1
|
Sommai S, Wanapat M, Suntara C, Prachumchai R, Cherdthong A. Supplementation of Alternanthera sissoo pellets on feed digestion, rumen fermentation, and protozoal population in Thai native beef cattle. Heliyon 2024; 10:e29972. [PMID: 38694056 PMCID: PMC11058898 DOI: 10.1016/j.heliyon.2024.e29972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 04/02/2024] [Accepted: 04/18/2024] [Indexed: 05/03/2024] Open
Abstract
The objective of this experiment was to study the effects of Brazilian spinach (Alternanthera sissoo) pellet (BSP) supplementation on rumen fermentation, protozoal population, and methane (CH4) estimation in beef cattle. Four male Thai native beef cattle, 3 years old, with an average bodyweight of 180 ± 5 kg, were randomly arranged in a 4 × 4 Latin square design. The cattle were supplemented (on-top) with four levels of BSP (2, 4, 6, and 8% dry matter intake (DMI), respectively). The roughage component, derived from rice straw, was fed at 40 % of DMI, while the concentrate diet was fed at 60 % of DMI. The result of the experiment demonstrated that BSP supplementation had no effect on the DMI, nutrient intake, or nutrient digestibility (p > 0.05). Rumen pH and ammonia-nitrogen concentration were not significant, while the average protozoal population linearly decreased (p = 0.002) with BSP supplementation. Mean blood urea-nitrogen concentration was linearly increased (p = 0.004) when increasing the level of BSP. Brazilian spinach pellet had no significant effect on total volatile fatty acids (TVFA), VFA profiles, and CH4 estimation (p > 0.05). Nitrogen balance was no different from the supplementation of BSP. The study indicates that Brazilian spinach pellet supplementation showed no noticeable effects on feed intake, rumen parameters, and nitrogen utilization; however, at 6-8% of DMI, there was a decrease in protozoal population, with no corresponding reduction in CH4 estimation.
Collapse
Affiliation(s)
- Sukruthai Sommai
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Metha Wanapat
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Chanon Suntara
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Rittikeard Prachumchai
- Department of Animal Science, Faculty of Agricultural Technology, Rajamangala, University of Technology Thanyaburi, Pathum Thani, 12130, Thailand
| | - Anusorn Cherdthong
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| |
Collapse
|
2
|
Yu S, Zhao Y, Li L, Zhao H, Liu M, Jiang L. Flavonoids from citrus peel display potential synergistic effects on inhibiting rumen methanogenesis and ammoniagenesis: a microbiome perspective. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21208-21223. [PMID: 38383931 DOI: 10.1007/s11356-024-32509-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/13/2024] [Indexed: 02/23/2024]
Abstract
Flavonoids have been recognized as potential phytochemicals to reduce enteric methane (CH4) production and improve rumen nitrogen efficiency in ruminants. We evaluated whether naringin, hesperidin, their combination, or a mixed citrus flavonoid extract (CFE) as additives can inhibit methanogenesis and ammoniagenesis in dairy cows using an in vitro rumen batch refermentation system. The rumen inocula from dairy cows were incubated in batch cultures with five groups: no addition (CON), hesperidin (20 g/kg DM), naringin (20 g/kg DM), hesperidin + naringin (10 g/kg DM of hesperidin + 10 g/kg DM of naringin), and CFE (20 g/kg DM). The combination of naringin plus hesperidin and CFE achieved greater reductions in CH4 and ammonia production compared to either naringin or hesperidin alone. Microbiome analysis revealed that the decrease in CH4 emissions may have been caused by both the direct inhibitory impact of citrus flavonoids on Methanobrevibacter and a simultaneous decrease in protozoa Isotricha abundance. The relatively lower proportion of Entodinium in naringin plus hesperidin or CFE was responsible for the lower ammonia concentration. These results suggest that citrus flavonoids possess potential synergistic effects on mitigating ruminal CH4 emissions by cows and improving nitrogen utilization.
