1
|
Liou CW, Cheng SJ, Yao TH, Lai TT, Tsai YH, Chien CW, Kuo YL, Chou SH, Hsu CC, Wu WL. Microbial metabolites regulate social novelty via CaMKII neurons in the BNST. Brain Behav Immun 2023; 113:104-123. [PMID: 37393058 DOI: 10.1016/j.bbi.2023.06.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023] Open
Abstract
Social novelty is a cognitive process that is essential for animals to interact strategically with conspecifics based on their prior experiences. The commensal microbiome in the gut modulates social behavior through various routes, including microbe-derived metabolite signaling. Short-chain fatty acids (SCFAs), metabolites derived from bacterial fermentation in the gastrointestinal tract, have been previously shown to impact host behavior. Herein, we demonstrate that the delivery of SCFAs directly into the brain disrupts social novelty through distinct neuronal populations. We are the first to observe that infusion of SCFAs into the lateral ventricle disrupted social novelty in microbiome-depleted mice without affecting brain inflammatory responses. The deficit in social novelty can be recapitulated by activating calcium/calmodulin-dependent protein kinase II (CaMKII)-labeled neurons in the bed nucleus of the stria terminalis (BNST). Conversely, chemogenetic silencing of the CaMKII-labeled neurons and pharmacological inhibition of fatty acid oxidation in the BNST reversed the SCFAs-induced deficit in social novelty. Our findings suggest that microbial metabolites impact social novelty through a distinct neuron population in the BNST.
Collapse
Affiliation(s)
- Chia-Wei Liou
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd, Tainan 70101, Taiwan; Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd, Tainan 70101, Taiwan.
| | - Sin-Jhong Cheng
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan.
| | - Tzu-Hsuan Yao
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd, Tainan 70101, Taiwan
| | - Tzu-Ting Lai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd, Tainan 70101, Taiwan; Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd, Tainan 70101, Taiwan
| | - Yu-Hsuan Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd, Tainan 70101, Taiwan; Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd, Tainan 70101, Taiwan
| | - Che-Wei Chien
- Leeuwenhoek Laboratories Co. Ltd, Taipei 10672, Taiwan
| | - Yu-Lun Kuo
- Biotools Co. Ltd, New Taipei City 22175, Taiwan
| | - Shih-Hsuan Chou
- Biotools Co. Ltd, New Taipei City 22175, Taiwan; Graduate Institute of Biomedical and Pharmaceutical Science, Fu-Jen Catholic University, New Taipei City 24205, Taiwan
| | - Cheng-Chih Hsu
- Leeuwenhoek Laboratories Co. Ltd, Taipei 10672, Taiwan; Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| | - Wei-Li Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd, Tainan 70101, Taiwan; Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd, Tainan 70101, Taiwan.
| |
Collapse
|
2
|
Durand M, Dourmad JY, Julienne A, Couasnon M, Gaillard C. Effects of a competitive feeding situation on the behaviour and energy requirements of gestating sows. Appl Anim Behav Sci 2023. [DOI: 10.1016/j.applanim.2023.105884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
3
|
Sow Behavior During Introduction to a Large Dynamic Group is Influenced by Familiarity and Method. Appl Anim Behav Sci 2022. [DOI: 10.1016/j.applanim.2022.105624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Inclusion of wheat aleurone in gestation diets improves postprandial satiety, stress status and stillbirth rate of sows. ACTA ACUST UNITED AC 2021; 7:412-420. [PMID: 34258429 PMCID: PMC8245802 DOI: 10.1016/j.aninu.2020.06.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/22/2020] [Accepted: 06/17/2020] [Indexed: 11/23/2022]
Abstract
This study investigated the effects of different amounts of wheat aleurone (WA) (0, 15%, 30%) inclusion in gestation diets on the reproductive performance, postprandial satiety, stress status and stereotypic behaviors of sows. A total of 84 Landrace × Yorkshire sows (parity 4.87 ± 1.32) at breeding were randomly allotted to one of the three isoenergetic and isonitrogenous dietary treatments based on parity and body weight. The results showed that, compared with the control (0), sows fed the WA diet had a higher serum concentration of peptide YY (PYY) (P < 0.05) and glucagon like peptide-1 (GLP-1) (P < 0.05) and a lower concentration of saliva cortisol (P < 0.01). Importantly, compared with the control group, only the 15% WA group had a higher concentration of the total antioxidant capacity (T-AOC) (P < 0.05), lower proportions of sitting (P = 0.05) and stillbirth rates (P < 0.01). Accordingly, the production cost per piglet born alive ($ 6.9 vs. $ 7.6) or per piglet born healthy ($ 7.4 vs. $ 7.9) declined in the 15% WA group versus the control group. Overall, 15% WA inclusion in gestation diets contributed to enhancing postprandial satiety, alleviating stress status and decreasing stillbirth rate of sows. This study provides a reference for the application of WA as a partial substitute for conventional feed ingredients to improve sows’ reproductive performance.
