1
|
Amponsah AS, Ankar-Brewoo GM, Lutterodt HE, Ofosu IW. Assessing the microbial diversity and proximate composition of smoked-fermented bushmeat from four different bushmeat samples. BIOTECHNOLOGIA 2024; 105:5-17. [PMID: 38633890 PMCID: PMC11020155 DOI: 10.5114/bta.2024.135637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 04/19/2024] Open
Abstract
The ever-increasing demand for wildlife-derived raw or processed meat commonly known as bushmeat, has been identified as one of the critical factors driving the emergence of infectious diseases. This study focused on examining the bacterial community composition of smoked and fermented bushmeats, specifically grasscutter, rat, rabbit, and mona monkey. The analysis involved exploring 16Sr RNA amplicon sequences isolated from bushmeat using QIIME2. Microbiome profiles and their correlation with proximate components (PLS regression) were computed in STAMP and XLSTAT, respectively. Results indicate the predominance of Firmicutes (70.9%), Actinobacteria (18.58%), and Proteobacteria (9.12%) in bushmeat samples at the phylum level. Staphylococcus, Arthrobacter, Macrococcus, and Proteus constituted the core microbiomes in bushmeat samples, ranked in descending order. Notably, significant differences were observed between the bacterial communities of bushmeat obtained from omnivores and herbivores (rat and mona monkey, and grasscutter and mona monkey), as well as those with similar feeding habits (rat and monkey, and grasscutter and rabbit) at the family and genus levels. Each type of bushmeat possessed unique microbial diversity, with some proximate components such as fat in rat samples correlating with Staphylococcus, while proteins in Mona monkey correlated with Arthrobacter and Brevibacterium, respectively. The study underscores public health concerns and highlights probiotic benefits, as bushmeat samples contained both pathogenic and beneficial bacteria. Therefore, future research efforts could focus on improving bushmeat quality.
Collapse
Affiliation(s)
- Afia Sakyiwaa Amponsah
- Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Department of Hospitality and Tourism, Sunyani Technical University, Sunyani, Ghana
| | | | | | | |
Collapse
|
2
|
Coca Y, Godoy M, Pontigo JP, Caro D, Maracaja-Coutinho V, Arias-Carrasco R, Rodríguez-Córdova L, de Oca MM, Sáez-Navarrete C, Burbulis I. Bacterial networks in Atlantic salmon with Piscirickettsiosis. Sci Rep 2023; 13:17321. [PMID: 37833268 PMCID: PMC10576039 DOI: 10.1038/s41598-023-43345-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
An unbalanced composition of gut microbiota in fish is hypothesized to play a role in promoting bacterial infections, but the synergistic or antagonistic interactions between bacterial groups in relation to fish health are not well understood. We report that pathogenic species in the Piscirickettsia, Aeromonas, Renibacterium and Tenacibaculum genera were all detected in the digesta and gut mucosa of healthy Atlantic salmon without clinical signs of disease. Although Piscirickettsia salmonis (and other pathogens) occurred in greater frequencies of fish with clinical Salmonid Rickettsial Septicemia (SRS), the relative abundance was about the same as that observed in healthy fish. Remarkably, the SRS-positive fish presented with a generalized mid-gut dysbiosis and positive growth associations between Piscirickettsiaceae and members of other taxonomic families containing known pathogens. The reconstruction of metabolic phenotypes based on the bacterial networks detected in the gut and mucosa indicated the synthesis of Gram-negative virulence factors such as colanic acid and O-antigen were over-represented in SRS positive fish. This evidence indicates that cooperative interactions between organisms of different taxonomic families within localized bacterial networks might promote an opportunity for P. salmonis to cause clinical SRS in the farm environment.
Collapse
Affiliation(s)
- Yoandy Coca
- Doctorado en Ciencias de la Ingeniería, Departamento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, 7820436, Santiago, Región Metropolitana, Chile
| | - Marcos Godoy
- Centro de Investigaciones Biológicas Aplicadas (CIBA), Avenida Lago Panguipulli 1390, Puerto Montt, Región de Los Lagos, Chile.