Collapse
Affiliation(s)
- Shiqiang Yu
- Beijing Key Laboratory of Dairy Cow Nutrition, Animal Science and Technology College, Beijing University of Agriculture, No.7 Beinong Road, Changping District, Beijing, 102206, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuchao Zhao
- Beijing Key Laboratory of Dairy Cow Nutrition, Animal Science and Technology College, Beijing University of Agriculture, No.7 Beinong Road, Changping District, Beijing, 102206, China
| | - Liuxue Li
- Beijing Key Laboratory of Dairy Cow Nutrition, Animal Science and Technology College, Beijing University of Agriculture, No.7 Beinong Road, Changping District, Beijing, 102206, China
| | - Huiying Zhao
- Beijing Key Laboratory of Dairy Cow Nutrition, Animal Science and Technology College, Beijing University of Agriculture, No.7 Beinong Road, Changping District, Beijing, 102206, China
| | - Ming Liu
- Beijing Key Laboratory of Dairy Cow Nutrition, Animal Science and Technology College, Beijing University of Agriculture, No.7 Beinong Road, Changping District, Beijing, 102206, China
| | - Linshu Jiang
- Beijing Key Laboratory of Dairy Cow Nutrition, Animal Science and Technology College, Beijing University of Agriculture, No.7 Beinong Road, Changping District, Beijing, 102206, China.
| |
Collapse
|
3
|
Lima J, Ingabire W, Roehe R, Dewhurst RJ. Estimating Microbial Protein Synthesis in the Rumen-Can 'Omics' Methods Provide New Insights into a Long-Standing Question? Vet Sci 2023; 10:679. [PMID: 38133230 PMCID: PMC10747152 DOI: 10.3390/vetsci10120679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Rumen microbial protein synthesis (MPS) provides at least half of the amino acids for the synthesis of milk and meat protein in ruminants. As such, it is fundamental to global food protein security. Estimating microbial protein is central to diet formulation, maximising nitrogen (N)-use efficiency and reducing N losses to the environment. Whilst factors influencing MPS are well established in vitro, techniques for in vivo estimates, including older techniques with cannulated animals and the more recent technique based on urinary purine derivative (UPD) excretion, are subject to large experimental errors. Consequently, models of MPS used in protein rationing are imprecise, resulting in wasted feed protein and unnecessary N losses to the environment. Newer 'omics' techniques are used to characterise microbial communities, their genes and resultant proteins and metabolites. An analysis of microbial communities and genes has recently been used successfully to model complex rumen-related traits, including feed conversion efficiency and methane emissions. Since microbial proteins are more directly related to microbial genes, we expect a strong relationship between rumen metataxonomics/metagenomics and MPS. The main aims of this review are to gauge the understanding of factors affecting MPS, including the use of the UPD technique, and explore whether omics-focused studies could improve the predictability of MPS, with a focus on beef cattle.
Collapse
Affiliation(s)
- Joana Lima
- SRUC Dairy Research and Innovation Centre, Barony Campus, Dumfries DG1 3NE, UK; (J.L.); (W.I.)
| | - Winfred Ingabire
- SRUC Dairy Research and Innovation Centre, Barony Campus, Dumfries DG1 3NE, UK; (J.L.); (W.I.)
| | | | - Richard James Dewhurst
- SRUC Dairy Research and Innovation Centre, Barony Campus, Dumfries DG1 3NE, UK; (J.L.); (W.I.)
