissues, including human and laboratory animals' pancreas, wherein impairs glucose tolerance and insulin (INS) action and causes INS resistance. This study aims to evaluate the presence and expression of RETN in the pancreas of 15 adult female sheep reared on Apennine pastures, which show a decrease in their nutritional value due to the drought stress linked to the increasing summer aridity. The sheep were divided into 3 groups according to the diet they were subjected to: maximum pasture flowering (MxF) group, maximum pasture dryness (MxD) group, and experimental (Exp) group which received a feed supplementation in addition to the MxD group feeding. Immunohistochemistry and immunofluorescence were performed on formalin-fixed and paraffin-embedded sections of the pancreas to detect the RETN presence and to evaluate the co-localization of RETN with both glucagon (GCG)- and INS-producing cells. In addition, the expression of the three molecules was evaluated also in relation to different diets. RETN was observed only in the endocrine pancreas, showing a wide distribution throughout the pancreatic islets with few negative cells and the RETN producing cells colocalized with both α cells and ß cells. No differences in distribution and immunostaining intensity of RETN, GCG and INS were observed among the three groups. Quantitative PCR showed the expression of RETN, GCG and INS in all tested samples. No significant differences were observed for RETN and GCG among all three groups of sheep. Instead, a high statistically significant expression of INS was detected in the MxF group with respect to the Exp and MxD groups. These results highlight the localization of RETN in GCG- and INS-secreting cells involved in glucose homeostasis suggesting a modulatory role for RETN. Furthermore, the RETN expression is not influenced by food supplementation and thus is not affected by diet.
Collapse
Affiliation(s)
- Margherita Maranesi
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, IT, Italy.
| | - Elisa Palmioli
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, IT, Italy; Department of Philosophy, Social Sciences, and Education, PhD Course in "Ethics of Communication, Scientific Research and Technological Innovation" Medical-Health Curriculum, University of Perugia, Piazza G. Ermini, 1, 06123 Perugia, IT, Italy.
| | - Cecilia Dall'Aglio
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, IT, Italy.
| | - Daniele Marini
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, IT, Italy; Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18A, 752 36 Uppsala, Sweden.
| | - Polina Anipchenko
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, IT, Italy.
| | - Elena De Felice
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Pontoni 5, 62032 Camerino, IT, Italy.
| | - Paola Scocco
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Pontoni 5, 62032 Camerino, IT, Italy.
| | - Francesca Mercati
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, IT, Italy.
| |
Collapse
|
2
|
Shokrollahi B, Zheng HY, Ma XY, Shang JH. The effects of apelin on IGF1/FSH-induced steroidogenesis, proliferation, Bax expression, and total antioxidant capacity in granulosa cells of buffalo ovarian follicles. Vet Res Commun 2023; 47:1523-1533. [PMID: 37036601 DOI: 10.1007/s11259-023-10107-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/15/2023] [Indexed: 04/11/2023]
Abstract
Apelin (APLN) was believed to be an adipokine secreted from adipose tissue. However, studies demonstrate that it is a pleiotropic peptide and has several effects on the female reproductive system. In this study, We examined the effects of different doses of IGF1 and FSH in the presence of APLN-13 on the production of progesterone in buffalo ovary granulosa cells. Furthermore, different doses of APLN isoforms (APLN-13 and APLN-17) were tested on proliferation, Bax protein expression, and antioxidant capacity in the same cells. Granulosa cells of buffalo ovaries were cultured in the presence of different doses of IGF1 and FSH with or without APLN-13 (10-9 M) to evaluate its effect on the secretion of progesterone tested by ELISA assay. The WST-1 method was used to survey the effect of APLN on granulosa cell proliferation and cytotoxicity. In addition, the antioxidant capacity of the cells in the presence of APLN was assessed using the FRAP method. mRNA and Bax protein levels were measured in granulosa cells treated with APLN using real-time PCR and western blot techniques. APLN-13 (10-9) stimulated the effect of IGF1 on the production of progesterone, and its levels were affected by APLN-13 dose-dependently. However, it did not significantly stimulate the effect of FSH on the secretion of progesterone. APLN-13 (all doses) and APLN-17 (10-8 and 10-9 M) improved the proliferation of granulosa cells. Moreover, preincubation of the cells for an hour by APLN receptor antagonist (ML221, 10 µM) did not significantly affect the proliferation of cells induced by APLN. Neither APLN-13 nor APLN-17 were not cytotoxic for the cells compared to the control treatment. APLN-13 at the doses of 10-6 and 10-8 M substantially up and down-regulated Bax protein expression; however, such effects were not observed when the cells were preincubated with ML221. In addition, APLN-17 did not influence the expression amount of Bax. Furthermore, both APLN-13 and -17 improved the total antioxidant capacity of the ovarian granulosa cells, but such effects were not seen when the cells were preincubated with ML221. According to these results, APLN enhanced the steroidogenesis induced by IGF1 but did not affect the steroidogenesis induced by FSH. APLN also enhanced the cell proliferation and antioxidant capacity of buffalo ovaries follicular granulosa cells; however, its effect on Bax expression was different.