- Laboratorio Institucional, Facultad de Ciencias de la Naturaleza, Escuela de Medicina Veterinaria, Universidad San Sebastián, Sede Patagonia, Avenida Lago Panguipulli 1390, Puerto Montt, Región de Los Lagos, Chile.
| | - Juan Pablo Pontigo
- Laboratorio Institucional, Facultad de Ciencias de la Naturaleza, Escuela de Medicina Veterinaria, Universidad San Sebastián, Sede Patagonia, Avenida Lago Panguipulli 1390, Puerto Montt, Región de Los Lagos, Chile
| | - Diego Caro
- Centro de Investigaciones Biológicas Aplicadas (CIBA), Avenida Lago Panguipulli 1390, Puerto Montt, Región de Los Lagos, Chile
| | - Vinicius Maracaja-Coutinho
- Centro de Modelamiento Molecular, Biofísica y Bioinformática (CM2B2), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Avenida Dr. Carlos Lorca Tobar 964, 8380494, Santiago, Región Metropolitana, Chile
- Beagle Bioinformatics, Santiago, Región Metropolitana, Chile
- Unidad de Genómica Avanzada, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Avenida Dr. Carlos Lorca Tobar 964, 8380494, Santiago, Región Metropolitana, Chile
| | - Raúl Arias-Carrasco
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana, Avenida Dieciocho 161, 8330383, Santiago, Región Metropolitana, Chile
| | - Leonardo Rodríguez-Córdova
- Facultad de Ingeniería, Escuela de Ingeniería, Universidad Santo Tomás, Avenida Ejército Libertador 146, Santiago, Región Metropolitana, Chile
| | - Marco Montes de Oca
- Centro de Investigaciones Biológicas Aplicadas (CIBA), Avenida Lago Panguipulli 1390, Puerto Montt, Región de Los Lagos, Chile
| | - César Sáez-Navarrete
- Departamento de Ingeniería Química y Bioprocesos, Pontificia Universidad Católica de Chile, Avenida. Vicuña Mackenna 4860, 7820436, Santiago, Región Metropolitana, Chile.
- Centro de Investigación en Nanotecnología y Materiales Avanzados (CIEN-UC), Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, 7820436, Santiago, Región Metropolitana, Chile.
| | - Ian Burbulis
- Centro de Investigación Biomédica, Facultad de Medicina y Ciencia, Universidad San Sebastián, Sede Patagonia, Avenida Lago Panguipulli 1390, Puerto Montt, Región de Los Lagos, Chile.
| |
Collapse
|
3
|
Huaiquipán R, Quiñones J, Díaz R, Velásquez C, Sepúlveda G, Velázquez L, Paz EA, Tapia D, Cancino D, Sepúlveda N. Review: Effect of Experimental Diets on the Microbiome of Productive Animals. Microorganisms 2023; 11:2219. [PMID: 37764062 PMCID: PMC10536378 DOI: 10.3390/microorganisms11092219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 09/29/2023] Open
Abstract
The microorganisms that inhabit the gastrointestinal tract are responsible for multiple chains of reactions that affect their environment and modify the internal metabolism, their study receives the name of microbiome, which has become more relevant in recent years. In the near future, the challenges related to feeding are anticipated to escalate, encompassing the nutritional needs to sustain an overpopulated world. Therefore, it is expected that a better understanding of the interactions between microorganisms within the digestive tract will allow their modulation in order to provide an improvement in the immune system, feed efficiency or the promotion of nutritional characteristics in production animals, among others. In the present study, the main effects of experimental diets in production animals were described, emphasizing the diversity of the bacterial populations found in response to the diets, ordering them between polygastric and monogastric animals, and then describing the experimental diets used and their effect on the microorganisms. It is hoped that this study will help as a first general approach to the study of the role of the microbiome in production animals under different diets.
Collapse
Affiliation(s)
- Rodrigo Huaiquipán
- Programa de Doctorado en Ciencias Agroalimentarias y Medioambiente, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.H.); (C.V.); (G.S.); (L.V.); (D.T.)
| | - John Quiñones
- Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.D.); (D.C.)
- Centro de Tecnología e Innovación de la Carne, Universidad de La Frontera, Temuco 4780000, Chile
| | - Rommy Díaz
- Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.D.); (D.C.)