| |
Collapse
|
4
|
Antonius A, Pazla R, Putri EM, Negara W, Laia N, Ridla M, Suharti S, Jayanegara A, Asmairicen S, Marlina L, Marta Y. Effectiveness of herbal plants on rumen fermentation, methane gas emissions, in vitro nutrient digestibility, and population of protozoa. Vet World 2023; 16:1477-1488. [PMID: 37621549 PMCID: PMC10446706 DOI: 10.14202/vetworld.2023.1477-1488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/12/2023] [Indexed: 08/26/2023] Open
Abstract
Background and Aim Herbal plants have the potential to reduce the population of metagonic bacteria and protozoa due to the bioactive compound contained in herbal plants. This study aimed to evaluate the effect of herbal plant supplementation on rumen fermentation characteristics, methane (CH4) gas emissions, in vitro nutrient digestibility, and protozoan populations. Materials and Methods This study consisted of two stages. Stage I involved determining the potential of herbal plants to increase total gas production (Orskov and McDonald methods) and reduce the protozoan population (Hristov method). Three potential herbs were selected at this stage and used in Stage II as supplements in the palm kernel cake (PKC)-based diet (30% herbal plants + 70% PKC). Proximate and Van Soest analyses were used to determine the chemical composition. In vitro dry matter digestibility (IVDMD), organic matter (IVOMD), and rumen fermentation characteristics were determined using Theodorous method. Conway microdiffusion was used to determine ammonia concentration (NH3). Gas chromatography was used to determine the total and partial volatile fatty acid production. Results The results of the first stage showed that seven herbal plants (Moringa oleifera, Rhodomyrtus tomentosa, Clerodendron serratum, Curcuma longa Linn., Urena lobata, Uncaria, and Parkia timoriana) significantly differed in terms of total gas production (p < 0.05). Herbal plants can increase gas production and reduce protozoan populations. The highest total gas production was observed using P. timoriana, M. oleifera, and C. longa Linn. Moringa oleifera plants were the most effective in lowering protozoa population. In Stage 2, the supplementation of herbal plants in PKC-based-diet significantly increased IVDMD, that was ranged from 56.72% to 65.77%, IVOMD that was ranged from 52.10% to 59.54%, and NH3, that was ranged from 13.20 mM to 17.91 mM. Volatile fatty acid partial and total gas production potential and CH4 gas emissions were also significantly different from those of the control (p < 0.05). Conclusion Supplementation of M. oleifera, C. longa Linn., and P. timoriana in ruminant diet effectively increased total gas production, IVDMD percentage, and IVOMD, and reduced CH4 gas emissions and protozoa populations during rumen fermentation.
Collapse
Affiliation(s)
- Antonius Antonius
- Research Center for Animal Husbandry, National Research and Innovation Agency (BRIN), Jl. Raya Jakarta Bogor Cibinong, 16915, Indonesia
| | - Roni Pazla
- Department of Animal Nutrition, Faculty of Animal Science, Andalas University, Jl. Limau Manis, Padang, 25163, Indonesia
| | - Ezi Masdia Putri
- Research Center for Animal Husbandry, National Research and Innovation Agency (BRIN), Jl. Raya Jakarta Bogor Cibinong, 16915, Indonesia
| | - Windu Negara
- Research Center for Animal Husbandry, National Research and Innovation Agency (BRIN), Jl. Raya Jakarta Bogor Cibinong, 16915, Indonesia
| | - Nursanti Laia
- State community Academy Nias Utara, Jl Lolofoso Lotu Kab. Nias Utara, 22853, Indonesia
| | - Muhammad Ridla
- Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Jl. Agatis Kampus IPB Dramaga Bogor, 16680, Indonesia
| | - Sri Suharti
- Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Jl. Agatis Kampus IPB Dramaga Bogor, 16680, Indonesia
| | - Anuraga Jayanegara
- Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Jl. Agatis Kampus IPB Dramaga Bogor, 16680, Indonesia
| | - Sharli Asmairicen
- Research Center for Animal Husbandry, National Research and Innovation Agency (BRIN), Jl. Raya Jakarta Bogor Cibinong, 16915, Indonesia
| | - Leni Marlina
- Research Center for Agroindustry, National Research and Innovation Agency (BRIN). Jl. Puspitek Tangerang Selatan, 15314, Indonesia