Collapse
|
5
|
Vargovic L, Hermesch S, Athorn RZ, Bunter KL. Feed intake and feeding behavior traits for gestating sows recorded using electronic sow feeders. J Anim Sci 2021; 99:skaa395. [PMID: 33313717 PMCID: PMC7799585 DOI: 10.1093/jas/skaa395] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/10/2020] [Indexed: 01/21/2023] Open
Abstract
Electronic sow feeding (ESF) systems are used to control feed delivery to individual sows that are group-housed. Feeding levels for gestating sows are typically restricted to prevent excessive body weight gain. Any alteration of intake from the allocated feeding curve or unusual feeding behavior could indicate potential health issues. The objective of this study was to use data recorded by ESF to establish and characterize novel feed intake and feeding behavior traits and to estimate their heritabilities. Raw data were available from two farms with in-house manufactured (Farm A) or commercial (Farm B) ESF. The traits derived included feed intake, time spent eating, and rate of feed consumption, averaged across or within specific time periods of gestation. Additional phenotypes included average daily number of feeding events (AFE), along with the cumulative numbers of days where sows spent longer than 30 min in the ESF (ABOVE30), missed their daily intake (MISSF), or consumed below 1 kg of feed (BELOW1). The appetite of sows was represented by averages of score (APPETITE), a binary value for allocation eaten or not (DA_bin), or the standard deviation of the difference between feed intake and allocation (SDA-I). Gilts took longer to eat than sows (15.5 ± 0.13 vs. 14.1 ± 0.11 min/d) despite a lower feed allocation (2.13 ± 0.00 vs. 2.36 ± 0.01 kg/d). The lowest heritability estimates (below 0.10) occurred for feed intake traits, due to the restriction in feed allocation, although heritabilities were slightly higher for Farm B, with restriction in the eating time. The low heritability for AFE (0.05 ± 0.02) may have reflected the lack of recording of nonfeeding visits, but repeatability was moderate (0.26 ± 0.03, Farm A). Time-related traits were moderately to highly heritable and repeatable, demonstrating genetic variation between individuals in their feeding behaviors. Heritabilities for BELOW1 (Farm A: 0.16 ± 0.04 and Farm B: 0.15 ± 0.09) and SDA-I (Farm A: 0.17 ± 0.04 and Farm B: 0.10 ± 0.08) were similar across farms. In contrast, MISSF was moderately heritable in Farm A (0.19 ± 0.04) but lowly heritable in Farm B (0.05 ± 0.07). Heritabilities for DA_bin were dissimilar between farms (Farm A: 0.02 ± 0.02 and Farm B: 0.23 ± 0.10) despite similar incidence. Individual phenotypes constructed from ESF data could be useful for genetic evaluation purposes, but equivalent capabilities to generate phenotypes were not available for both ESF systems.
Collapse
Affiliation(s)
- Laura Vargovic
- Animal Genetics and Breeding Unit, A Joint Venture of NSW Department of Primary Industries and the University of New England, Armidale, New South Wales, Australia
| | - Susanne Hermesch
- Animal Genetics and Breeding Unit, A Joint Venture of NSW Department of Primary Industries and the University of New England, Armidale, New South Wales, Australia
| | - Rebecca Z Athorn
- Australian Pork Limited, Barton Australian Capital Territory, Kingston Australian Capital Territory, Australia
| | - Kim L Bunter
- Animal Genetics and Breeding Unit, A Joint Venture of NSW Department of Primary Industries and the University of New England, Armidale, New South Wales, Australia
| |
Collapse
|