- Centro de Tecnología e Innovación de la Carne, Universidad de La Frontera, Temuco 4780000, Chile
| | - Carla Velásquez
- Programa de Doctorado en Ciencias Agroalimentarias y Medioambiente, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.H.); (C.V.); (G.S.); (L.V.); (D.T.)
| | - Gastón Sepúlveda
- Programa de Doctorado en Ciencias Agroalimentarias y Medioambiente, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.H.); (C.V.); (G.S.); (L.V.); (D.T.)
| | - Lidiana Velázquez
- Programa de Doctorado en Ciencias Agroalimentarias y Medioambiente, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.H.); (C.V.); (G.S.); (L.V.); (D.T.)
| | - Erwin A. Paz
- UWA Institute of Agriculture, The University of Western Australia, Perth 6009, Australia;
| | - Daniela Tapia
- Programa de Doctorado en Ciencias Agroalimentarias y Medioambiente, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.H.); (C.V.); (G.S.); (L.V.); (D.T.)
| | - David Cancino
- Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.D.); (D.C.)
- Centro de Tecnología e Innovación de la Carne, Universidad de La Frontera, Temuco 4780000, Chile
| | - Néstor Sepúlveda
- Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.D.); (D.C.)
- Centro de Tecnología e Innovación de la Carne, Universidad de La Frontera, Temuco 4780000, Chile
| |
Collapse
|
4
|
Ziab M, Chaganti SR, Heath DD. The effects of host quantitative genetic architecture on the gut microbiota composition of Chinook salmon (Oncorhynchus tshawytscha). Heredity (Edinb) 2023; 131:43-55. [PMID: 37179383 PMCID: PMC10313681 DOI: 10.1038/s41437-023-00620-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
The microbiota consists of microbes living in or on an organism and has been implicated in host health and function. Environmental and host-related factors were shown to shape host microbiota composition and diversity in many fish species, but the role of host quantitative architecture across populations and among families within a population is not fully characterized. Here, Chinook salmon were used to determine if inter-population differences and additive genetic variation within populations influenced the gut microbiota diversity and composition. Specifically, hybrid stocks of Chinook salmon were created by crossing males from eight populations with eggs from an inbred line created from self-fertilized hermaphrodite salmon. Based on high-throughput sequencing of the 16S rRNA gene, significant gut microbial community diversity and composition differences were found among the hybrid stocks. Furthermore, additive genetic variance components varied among hybrid stocks, indicative of population-specific heritability patterns, suggesting the potential to select for specific gut microbiota composition for aquaculture purposes. Determining the role of host genetics in shaping their gut microbiota has important implications for predicting population responses to environmental changes and will thus impact conservation efforts for declining populations of Chinook salmon.
Collapse
Affiliation(s)
- Mubarak Ziab
- Great Lakes Institute for Environmental Research (GLIER), University of Windsor, 401 Sunset Avenue, Windsor, Ontario, N9B 3P4, Canada
| | - Subba Rao Chaganti
- Cooperative Institute for Great Lakes Research, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Daniel D Heath
- Great Lakes Institute for Environmental Research (GLIER), University of Windsor, 401 Sunset Avenue, Windsor, Ontario, N9B 3P4, Canada.
- Department of Integrative Biology, University of Windsor, 401 Sunset Avenue, Windsor, Ontario, N9B 3P4, Canada.