| | - Yoselanda Marta
- Center for Breeding Superior Livestock and Forage for Animal Feed Padang Mengatas, Jl. Raya Payakumbuh-Lintau, KM.9 Pekan Sabtu, Payakumbuh, 26201, Indonesia
| |
Collapse
|
5
|
Orzuna-Orzuna JF, Dorantes-Iturbide G, Lara-Bueno A, Chay-Canul AJ, Miranda-Romero LA, Mendoza-Martínez GD. Meta-analysis of flavonoids use into beef and dairy cattle diet: Performance, antioxidant status, ruminal fermentation, meat quality, and milk composition. Front Vet Sci 2023; 10:1134925. [PMID: 36876000 PMCID: PMC9975267 DOI: 10.3389/fvets.2023.1134925] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
The objective of this study was to evaluate the effects of dietary supplementation with flavonoids (FLAs) on animal performance, diet digestibility, antioxidant status in blood serum, rumen parameters, meat quality, and milk composition in beef and dairy cattle through a meta-analysis. Thirty-six peer-reviewed publications were included in the data set. The weighted mean differences (WMD) between the FLAs treatments and the control treatment were used to assess the effect size. Dietary supplementation with FLAs decreased feed conversion ratio (WMD = -0.340 kg/kg; p = 0.050) and increased (p < 0.05) dry matter intake (WMD = 0.191 kg/d), dry matter digestibility (WMD = 15.283 g/kg of DM), and daily weight gain (WMD = 0.061 kg/d). In blood serum, FLAs supplementation decreased the serum concentration of malondialdehyde (WMD = -0.779 nmol/mL; p < 0.001) and increased (p < 0.01) the serum concentration of superoxide dismutase (WMD = 8.516 U/mL), glutathione peroxidase (WMD = 12.400 U/mL) and total antioxidant capacity (WMD = 0.771 U/mL). A higher ruminal propionate concentration (WMD = 0.926 mol/100 mol; p = 008) was observed in response to FLAs supplementation. In meat, the dietary inclusion of FLAs decreased (p < 0.05) shear force (WMD = -1.018 kgf/cm2), malondialdehyde content (WMD = -0.080 mg/kg of meat), and yellowness (WMD = -0.460). Supplementation with FLAs decreased milk somatic cell count (WMD = -0.251 × 103 cells/mL; p < 0.001) and increased (p < 0.01) milk production (WMD = 1.348 kg/d), milk protein content (WMD = 0.080/100 g) and milk fat content (WMD = 0.142/100 g). In conclusion, dietary supplementation with FLAs improves animal performance and nutrient digestibility in cattle. In addition, FLAs improve the antioxidant status in blood serum and the quality of meat and milk.
Collapse
|
6
|
Extraction, Characterization, and Chitosan Microencapsulation of Bioactive Compounds from Cannabis sativa L., Cannabis indica L., and Mitragyna speiosa K. Antioxidants (Basel) 2022; 11:antiox11112103. [PMID: 36358475 PMCID: PMC9686816 DOI: 10.3390/antiox11112103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
Abstract
The objective of the research was to investigate the bioactive compounds of herbal plant leaves by microencapsulation technique for future application as a feed additive. In this experiment, three herbal plant leaves, namely Cannabis sativa L., Cannabis indica L., and Mitragyna speiosa K., were comparatively investigated using different methods to extract their bioactive compounds. Two methods were used to extract the bioactive compounds: microwave extraction (water-heating transferred) and maceration extraction (methanol extracted). The results obtained using microwave extraction revealed that the total polyphenolic and flavonoid contents and antioxidant capacity were significantly higher and stronger, respectively, than those produced by the maceration extraction method (p < 0.05). Furthermore, the spray-drying technique was employed to enhance the extracted compounds by encapsulation with chitosan through ionic gelation properties. The physical characteristics of chitosan-encapsulated substrates were examined under a scanning electron microscope (SEM) and were as microparticle size (1.45 to 11.0 µm). The encapsulation efficiency of the bioactive compounds was found to be 99.7, 82.3, and 54.6% for microencapsulated M. speiosa, C. indica, and C. sativa, respectively. Therefore, microwave treatment prior to chitosan encapsulation of leaf extracts resulted in increased recovery of bioactive compound encroachment.