Collapse
Affiliation(s)
- Borhan Shokrollahi
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China
- Department of Animal Science, Sanandaj Branch, Islamic Azad University, Sanandaj, Kurdistan, Iran
| | - Hai-Ying Zheng
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China
| | - Xiao-Ya Ma
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China
| | - Jiang-Hua Shang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China.
| |
Collapse
|
3
|
Palmioli E, Dall'Aglio C, Fagotti A, Simoncelli F, Dobrzyn K, Di Rosa I, Maranesi M, De Felice E, Scocco P, Mercati F. Leptin system is not affected by different diets in the abomasum of the sheep reared in semi-natural pastures of the Central Apennines. Ann Anat 2023; 247:152069. [PMID: 36754242 DOI: 10.1016/j.aanat.2023.152069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 02/09/2023]
Abstract
The growing summer drought stress is affecting the nutritional value of pastures, no longer sufficient to support the nutritional status of sheep in extensive rearing. Adipokines affect organ and tissue functionality can be useful to evaluate animal welfare and prompt an improvement in the management of the grazing animals. Leptin (Lep) is an adipokine mainly produced by adipose tissue that regulates food intake by an anorexigenic action. Lep has also been detected in the human and rat gastrointestinal tract, where it regulates the rate of gastric emptying. In this study, Lep system was evaluated in the abomasum of 15 adult sheep reared on Apennine pastures and subjected to different diets. Until the maximum pasture flowering (MxF group), the sheep fed on fresh forage; from that moment until the maximum pasture dryness (MxD group), the experimental group (Exp group) received a feed supplementation in addition to MxD group feeding. The Lep system was investigated in the abomasum samples by immunohistochemistry (IHC) and RT-qPCR. Double-label localisation of Lep and leptin receptor (LepR) with neuroendocrine hormones was conducted to distinguish the gland cell types. The analysis performed revealed the presence of Lep and LepR in the chief and neuroendocrine cells of the fundic glands of the abomasum. RT-qPCR evidenced the transcript for Lep and LepR also identifying the long isoform (LepRb). No significant differences were observed among the three groups of sheep subjected to different diets. The abundant immunostaining observed in the fundic glands suggests that the Lep intervenes in the regulation of abomasum in sheep with a similar pattern to monogastric species while long term food supplementation seems do not influence the local function of the Lep system. A better understanding of the gastrointestinal system can contribute to improving sheep management and optimising the sustainability of livestock production.
Collapse
Affiliation(s)
- Elisa Palmioli
- Department of FISSUF, PhD Course in "Ethics of Communication, Scientific Research and Technological Innovation" Medical-Health Curriculum, University of Perugia, Piazza G. Ermini, 1, 06123 Perugia, Italy; Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy.
| | - Cecilia Dall'Aglio
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy.
| | - Anna Fagotti
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto, 8, 06123 Perugia, Italy.
| | - Francesca Simoncelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto, 8, 06123 Perugia, Italy.
| | - Kamil Dobrzyn
- Department of Zoology, University of Warmia and Mazury in Olsztyn, Poland.
| | - Ines Di Rosa
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto, 8, 06123 Perugia, Italy.
| | - Margherita Maranesi
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy.
| | - Elena De Felice
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Pontoni 5, 62032 Camerino, Italy.
| | - Paola Scocco
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Pontoni 5, 62032 Camerino, Italy.
| | - Francesca Mercati
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy.
| |
Collapse
|
4
|
Presence, Tissue Localization, and Gene Expression of the Adiponectin Receptor 1 in Testis and Accessory Glands of Male Rams during the Non-Breeding Season. Animals (Basel) 2023; 13:ani13040601. [PMID: 36830390 PMCID: PMC9951751 DOI: 10.3390/ani13040601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Adiponectin (ADIPOQ) is a member adipocytokines, and its actions are supported by two receptors, ADIPOQ receptor 1 and -2, respectively (ADIPOR1 and -R2). Our study was performed to evaluate the ADIPOR1 presence and location and its gene expression in reproductive tissues of the male ram, during its non-breading season. The different portions of the male ram reproductive system (testis, epididymis, seminal vesicle, ampoule vas deferens, bulb-urethral gland) were collected in a slaughterhouse. Immunohistochemistry showed ADIPOR1 positive signals in the cytoplasm of all the glandular epithelial cells, with a location near the nucleus; in the testes, the positive reaction was evidenced in the cytoplasm in the basal portion of the germinal epithelial cells. The immune reaction intensity was highest (p < 0.001) in the prostate and seminal vesicles glands than that of other parts of the ram reproductive tract. RT-qPCR detected the ADIPOR1 transcript in the testes, epididymis, vas deferens, bulbourethral glands, seminal vesicles, and prostate; the expression levels were high (p < 0.01) in the prostate and low (p < 0.01) in the testis, epididymis, and bulbourethral glands. The present results evidenced the possible ADIPOQ/ADIPOR1 system's role in regulating the testicular activity of male rams during the non-breading season.