| |
Collapse
|
5
|
Dietary carbohydrate-to-protein ratio influences growth performance, hepatic health and dynamic of gut microbiota in atlantic salmon (Salmo salar). ANIMAL NUTRITION 2022; 10:261-279. [PMID: 35785253 PMCID: PMC9234083 DOI: 10.1016/j.aninu.2022.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 01/11/2022] [Accepted: 04/10/2022] [Indexed: 11/24/2022]
Abstract
Atlantic salmon (Salmo salar) fed a carbohydrate-rich diet exhibit suboptimal growth performance, along with other metabolic disturbances. It is well known that gut microbes play a pivotal role in influencing metabolism of the host, and these microbes can be modified by the diet. The main goal of the present study was to determine the effect of feeding graded levels of digestible carbohydrates to Atlantic salmon on the distal intestine digesta microbiota at 3 sampling times (i.e., weeks 4, 8 and 12), during a 12-week trial. A low carbohydrate-to-high protein diet (LC/HP, 0% wheat starch), a medium carbohydrate-to-medium protein diet (MC/MP, 15% wheat starch) or a high carbohydrate-to-low protein diet (HC/LP, 30% wheat starch) was fed to triplicate fish tanks (27 to 28 fish per tank). We performed an in-depth characterization of the distal intestine digesta microbiota. Further, growth parameters, liver histology and the expression of genes involved in hepatic neolipogenesis in fish were measured. Fish fed a HC/LP diet showed greater hepatosomatic and viscerosomatic indexes (P = 0.026 and P = 0.018, respectively), lower final weight (P = 0.005), weight gain (P = 0.003), feed efficiency (P = 0.033) and growth rate (P = 0.003) compared with fish fed the LC/HP diet. Further, feeding salmon a high digestible carbohydrate diet caused greater lipid vacuolization, steatosis index (P = 0.007) and expression of fatty acid synthase (fas) and delta-6 fatty acyl desaturase (d6fad) (P = 0.001 and P = 0.001, respectively) in the liver compared with fish fed the LC/HP diet. Although, the major impact of feeding a carbohydrate-rich diet to Atlantic salmon in beta diversity of distal intestine digesta microbiota was observed at week 4 (HC/LP vs MC/MP and HC/LP vs LC/HP; P = 0.007 and P = 0.008, respectively) and week 8 (HC/LP vs MC/MP; P = 0.04), no differences between experimental groups were detected after 12 weeks of feeding. Finally, at the end of the trial, there was a negative correlation between lactic acid bacteria (LAB) members, including Leuconostoc and Lactobacillus, with hepatic steatosis level, the hepatosomatic and viscerosomatic indexes as well as the expression of fas and d6fad. Weissella showed negative correlation with hepatic steatosis level and the hepatosomatic index. Finally, further research to explore the potential use of LAB as probiotics to improve liver health in carnivorous fish fed fatty liver-induced diet is warranted.
Collapse
|
6
|
Effect of Dietary Plant Feedstuffs and Protein/Carbohydrate Ratio on Gilthead Seabream (Sparus aurata) Gut Health and Functionality. FISHES 2022. [DOI: 10.3390/fishes7020059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This study investigated, for the first time, the integrated effects of dietary protein source and protein/carbohydrate (P/CH) ratio on gilthead seabream gut histomorphology, microbiota composition, digestive enzymes activity, and immunological and oxidative stress-related gene expressions. Four isolipidic diets: two fishmeal-based (FM) and two plant feedstuff (PF)-based diets, with P/CH ratios of 50/10 or 40/20 each (FM-P50/CH10; FM-P40/CH20; PF-P50/CH10; PF-P40/CH20), were tested. PF-based diets lead to more histomorphological alterations than FM-based diets. P/CH ratio had no relevant effect on gut histomorphology. Gut mucosa of fish fed PF-based diets presented a higher number of operational taxonomic units, and richness and diversity indices, while the P/CH ratio did not affect those parameters. The α-amylase activity was lower in fish fed with PF-based diets and in fish fed the P40/CH20 diets. Regarding the immune-related genes, only cyclooxygenase-2 was affected, being higher in fish fed the P50/CH10 diets than the P40/CH20 diets. Fish fed the FM-based diets presented higher expression of glutathione reductase and glutathione peroxidase, while fish fed the P50/CH10 diet had higher expression of superoxide dismutase. In conclusion, PF-based diets can compromise gut absorptive and digestive metabolism, but decreasing the dietary P/CH ratio had little effect on the parameters measured.
Collapse
|
7
|
Leeper A, Ekmay R, Knobloch S, Skírnisdóttir S, Varunjikar M, Dubois M, Smárason BÖ, Árnason J, Koppe W, Benhaïm D. Torula yeast in the diet of Atlantic salmon Salmo salar and the impact on growth performance and gut microbiome. Sci Rep 2022; 12:567. [PMID: 35022439 PMCID: PMC8755733 DOI: 10.1038/s41598-021-04413-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/08/2021] [Indexed: 01/04/2023] Open
Abstract
Atlantic salmon aquaculture is expanding, and with it, the need to find suitable replacements for conventional protein sources used in formulated feeds. Torula yeast (Cyberlindnera jadinii), has been identified as a promising alternative protein for feed and can be sustainably cultivated on lignocellulosic biomasses. The present study investigated the impact of torula yeast on the growth performance and gut microbiome of freshwater Atlantic salmon. A marine protein base diet and a mixed marine and plant protein base diet were tested, where conventional proteins were replaced with increasing inclusion levels of torula yeast, (0%, 10%, 20%). This study demonstrated that 20% torula yeast can replace fish meal without alteration to growth performance while leading to potential benefits for the gut microbiome by increasing the presence of bacteria positively associated with the host. However, when torula yeast replaced plant meal in a mixed protein diet, results suggested that 10% inclusion of yeast produced the best growth performance results but at the 20% inclusion level of yeast, potentially negative changes were observed in the gut microbial community, such as a decrease in lactic acid bacteria. This study supports the continued investigation of torula yeast for Atlantic salmon as a partial replacement for conventional proteins.