Collapse
|
7
|
Gunun N, Khejornsart P, Polyorach S, Kaewpila C, Kimprasit T, Sanjun I, Cherdthong A, Wanapat M, Gunun P. Utilization of Mao ( Antidesma thwaitesianum Muell. Arg.) Pomace Meal to Substitute Rice Bran on Feed Utilization and Rumen Fermentation in Tropical Beef Cattle. Vet Sci 2022; 9:585. [PMID: 36356062 PMCID: PMC9692892 DOI: 10.3390/vetsci9110585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 12/28/2022] Open
Abstract
This experiment was conducted to investigate the effects of replacing rice bran with mao pomace meal on feed intake, digestibility, and rumen fermentation in beef cattle. Four crossbred (50% Brahman × 50% Thai native) beef cattle with an initial body weight of 195 ± 13 kg and 16 months of age were used in a 4 × 4 Latin square design. The dietary treatments included four levels of RB replacement with mao pomace meal at 0, 33, 67, and 100% in concentrate diets. Rice straw was used as a roughage source, fed ad libitum. Replacement of mao pomace meal with rice bran did not affect (p > 0.05) the intakes of concentrate, rice straw, and total dry matter intake. Ether extract intake decreased linearly when increasing the levels of mao pomace meal (p < 0.01). The experimental diets had no effect (p > 0.05) on the digestibility of fiber and crude protein, while dry matter, organic matter, and ether extract digestibility decreased linearly in the group of mao pomace meal replacing rice bran (p < 0.05). Increasing levels of mao pomace meal in concentrate diets did not alter rumen pH, ammonia−nitrogen, or total volatile fatty acid concentration (p > 0.05). The proportion of propionate increased linearly (p < 0.05), whereas acetate and the acetate to propionate ratio decreased linearly (p < 0.05) when replacing rice bran with mao pomace meal. Moreover, the proportion of propionate was greatest, while acetate was lowest when mao pomace meal was included at 100% in the concentrate diet. In conclusion, the replacement of rice bran with mao pomace meal in a diet could enhance the efficiency of rumen fermentation. Nonetheless, it reduced the digestion of nutrients in tropical beef cattle.
Collapse
Affiliation(s)
- Nirawan Gunun
- Department of Animal Science, Faculty of Technology, Udon Thani Rajabhat University, Udon Thani 41000, Thailand
| | - Pichad Khejornsart
- Faculty of Natural Resources and Agro-Industry, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand
| | - Sineenart Polyorach
- Department of Animal Production Technology and Fisheries, Faculty of Agricultural Technology, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Chatchai Kaewpila
- Department of Animal Science, Faculty of Natural Resources, Rajamangala University of Technology Isan, Sakon Nakhon Campus, Sakon Nakhon 47160, Thailand
| | - Thachawech Kimprasit
- Department of Animal Science, Faculty of Natural Resources, Rajamangala University of Technology Isan, Sakon Nakhon Campus, Sakon Nakhon 47160, Thailand
| | - Ittipol Sanjun
- Department of Animal Science, Faculty of Natural Resources, Rajamangala University of Technology Isan, Sakon Nakhon Campus, Sakon Nakhon 47160, Thailand
| | - Anusorn Cherdthong
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Metha Wanapat
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Pongsatorn Gunun
- Department of Animal Science, Faculty of Natural Resources, Rajamangala University of Technology Isan, Sakon Nakhon Campus, Sakon Nakhon 47160, Thailand
| |
Collapse
|
8
|
The Effect of Phytonutrients in Terminalia chebula Retz. on Rumen Fermentation Efficiency, Nitrogen Utilization, and Protozoal Population in Goats. Animals (Basel) 2022; 12:ani12162022. [PMID: 36009612 PMCID: PMC9404407 DOI: 10.3390/ani12162022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to investigate the effect of Terminalia chebula meal (TCM) supplementation on digestibility, rumen fermentation, nitrogen utilization, and protozoal population in goats. Eight goats with an initial body weight (BW) of 13 ± 3.0 kg were randomly assigned according to a double 4 × 4 Latin square design to receive different levels of TCM supplementation