Collapse
|
5
|
Anima B, Guruswami G, Roy VK. Postnatal developmental expression and localization of apelin and apelin receptor protein in the ovary and uterus of mice. Mol Reprod Dev 2023; 90:42-52. [PMID: 36459577 DOI: 10.1002/mrd.23657] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/11/2022] [Accepted: 11/20/2022] [Indexed: 12/04/2022]
Abstract
Postnatal ovarian and uterine development is crucial to accomplished female fertility. Thus, the investigations of factors that present in pre-pubertal stages are important as it might be responsible for the regulation of ovarian and uterine function. Apelin, an adipokine and its receptor (APJ) are present in female reproductive organs. However, no study has reported its postnatal expression in uterus and ovary. Thus, we investigated the postnatal developmental changes in expression and localization of apelin and APJ in the ovary and uterus of mice. Postnatal ovary and uterus were collected from postnatal day (PND) 1, 7, 14, 21, 42, 65 and performed western blot analysis and immunohistochemistry. Uterine APJ is elevated in PND14 and PND65, whereas, ovarian APJ elevated in PND7, PND14, and PND65. Apelin expression in both ovary and uterus showed intense staining at PND65 and PND14. Our results showed that apelin and APJ abundance was lower at PND21 in uterus and ovary. In conclusion, apelin and APJ are developmentally regulated in the ovary and uterus, and its localization in the different compartments of ovary and uterus suggest its distribution specific physiological role in the uterus and ovary.
Collapse
Affiliation(s)
- Borgohain Anima
- Department of Zoology, Mizoram University, Aizawl, Mizoram, India
| | | | - Vikas K Roy
- Department of Zoology, Mizoram University, Aizawl, Mizoram, India
| |
Collapse
|
6
|
Palmioli E, Dall’Aglio C, Bellesi M, Tardella FM, Moscatelli S, Scocco P, Mercati F. The Apelinergic System Immuno-Detection in the Abomasum and Duodenum of Sheep Grazing on Semi-Natural Pasture. Animals (Basel) 2021; 11:ani11113173. [PMID: 34827905 PMCID: PMC8614516 DOI: 10.3390/ani11113173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary The semi-natural pastures in the Apennines represent the feed source for ovine, whose grazing activity helps to preserve the grassland’s biodiversity. Summer drought stress decreases the grassland pastoral value and affects the morpho-functional features of sheep’s digestive systems. A better knowledge of the gastrointestinal system of sheep may contribute to guaranteeing their welfare, a prerequisite for the sustainability of livestock production. This study aimed to immune-localize the apelinergic system in the abomasum and duodenum of sheep grazing on semi-natural pasture during the spring–summer season and to compare its behavior among animal groups fed with or without supplementation. The apelinergic system, composed of apelin and its receptor, is involved in foodintake and the secretion and absorption activities of the digestive apparatus. Apelinergic system molecules were localized at the abomasum lining epithelium and fundic glands level and at the duodenum lining and crypt epithelium, in addition to the neuroendocrine cells. Variations in reactivity were observed in the different feed groups; feed supplementation seemed to maintain the functionality of the apelinergic system in the organs near the status related to the better pasture phase, suggesting that it may be a suitable solution able to counteract the harmful effects of summer drought stress. Abstract Apelin (APLN) is an adipokine mainly produced by adipose tissue and related to an individual’s nutritional status as well as digestive apparatus functions. In this work, APLN and its receptor (APLNR) were investigated, by immunohistochemistry, in the abomasum and duodenum of 15 Comisana × Appenninica adult sheep reared in a semi-natural pasture. Organ samples were collected after maximum pasture flowering (M × F group) and after maximum pasture dryness (M × D group); the experimental group (E × p group) received a feed supplementation of 600 grams/day/head of barley and corn in addition to M × D group feeding. APLN and APLNR were identified in the lining epithelium and the fundic gland chief cells of the abomasum. APLNR was observed in the lining epithelium, in the crypts and the serotonin secreting cells of the duodenum. Similar reactivity was observed between the M × F and E × p groups, while the M × D group showed a lower intensity of immunostaining for both APLN and APLNR in all positive structures but the duodenal serotonin neuroendocrine cells. Hence, our findings show that the E × p group presents a picture quite overlapped with M × F and suggest that food supplementation has a maintaining effect on the apelinergic system expression in the investigated digestive tracts of the sheep.
Collapse
Affiliation(s)
- Elisa Palmioli
- Department of FISSUF, PhD Course in “Ethics of Communication, Scientific Research and Technological Innovation” Medical-Health Curriculum, University of Perugia, Piazza G. Ermini, 1, 06123 Perugia, Italy;
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy;
| | - Cecilia Dall’Aglio
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy;
- Correspondence: ; Tel.: +39-0755857633
| | - Michele Bellesi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Pontoni 5, 62032 Camerino, Italy; (M.B.); (F.M.T.); (S.M.); (P.S.)
| | - Federico Maria Tardella
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Pontoni 5, 62032 Camerino, Italy; (M.B.); (F.M.T.); (S.M.); (P.S.)
| | - Sara Moscatelli
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Pontoni 5, 62032 Camerino, Italy; (M.B.); (F.M.T.); (S.M.); (P.S.)