Collapse
Affiliation(s)
- Alexandra Leeper
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box, 1420, Ås, Norway. .,Department of Research and Innovation, Matís Ltd, 12, Vínlandsleid, 113, Reykjavik, Iceland.
| | | | - Stephen Knobloch
- Department of Research and Innovation, Matís Ltd, 12, Vínlandsleid, 113, Reykjavik, Iceland
| | | | - Madhushri Varunjikar
- Department of Research and Innovation, Matís Ltd, 12, Vínlandsleid, 113, Reykjavik, Iceland
| | - Marianne Dubois
- Department of Research and Innovation, Matís Ltd, 12, Vínlandsleid, 113, Reykjavik, Iceland
| | - Birgir Örn Smárason
- Department of Research and Innovation, Matís Ltd, 12, Vínlandsleid, 113, Reykjavik, Iceland
| | - Jón Árnason
- Department of Research and Innovation, Matís Ltd, 12, Vínlandsleid, 113, Reykjavik, Iceland
| | - Wolfgang Koppe
- Department of Research and Innovation, Matís Ltd, 12, Vínlandsleid, 113, Reykjavik, Iceland
| | - David Benhaïm
- Department of Aquaculture and Fish Biology, Hólar University, Haeyri 1, 551, Saudárkrókur, Iceland
| |
Collapse
|
8
|
Romero J, Díaz O, Miranda CD, Rojas R. Red Cusk-Eel ( Genypterus chilensis) Gut Microbiota Description of Wild and Aquaculture Specimens. Microorganisms 2022; 10:microorganisms10010105. [PMID: 35056554 PMCID: PMC8779451 DOI: 10.3390/microorganisms10010105] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022] Open
Abstract
Chile has promoted the diversification of aquaculture and red cusk-eel (Genypterus chilensis) is one of the prioritized species. However, many aspects of the biology of the species are unknown or have little information available. These include intestinal microbiota, an element that may play an important role in the nutrition and defense of cultured animals for meat production. This study compares the microbiota composition of the intestinal contents of wild and aquaculture fish to explore the microbial communities present and their potential contribution to the host. DNA was extracted from the intestinal content samples and the V4 region of the 16S rRNA gene was amplified and sequenced using the Ion Torrent platform. After the examination of the sequences, strong differences were found in the composition at the level of phylum, being Firmicutes and Tenericutes the most abundant in aquaculture and wild condition, respectively. At the genus level, the Vagococcus (54%) and Mycoplasma (97%) were the most prevalent in the microbial community of aquaculture and wild condition, respectively. The evaluation of predicted metabolic pathways in these metagenomes showed that in wild condition there is an important presence of lipid metabolism belonging to the unsaturated fatty acid synthesis. In the aquaculture condition, the metabolism of terpenoids and polyketides were relevant. To our knowledge, this is the first study to characterize and compare the intestinal microbiota of red cusk-eel (Genypterus chilensis) of wild and aquaculture origin using high-throughput sequencing.