at 0, 8, 16, and 24 g/kg of total dry matter (DM) intake, respectively. The goats were fed with concentrate diets at 13 g/kg BW, while rice straw was used as a roughage source, fed ad libitum. The results revealed that the feed intake and the apparent digestibility of DM, organic matter (OM), neutral detergent fiber (NDF), and acid detergent fiber (ADF) were similar among the treatments (p > 0.05). However, crude protein (CP) digestibility decreased significantly (p < 0.05) when supplemented with TCM at 24 g/kg of total DM intake (p < 0.05). The addition of TCM did not change the ruminal pH and blood urea nitrogen concentrations (p > 0.05), whereas the concentration of NH3-N at 4 h post feeding was reduced with the inclusion of TCM at 16 and 24 g/kg of total DM intake. The total numbers of bacteria were enhanced by the addition of TCM, while the protozoal population, in both entodiniomorph and holotrich, was reduced (p < 0.05). The supplementation of TCM did not change the concentration of total volatile fatty acids (TVFA), acetic acid, or butyric acid, while the propionic acid concentration at 4-h post feeding increased significantly, especially when supplemented at 16 g/kg of total DM intake (p < 0.05. In addition, urinary nitrogen (N) excretion decreased, while fecal N excretion, N absorption, N retention, and the proportion of N retention to N intake increased with the inclusion of TCM at all levels. In summary, the inclusion of TCM could improve rumen fermentation efficiency and N balance without having an adverse effect on feed intake, nutrient digestibility, and rumen ecology; however, the protozoal population decreased. Therefore, this study suggests that TCM (16 g/kg of total DM intake) could be used as a plant source for rumen enhancement in goats fed a diet based on rice straw without having an adverse effect on feed intake or nutrient digestion. However, further studies on the production of types of meat and milk that have a long-term feeding trial should be carried out.
Collapse
|
9
|
Development of a Simple High-Performance Liquid Chromatography-Based Method to Quantify Synergistic Compounds and Their Composition in Dried Leaf Extracts of Piper Sarmentosum Roxb. SEPARATIONS 2021. [DOI: 10.3390/separations8090152] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
There is a growing demand to enhance pharmaceutical and food safety using synergistic compounds from Piper sarmentosum Roxb., such as polyphenols and water-soluble vitamins. However, information on standardized analytical methods to identify and quantify these compounds of interest is limited. A reversed-phase high-performance liquid chromatography with diode-array detection (HPLC-DAD)-based method was developed to simultaneously detect and quantify the amounts of tannin, flavonoid, cinnamic acid, essential oil, and vitamins extracted from P. sarmentosum leaves using methanol, chloroform, and hexane. Commercially and non-commercially-cultivated P. sarmentosum leaves were subjected to seven different drying treatments (shade; sun; air oven at 40 °C, 60 °C, 80 °C, and 100 °C; and freeze-drying) for three consecutive months. Most compounds were detected most efficiently at a detection wavelength of 272 nm. The developed method displayed good detection limits (LOD, 0.026–0.789 µg/mL; LOQ, 0.078–2.392 µg/mL), linearity (R2 > 0.999), precision (%RSD, <1.00), and excellent accuracy (96–102%). All P. sarmentosum leaf extracts were simultaneously tested and analytically compared without time-consuming fractionation. Methanolic plant extracts showed better peak area and retention time splits compared to chloroformic and hexanoic extracts. Differences in synergistic compound composition were dependent on the type of drying treatment but not on cultivation site and time of sampling. Flavonoid was identified as the dominant phytochemical component in P. sarmentosum leaves, followed by the essential oil, cinnamic acid, ascorbic acid, and tannin. Overall, we present a simple and reproducible chromatographic method that can be applied to identify different plant compounds.