| | - Paola Scocco
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Pontoni 5, 62032 Camerino, Italy; (M.B.); (F.M.T.); (S.M.); (P.S.)
| | - Francesca Mercati
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy;
| |
Collapse
|
7
|
Effects of Obesity on Adiponectin System Skin Expression in Dogs: A Comparative Study. Animals (Basel) 2021; 11:ani11082308. [PMID: 34438765 PMCID: PMC8388499 DOI: 10.3390/ani11082308] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Adipokines are biologically active molecules with hormonal action, produced mainly by white adipose tissue and related to the individual’s nutritional status. Adiponectin with its receptors (ADIPOR1, ADIPOR2) intervenes in the control of energy metabolism, as well as in the regulation of peripheral tissue functions. Adiponectin has a primary role in the skin in both physiological and pathological conditions, in addition, this molecule is greatly affected by nutritional status, and its serum level is lowered in the obese. In this work, the adiponectin system was evaluated in the skin of obese dogs along with adiponectin serum levels. Results were compared to normal weight dogs to evidence modifications in the obesity condition. Obesity is a widespread phenomenon in dogs, with a growing trend, as well, in humans; this condition may interfere with the local functionality of tissues, including the skin. The evaluation performed evidenced that adiponectin and ADIPOR2 skin expression is negatively correlated with the serum adiponectin level and accordingly with obesity. These findings evidence that the adiponectin system changes in the skin of obese dogs; this study also explores the role of adipokines in skin biology. Abstract Obesity is an important health issue in dogs since it influences a plethora of associated pathologies, including dermatological disorders. Considering the scarcity of information in pets, this work aimed to evaluate the localization and expression of adiponectin (ADIPOQ) and its two receptors (ADIPOR1 and ADIPOR2) in the skin of 10 obese dogs, compared with serum ADIPOQ level. Through immunohistochemistry, ADIPOQ and ADIPOR2 were observed in the adipose tissue, sweat and sebaceous glands, endothelium, and some connective cells. Both receptors were observed in the epidermis and the hair follicles, other than in the sweat and sebaceous glands. Real-time PCR evidenced that the ADIPOQ and ADIPOR2 transcripts were expressed 5.4-fold (p < 0.01) and 2.3-fold less (p < 0.01), respectively, in obese than in normal weight dogs, while ADIPOR1 expression did not change. Obese dogs showed lower serum ADIPOQ levels than the normal weight group. Accordingly, ADIPOQ and ADIPOR2 expression in the skin appear negatively correlated with obesity in the same way as the serum ADIPOQ level. These findings evidence that ADIPOQ system changes in the skin of obese dogs and suggest that the ADIPOQ effect on the skin is at least in part regulated by the reduced expression of ADIPOR2.
Collapse
|
8
|
Marousez L, Hanssens S, Butruille L, Petit C, Pourpe C, Besengez C, Rakza T, Storme L, Deruelle P, Lesage J, Eberlé D. Breast milk apelin level increases with maternal obesity and high-fat feeding during lactation. Int J Obes (Lond) 2021; 45:1052-1060. [PMID: 33594258 DOI: 10.1038/s41366-021-00772-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 12/14/2020] [Accepted: 01/21/2021] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Recent evidence indicates that levels of breast milk (BM) hormones such as leptin can fluctuate with maternal adiposity, suggesting that BM hormones may signal maternal metabolic and nutritional environments to offspring during postnatal development. The hormone apelin is highly abundant in BM but its regulation during lactation is completely unknown. Here, we evaluated whether maternal obesity and overnutrition impacted BM apelin and leptin levels in clinical cohorts and lactating rats. METHODS BM and plasma samples were collected from normal-weight and obese breastfeeding women, and from lactating rats fed a control or a high fat (HF) diet during lactation. Apelin and leptin levels were assayed by ELISA. Mammary gland (MG) apelin expression and its cellular localization in lactating rats was measured by quantitative RT-PCR and immunofluorescence, respectively. RESULTS BM apelin levels increased with maternal BMI, whereas plasma apelin levels decreased. BM apelin was also positively correlated with maternal insulin and C-peptide levels. In rats, maternal HF feeding exclusively during lactation was sufficient to increase BM apelin levels and decrease its plasma concentration without changing body weight. In contrast, BM leptin levels increased with maternal BMI in humans, but did not change with maternal HF feeding during lactation in rats. Apelin is highly expressed in the rat MG during lactation and was mainly localized to mammary myoepithelial cells. We found that MG apelin gene expression was up-regulated by maternal HF diet and positively correlated with BM apelin content and maternal insulinemia. CONCLUSIONS Our study indicates that BM apelin levels increase with long- and short-term overnutrition, possibly via maternal hyperinsulinemia and transcriptional upregulation of MG apelin expression in myoepithelial cells. Apelin regulates many physiological processes, including energy metabolism, digestive function, and development. Further studies are needed to unravel the consequences of such changes in offspring development.