Collapse
Affiliation(s)
- Jaime Romero
- Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, El Líbano 5524, Macul, Santiago 783090, Chile;
- Correspondence: ; Tel.: +56-2-29781524
| | - Osmán Díaz
- Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, El Líbano 5524, Macul, Santiago 783090, Chile;
| | - Claudio D. Miranda
- Laboratorio de Patobiología Acuática, Departamento de Acuicultura, Universidad Católica del Norte, Larrondo 1281, Coquimbo 1780000, Chile; (C.D.M.); (R.R.)
| | - Rodrigo Rojas
- Laboratorio de Patobiología Acuática, Departamento de Acuicultura, Universidad Católica del Norte, Larrondo 1281, Coquimbo 1780000, Chile; (C.D.M.); (R.R.)
| |
Collapse
|
9
|
Larios-Soriano E, Zavala RC, López LM, Gómez-Gil B, Ramírez DT, Sanchez S, Canales K, Galaviz MA. Soy protein concentrate effects on gut microbiota structure and digestive physiology of Totoaba macdonaldi. J Appl Microbiol 2021; 132:1384-1396. [PMID: 34469017 DOI: 10.1111/jam.15269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/02/2021] [Accepted: 08/24/2021] [Indexed: 01/28/2023]
Abstract
AIMS Examine the effect of soy protein concentrate (SPC) on allochthonous microbiota, hindgut integrity, and liver tissue of totoaba (Totoaba macdonaldi). METHODS AND RESULTS Four diets were prepared: control diet (100% fishmeal) and experimental diets containing partial substitution of fishmeal by SPC (15%, 30% and 45% SPC). After 90 days, samples of the hindgut contents were taken to determine the taxonomic composition of the allochthonous microbiota through sequencing of the V3-V4 region of the 16S rRNA gene. Simultaneously, liver and hindgut samples were collected for examination by histological approaches. The SPC modulated the richness and abundance of the accessory microbiota, of which the main operational taxonomic unit showed an increase corresponding to the Phylum Firmicutes (Bacillales and Lactobacillales). With the increase in SPC, a slight decrease in mucosal fold width, a decrease in goblet cells and a slight distortion of the villi in the hindgut were observed. In the liver, SPC was observed to influence hepatocytes morphology through irregular and enlarged nuclei. CONCLUSION The study demonstrates that Proteobacteria dominated the allochthonous microbiota of subadult totoaba, regardless of the diet. However, the SPC modulated the accessory bacteria communities and caused slight effects on the liver and gut of fish. SIGNIFICANCES AND IMPACT OF THE STUDY To our knowledge, this is the first study that analyses the effects of SPC on allochthonous microbiota of subadults T. macdonaldi through new generation techniques such as DNA sequencing for metagenomic analysis.
Collapse
Affiliation(s)
- Ernesto Larios-Soriano
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California (UABC), Ensenada, Baja California, México
| | - Roberto Carrillo Zavala
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California (UABC), Ensenada, Baja California, México
| | - Lus M López
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California (UABC), Ensenada, Baja California, México
| | - Bruno Gómez-Gil
- Centro de Investigación en Alimentación y Desarrollo A.C. Unidad-Mazatlán, Sinaloa, México
| | | | - Samuel Sanchez
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California (UABC), Ensenada, Baja California, México
| | - Karla Canales
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California (UABC), Ensenada, Baja California, México
| | - Mario A Galaviz
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California (UABC), Ensenada, Baja California, México
| |
Collapse
|
10
|
Serra CR, Oliva-Teles A, Enes P, Tavares F. Gut microbiota dynamics in carnivorous European seabass (Dicentrarchus labrax) fed plant-based diets. Sci Rep 2021; 11:447. [PMID: 33432059 PMCID: PMC7801451 DOI: 10.1038/s41598-020-80138-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022] Open
Abstract
A healthy gastrointestinal microbiota is essential for host fitness, and strongly modulated by host diet. In aquaculture, a current challenge is to feed carnivorous fish with plant-feedstuffs in substitution of fish meal, an unsustainable commodity. Plants have a limited nutritive value due to the presence of non-starch polysaccharides (NSP) which are not metabolized by fish. In this work we assessed the effects of NSP-enriched diets on European seabass gut microbiota and evaluate the selective pressure of plant feedstuffs towards gut microbes with NSP-hydrolytic potential, i.e. capable to convert indigestible dietary constituents in fish metabolites. Triplicate groups of European seabass juveniles were fed a fish meal-based diet (control) or three plant-based diets (SBM, soybean meal; RSM, rapeseed meal; SFM, sunflower meal) for 6 weeks, before recovering intestinal samples for microbiota analysis, using the Illumina's MiSeq platform. Plant-based diets impacted differently digesta and mucosal microbiota. A decrease (p = 0.020) on species richness, accompanied by a decline on the relative abundance of specific phyla such as Acidobacteria (p = 0.030), was observed in digesta samples of SBM and RSM experimental fish, but no effects were seen in mucosa-associated microbiota. Plant-based diets favored the Firmicutes (p = 0.01), in particular the Bacillaceae (p = 0.017) and Clostridiaceae (p = 0.007), two bacterial families known to harbor carbohydrate active enzymes and thus putatively more prone to grow in high NSP environments. Overall, bacterial gut communities of European seabass respond to plant-feedstuffs with adjustments in the presence of transient microorganisms (allochthonous) with carbohydrolytic potential, while maintaining a balanced core (autochthonous) microbiota.