Collapse
Affiliation(s)
- Lucie Marousez
- Univ. Lille, EA4489 Environnement Périnatal et Santé, Lille, France.,Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
| | - Sandy Hanssens
- Univ. Lille, EA4489 Environnement Périnatal et Santé, Lille, France.,CHU Lille, Jeanne de Flandre Hospital, Gynecology-Obstetrics, Lille, France
| | - Laura Butruille
- Univ. Lille, EA4489 Environnement Périnatal et Santé, Lille, France.,Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Céline Petit
- CHU Lille, Jeanne de Flandre Hospital, Gynecology-Obstetrics, Lille, France
| | - Charlène Pourpe
- Univ. Lille, EA4489 Environnement Périnatal et Santé, Lille, France.,Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | | | - Thameur Rakza
- Univ. Lille, EA4489 Environnement Périnatal et Santé, Lille, France.,CHU Lille, Jeanne de Flandre Hospital, Neonatology and Pediatrics, Lille, France
| | - Laurent Storme
- Univ. Lille, EA4489 Environnement Périnatal et Santé, Lille, France.,CHU Lille, Jeanne de Flandre Hospital, Neonatology and Pediatrics, Lille, France
| | - Philippe Deruelle
- Univ. Lille, EA4489 Environnement Périnatal et Santé, Lille, France.,CHU Lille, Jeanne de Flandre Hospital, Gynecology-Obstetrics, Lille, France
| | - Jean Lesage
- Univ. Lille, EA4489 Environnement Périnatal et Santé, Lille, France.,Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
| | - Delphine Eberlé
- Univ. Lille, EA4489 Environnement Périnatal et Santé, Lille, France. .,Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France.
| |
Collapse
|
9
|
Effects of Feed Supplementation on Nesfatin-1, Insulin, Glucagon, Leptin, T3, Cortisol, and BCS in Milking Ewes Grazing on Semi-Natural Pastures. Animals (Basel) 2021; 11:ani11030682. [PMID: 33806523 PMCID: PMC7999527 DOI: 10.3390/ani11030682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/25/2021] [Accepted: 02/28/2021] [Indexed: 01/01/2023] Open
Abstract
This study aimed to investigate the effects of feed supplementation on body condition score (BCS) and different metabolic hormones concentration in lactating sheep reared in Italian Central Apennine pastures during the grazing summer period. In this study, 24 Comisana x Appenninica pluriparous ewes from June until August were divided into two homogenous groups: the control group (UNS) was free to graze, while the other group (SUP), in addition to grazing, was supplemented with 600 g/day/head of cereals. At the start of the supplementation and at an interval of 9-10 days until the end of experimentation, BCS evaluation and blood withdrawal to assay nesfatin-1, insulin, glucagon, leptin, triiodothyronine and cortisol levels were performed. Univariable analysis showed no remarkable differences between the groups, while multivariable analysis suggested that the UNS group was characterized by a lower BCS and greater nesfatin-1 than the SUP group. These findings can be considered in relation to milk production, which shows a clear better persistence in the SUP group. Our results indicate that nutritional supplementation has protected ewes from the usual lowering of the body state linked to lactation and provides a good maintenance of milk production, determining also a better overall body and metabolic state of the animals, which is important at the beginning of the sexual season.
Collapse
|
10
|
Maranesi M, Di Loria A, Dall’Aglio C, Piantedosi D, Lepri E, Ciaramella P, Mercati F. Leptin System in Obese Dog Skin: A Pilot Study. Animals (Basel) 2020; 10:ani10122338. [PMID: 33316917 PMCID: PMC7764193 DOI: 10.3390/ani10122338] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Obesity is a widespread phenomenon in pets and its growing trend is similar to the human one. It can be associated with skin pathologies but there is little information on this field in domestic animals. Since in obesity adipokine plasmatic levels changes, in this study leptin (LEP) system was evaluated in the skin of obese dogs to observe changes in peripheral tissue. LEP is a hormone produced mainly by the adipose tissue and its serum level may reflect body mass index and BCS. LEP is also expressed in the skin and it has a prominent role in the biology of this tissue promoting cell proliferation and regulating the wound healing process. Investigation performed in obese and normal-weight dogs evidenced LEP and leptin receptor (LEPR) immunostaining in several skin structures. As LEP expression regards, differences were non-significant, while the LEPR transcripts appeared 10 fold higher in obesedogs. No differences were observed in the composition of skin associated immune system. The obese group-increased LEPR expression suggests that the receptor modulates the system control. The LEP system changes in the skin under obesity conditions however, the exact role of LEP in obese dog skin needs further insights. Abstract Obesity predisposes to several health problems including skin diseases. However, information on the relationship between obesity and skin disorders in pets is very scarce. Leptin (LEP) is mainly produced by adipose tissue and has a prominent role in skin biology. This study evaluated the LEP system in the skin of obese dogs compared to normal-weight animals. The investigation was carried out on 10 obese (Obese group) and 10 normal-weight (Normal-weight group) dogs through Real-time PCR and immunohistochemistry. Cells of skin associated immune system were also evaluated. No differences were evidenced between the two groups as well as skin inflammation. LEP differences were no significant, while LEPR transcript appeared 10-fold higher in obesedogs than in normal-weight ones. Immunostaining for both molecules was observed in several skin structures such as the epidermis, hair follicles, and glands. No differences appeared in the skin associated immune system composition. This study is a preliminary report showing that LEP system changes in obese dog skin. The increased LEPR expression observed in the obese group suggests that the receptor plays a modulating role in the system control. However, the exact role of LEPin the skin under obesity conditions needs further elucidation.