Collapse
Affiliation(s)
- Cláudia R Serra
- CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, Universidade do Porto, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal.
| | - Aires Oliva-Teles
- CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, Universidade do Porto, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre S/N, Ed. FC4, 4169-007, Porto, Portugal
| | - Paula Enes
- CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, Universidade do Porto, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre S/N, Ed. FC4, 4169-007, Porto, Portugal
| | - Fernando Tavares
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre S/N, Ed. FC4, 4169-007, Porto, Portugal
- CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO - Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal
| |
Collapse
|
11
|
Huyben D, Roehe BK, Bekaert M, Ruyter B, Glencross B. Dietary Lipid:Protein Ratio and n-3 Long-Chain Polyunsaturated Fatty Acids Alters the Gut Microbiome of Atlantic Salmon Under Hypoxic and Normoxic Conditions. Front Microbiol 2020; 11:589898. [PMID: 33424792 PMCID: PMC7785582 DOI: 10.3389/fmicb.2020.589898] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/08/2020] [Indexed: 12/21/2022] Open
Abstract
Researchers have adjusted dietary lipid:protein ratios and n-3 long-chain polyunsaturated fatty acids (LC-PUFA) to optimize the growth performance of Atlantic salmon. However, dietary impacts on the gut microbiome are lacking, especially under varying environmental conditions. To examine this response, post-smolt salmon (184 ± 5 g) were fed diets with lipid:protein ratios considered low (180, 570 g/kg) and high (230, 460 g/kg) along with low and high levels of n-3 LC-PUFA (7 or 14 g/kg) while fish were reared under low and high levels of dissolved oxygen (6.7 or 8.0 mg/L). At day 0, 35 and 116, digesta in the distal intestine were collected and analyzed for viable counts and 16S ribosomal RNA (rRNA) genes (V4 region) using Illumina MiSeq. The reduction in oxygen had negligible effects, except on viable plate counts of total bacteria and an initial effect on beta-diversity. In contrast, the high lipid (HL) diets had an increased alpha-diversity (e.g., Shannon and Chao-1) at day 0 and day 35 whereas high n-3 diets suppressed these indices at day 116. Generally, a reduction in alpha-diversity was observed over time and an interaction between lipid:protein ratio x n-3 was found. Between diets, beta-diversity and phyla abundance were similar as both Proteobacteria (44%) and Firmicutes (21%) dominated. However, at the genus level Aliivibrio, Streptococcus, Weissella, and Lactobacillus, were associated with low lipid (LL) diets while the high lipid diets were associated with less abundant bacteria, e.g., Chromohalobacter. At day 116, the relative abundance of the Tenericutes phylum increased 10-fold (36%). Fish fed the high lipid diet with high n-3 had reduced alpha-diversity, lowest abundance of lactic acid bacteria, and highest abundance of Mycoplasma, which may indicate a less healthy gut microbiome. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis revealed that saturated and unsaturated fatty acid biosynthesis pathways were several folds higher in fish fed the high lipid diet, possibly to compensate for the lack of dietary n-3. In summary, our results show that the viable plate counts, alpha-diversity, beta-diversity, and predictive function of gut bacteria in Atlantic salmon post-smolts are influenced by dietary lipid:protein ratio and n-3 LC-PUFA over several time points with little effect by dissolved oxygen.
Collapse
Affiliation(s)
- David Huyben
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom.,Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Beeke K Roehe
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Michaël Bekaert
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Bente Ruyter
- Norwegian Institute of Food, Fisheries, and Aquaculture Research (Nofima), Tromsø, Norway
| | - Brett Glencross
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| |
Collapse
|