Collapse
Affiliation(s)
- Margherita Maranesi
- Department of Veterinary Medicine, University of Perugia, via San Costanzo 4, 06126 Perugia, Italy; (M.M.); (F.M.)
| | - Antonio Di Loria
- Department of Veterinary Medicine and Animal Productions, University Federico II of Napoli, via F. Delpino 1, 080137 Napoli, Italy; (A.D.L.); (D.P.); (P.C.)
| | - Cecilia Dall’Aglio
- Department of Veterinary Medicine, University of Perugia, via San Costanzo 4, 06126 Perugia, Italy; (M.M.); (F.M.)
- Correspondence: (C.D.); (E.L.); Tel.: +39-075-585-7633 (C.D.); +39-075-585-7733 (E.L.)
| | - Diego Piantedosi
- Department of Veterinary Medicine and Animal Productions, University Federico II of Napoli, via F. Delpino 1, 080137 Napoli, Italy; (A.D.L.); (D.P.); (P.C.)
| | - Elvio Lepri
- Department of Veterinary Medicine, University of Perugia, via San Costanzo 4, 06126 Perugia, Italy; (M.M.); (F.M.)
- Correspondence: (C.D.); (E.L.); Tel.: +39-075-585-7633 (C.D.); +39-075-585-7733 (E.L.)
| | - Paolo Ciaramella
- Department of Veterinary Medicine and Animal Productions, University Federico II of Napoli, via F. Delpino 1, 080137 Napoli, Italy; (A.D.L.); (D.P.); (P.C.)
| | - Francesca Mercati
- Department of Veterinary Medicine, University of Perugia, via San Costanzo 4, 06126 Perugia, Italy; (M.M.); (F.M.)
| |
Collapse
|
11
|
Seasonal Expression of NGF and Its Cognate Receptors in the Ovaries of Grey Squirrels ( Sciurus carolinensis). Animals (Basel) 2020; 10:ani10091558. [PMID: 32887345 PMCID: PMC7552179 DOI: 10.3390/ani10091558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/05/2022] Open
Abstract
Simple Summary Invasive alien species pose a significant threat to biodiversity, as once they have adapted to their new environment, they cause the reduction and even extinction of native species. In this framework, the American grey squirrel (Sciurus carolinensis) poses a serious threat to the European red species squirrel (Sciurus vulgaris), especially in the Umbria region of Italy. In fact, an invasive grey squirrel population has adapted well to the Umbrian territory, showing high reproductive success. In addition to its role in the development of the vertebrate nervous system, nerve growth factor (NGF) has recently been found to play an important role in reproduction. In order to investigate the reproductive physiology of female grey squirrels, the ovarian presence, distribution, and gene expression of NGF and its cognate receptors were evaluated during both breeding and nonbreeding seasons. The presence and gene expression of this system at the ovarian level, mainly during the breeding season, confirm the possible involvement of NGF and its receptors in the gonadal activity of this invasive grey squirrel population. Abstract The grey squirrel is an invasive alien species that seriously threatens the conservation of the native red squirrel species. With the aim of characterizing the reproductive physiology of this species due to its great reproductive success, the function of the ovarian nerve growth factor (NGF) system was analyzed in a grey squirrel population living in central Italy. During the breeding and nonbreeding seasons, the ovarian presence, distribution, and gene expression of NGF, neurotrophic tyrosine kinase receptor 1 (NTRK1), and nerve growth factor receptor (NGFR), as well as NGF plasma concentrations, were evaluated in female grey squirrels. NGF was found in the luteal cells and in the thecal and granulosa cells of follicles, while NTRK1 and NGFR were only observed in follicular thecal and granulosa cells. NGF and NGFR transcripts were almost two-fold greater during the breeding season, while no seasonal differences were observed in NTRK1 gene expression. During the breeding season, NGFR was more expressed than NTRK1. Moreover, no changes were observed in NGF plasma levels during the reproductive cycle. The NGF system seems to be involved in regulating the ovarian cycle mainly via local modulation of NGF/NGFR, thus playing a role in the reproductive physiology of this grey squirrel population.
Collapse
|
12
|
Influence of Different Feed Physical Forms on Mandibular Gland in Growing Pigs. Animals (Basel) 2020; 10:ani10050910. [PMID: 32456363 PMCID: PMC7278392 DOI: 10.3390/ani10050910] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary The study was carried out on growing pigs fed with different dietary treatments based on different grinding intensities and compactions of the same diet. Chewing acts are associated with salivary production and different extents of saliva fluidity also depend on the specific glycoconjugate content. Therefore, in order to have information about the modifications induced by different feed physical forms in the pig mandibular gland, the glycohistochemical profile and the presence of aquaporin 5, a channel protein modulating the saliva fluidity, were investigated. In addition, to have wider information about the apelinergic system function, presence and localization of both apelin and its receptor were studied. Findings suggest that the different mechanical stimuli in the mouth linked to different feed physical forms likely allow one to diverse physiological behavior of the pig mandibular gland. The intense chewing activity linked to the highest feed compaction and hardness promotes an increase in pig mandibular gland secretion. In addition, saliva becomes more fluid and richer in acid glycoconjugates in order to better lubricate the bolus and protect the mouth mucosae. The apelinergic system is likely involved in the above modifications enhancing both the fluidity and the quantity of serous saliva by the pig mandibular gland. Abstract A study was performed on the mandibular gland obtained from growing pigs enrolled in a wide research project aiming to test the effects of different feed physical forms on animal health, production and welfare. We used 48 pigs fed for four weeks with different dietary treatments based on different grinding intensities and compactions of the same diet, namely coarsely ground meal (CM), finely ground pelleted (FP) and coarsely ground pelleted (CP) diets. Samples were analyzed by conventional histochemistry to identify the glycohistochemical profile and by immunohistochemistry to localize aquaporin 5, apelin and apelin receptor. Statistical elaborations were performed using the Stats R-package, version 3.5.3. Pig mandibular gland adenomere increased both the quantity and acidity of produced glycoconjugates from CM to FP and CP diets. This probably calls forth higher watery saliva, thus promoting a better feed softening facilitating the amalgamation of the bolus. Mandibular gland increased aquaporin 5 positivity in the CP diet, supporting the hypothesis of an augmented demand for water. Based on apelin/receptor localization, it was hypothesized that in pig mandibular gland the apelinergic system likely performs an endocrine control on the demilunes activity and a paracrine control on ducts, facilitating the production of a more fluid saliva.
Collapse
|
13
|
Troisi A, Dall'Aglio C, Maranesi M, Orlandi R, Speranza R, Zerani M, Polisca A. Presence and expression of apelin and apelin receptor in bitch placenta. Theriogenology 2019; 147:192-196. [PMID: 31767185 DOI: 10.1016/j.theriogenology.2019.11.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 02/07/2023]
Abstract
Apelin is a potent inotropic agent causing endothelium-mediated vasodilation and is involved in vessel formation by interacting with a specific receptor. Its cardiovascular profile suggests a role in the regulation of gestational hemodynamic changes. The expression of apelin and its receptor has been reported in some portions of the reproductive tract of different mammalian species. As far as we know, there are no reports describing the expression of apelin and apelin receptor in bitch's placenta. Therefore, the aim of this study was to investigate, for the first time, the presence and distribution of apelin and apelin receptor in bitch placenta by molecular biology and immunohistochemical techniques. Sixteen adult female half-breed bitches were used. The animals were divided into two groups based on the stage of pregnancy: group 1 (mid-gestation n = 8) and group 2 (end gestation n = 8). These bitches were subjected to ovariohysterectomy (group1) or non-conservative caesarean section (group 2). The immunohistochemical technique revealed the presence of positive immune reaction for apelin and apelin receptor in all the samples examined at 30 days and at the end of pregnancy. In particular, apelin and apelin receptor staining was evident in the cytoplasms of cytotrophoblasts and in epithelial cells of the maternal portion. Even if not included into the structure of the placenta, the uterine glands also exhibited a positive immune reaction for apelin and apelin receptor. The RT-PCR analysis showed the presence of transcripts for apelin and apelin receptor in all the placenta samples examined. On the basis of our results it was also possible to hypothesize a potential role of apelin in the control of local placenta blood flow during pregnancy development in bitches.
Collapse
Affiliation(s)
- A Troisi
- Dipartimento di Medicina Veterinaria, Università di Perugia, Via San Costanzo 4, 06124, Perugia, Italy
| | - C Dall'Aglio
- Dipartimento di Medicina Veterinaria, Università di Perugia, Via San Costanzo 4, 06124, Perugia, Italy.
| | - M Maranesi
- Dipartimento di Medicina Veterinaria, Università di Perugia, Via San Costanzo 4, 06124, Perugia, Italy
| | - R Orlandi
- Tyrus Clinica Veterinaria, Via Aldo Bartocci, 1G, 05100, Terni, Italy
| | - R Speranza
- Guadia di Finanza, Corso allevamento e addestramento cinofilo 46, Via Lungolago, 06061, Castiglione Del Lago, Italy
| | - M Zerani
- Dipartimento di Medicina Veterinaria, Università di Perugia, Via San Costanzo 4, 06124, Perugia, Italy
| | - A Polisca
- Dipartimento di Medicina Veterinaria, Università di Perugia, Via San Costanzo 4, 06124, Perugia, Italy
| |
Collapse
|
14
|
Apelin system detection in the reproductive apparatus of ewes grazing on semi-natural pasture. Theriogenology 2019; 139:156-166. [PMID: 31412301 DOI: 10.1016/j.theriogenology.2019.08.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/19/2019] [Accepted: 08/07/2019] [Indexed: 02/07/2023]
Abstract
Apelin (APLN) is an adipokine with pleiotropic effects involved in the regulation of metabolic, cardiovascular, immune, and electrolyte balance function. Recent studies demonstrated a pivotal role in the regulation of male and female reproduction. APLN and its receptor (APLNR) were found in the hypothalamic-pituitary-gonad axis tissues, regulating gonadotropin release and steroidogenesis. However, to date, there are no studies that describe APLN system in the reproductive apparatus of the sheep. The study was performed on 10 Comisana x Appenninica adult dry ewes reared in a semi-natural pasture. Organ samples were collected from five animals in the two pasture functional phases: after maximum pasture flowering (Group 1) and after maximum pasture dryness (Group 2). Experiments were devised to characterize the gene expression and protein localization of the APLN/APLNR system in ewe reproductive apparatus; in addition, the concentration of plasma APLN was evaluated during the trial. Through immunohistochemical analysis, a positive staining for APLN was observed in the large luteal cells, in the epithelial cell coat of the ampulla, in the uterus epithelial lining and in the uterine glands. APLNR was observed in the granulosa cells, in the large luteal cells, in the secreting cells of the ampulla, in the uterus epithelial lining and uterine glands. The transcripts for APLN and APLNR were evidenced in all organ tissues examined. The highest level of APLN mRNA was detected in the Group 2 ewes in the luteal phase of the ovarian cycle compared to Group 1 ewes in the anestrous one. The relative content of APLN transcript was respectively twofold higher in the ovary (P < 0.05) and uterus (P < 0.05) and threefold higher in the ampulla (P < 0.05) in the Group 2 vs Group 1. The same trend of APLN transcript was evaluated for APLNR mRNA in uterus (P < 0.05) and ovary (P < 0.05). No difference was evidenced between Group 1 and Group 2 for APLNR mRNA levels. The plasma APLN level was fairly constant during the trial period. In conclusion, the present data suggest that the apelinergic system is involved in the reproduction function of ewes, being differentially distributed and expressed in the organs of the reproductive apparatus of ewes; these variations could be related to the sexual cycle and to the cyclic activity of the reproductive apparatus.
Collapse
|
15
|
Caprioli G, Kamgang Nzekoue F, Fiorini D, Scocco P, Trabalza-Marinucci M, Acuti G, Tardella FM, Sagratini G, Catorci A. The effects of feeding supplementation on the nutritional quality of milk and cheese from sheep grazing on dry pasture. Int J Food Sci Nutr 2019; 71:50-62. [PMID: 31163113 DOI: 10.1080/09637486.2019.1613347] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The effect of feeding supplementation on the nutritional characteristics of milk and cheese was studied in dairy sheep grazing on low mountain dry-grasslands during summer in typical sub-Mediterranean conditions of aridity. The control group (CG) of 25 sheep grazed on grass, while the experimental group (EG) of 25 sheep grazed on grass and received 600 g a day of a barley and corn mixture. Daily milk production showed a less pronounced decrease in EG than in CG (p ˂ 0.0368). After one month of supplementation, the concentrations of retinol and α-tocopherol in milk and cheese from EG were higher than CG (p < 0.05). Supplementary feeding had a positive effect on the fatty acid composition of the sheep milk. For the first time, positive effects on the volatile composition were found in EG cheese, displaying lower percentages of carboxylic acids associated with the pungent and rancid odour with respect to CG.
Collapse
Affiliation(s)
| | | | - Dennis Fiorini
- School of Science and Technology, Chemistry Division, University of Camerino, Camerino, Italy
| | - Paola Scocco
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | | | - Gabriele Acuti
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Federico M Tardella
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | | | - Andrea Catorci
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| |
Collapse
|
16
|
Dall'Aglio C, Scocco P, Maranesi M, Petrucci L, Acuti G, De Felice E, Mercati F. Immunohistochemical identification of resistin in the uterus of ewes subjected to different diets: Preliminary results. Eur J Histochem 2019; 63. [PMID: 31060349 PMCID: PMC6509476 DOI: 10.4081/ejh.2019.3020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 04/15/2019] [Indexed: 12/22/2022] Open
Abstract
Resistin is a polypeptide hormone of the adipokine-family, primarily, but not exclusively, produced by the adipose tissue. Recent studies suggested that resistin may affect the male and female reproductive activity. The study aim was to immunohistochemically evaluate the presence and distribution of resistin in the ovine uterus. Uterine samples were collected from two groups of ewes at the end of an experimental trial during which the animals of the first group (CTRL) were fed only by grazing while those of the second one (EXP) were supplemented with barley and corn. Using a monoclonal antibody against resistin, tested by Western Blot, the immunopositive reaction was identified in the cytoplasm of epithelial lining cells and uterine glands. The endogenous production of resistin seemed to be affected by different diet, as evidenced by staining differences between the CTRL and EXP groups. Our findings support the existence of a peripheral resistin system in the sheep uterus. It is possible that this system is involved in the functionality of the uterus, which is also affected by the animal’s nutritional status.
Collapse
|