Collapse
|
10
|
In Vitro Screening of Plant Materials to Reduce Ruminal Protozoal Population and Mitigate Ammonia and Methane Emissions. FERMENTATION 2021. [DOI: 10.3390/fermentation7030166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Alternative feed sources can be utilized to reduce enteric methane (CH4) emissions, a major greenhouse gas that contributes to global warming. This study aimed to evaluate the potential use of tropical plants to improve digestibility, reduce protozoal populations, improve rumen fermentation, and minimize methane emissions from ruminants. The plants considered herein grow in tropical climates, are easily accessible in large quantities, and are directly related to human food production. Nine plants that grow naturally in tropical climates were assessed. Plant supplementation substantially enhanced accumulative gas production at 24 h (p < 0.05). The apparent organic matter digestibility (AOMDvt) of the diet was not affected by five of the nine plants. With the addition of the plant material, ammonia nitrogen concentrations were reduced by up to 47% and methane concentrations were reduced by 54%. Five of the nine plant materials reduced methane production in terms of CH4/dry matter and CH4/digestibility of the organic matter by 15–35% and 8–24%, respectively. In conclusion, supplementation with plants with high tannin contents was shown to be a viable strategy for improving rumen fermentation, reducing protozoal populations, and limiting methane emissions. In this regard, the leaves of Piper sarmentosum, Acmella oleracea, Careya arborea, and Anacardium occidentale were especially promising.
Collapse
|
11
|
SANTRA A, DAS SK, MANDAL A, DUTTA TK. Influence of Kamela (Mallotus philippensis) leaves as herbal feed additive on nutrient utilization and performances in growing crossbred calves. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2021. [DOI: 10.56093/ijans.v90i10.111416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This work was undertaken to evaluate the effect of dietary supplementation of Kamela (Mallotus philippensis) leaf meal as herbal feed additive on nutrients utilization and growth performance of growing crossbred calves. Ten numbers of growing Jersey male cross-bred calves were divided in to two groups (G1 and G2) and were fed individually under stall feeding on a paddy straw based mixed ration (50% paddy straw and 50% concentrate mixture) for 140 days. Two types (C1 and C2) of iso-nitrogenous concentrate mixtures were prepared. Wheat bran in concentrate mixture (C2) of test group (G2) was partially replaced (4 parts w/w) with sun dried ground Mallotus philippensis leaf meal. Experimental calves of test group (G2) fed Mallotus philippensis leaf meal @ 2% of the diet. Daily dry matter intake (g/d) was similar among the calves of two experimental groups. Apparent digestibility of DM, OM, NDF, ADF and cellulose were higher in the Mallotus philippensis leaf meal fed calves (G2). DCP value of the ration was similar while, TDN value of the ration was higher in the calves of Mallotus philippensis leaf meal supplemented group (G2). However, plane of nutrition among the calves of both experimental groups was similar. Average finishing body weight, daily body weight gain, feed conversion efficiency and blood glucose level were higher in Mallotus philippensis leaf fed calves (G2). The results of the study indicated that dietary supplementation Kamela (Mallotus philippensis) leaf meal as herbal feed additive @ 2% of total diet significantly improved the performance in growing male crossbred calves.
Collapse
|
12
|
Ku-Vera JC, Jiménez-Ocampo R, Valencia-Salazar SS, Montoya-Flores MD, Molina-Botero IC, Arango J, Gómez-Bravo CA, Aguilar-Pérez CF, Solorio-Sánchez FJ. Role of Secondary Plant Metabolites on Enteric Methane Mitigation in Ruminants. Front Vet Sci 2020; 7:584. [PMID: 33195495 PMCID: PMC7481446 DOI: 10.3389/fvets.2020.00584] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/21/2020] [Indexed: 01/28/2023] Open
Abstract
The rumen microbiome plays a fundamental role in all ruminant species, it is involved in health, nutrient utilization, detoxification, and methane emissions. Methane is a greenhouse gas which is eructated in large volumes by ruminants grazing extensive grasslands in the tropical regions of the world. Enteric methane is the largest contributor to the emissions of greenhouse gases originating from animal agriculture. A large variety of plants containing secondary metabolites [essential oils (terpenoids), tannins, saponins, and flavonoids] have been evaluated as cattle feedstuffs and changes in volatile fatty acid proportions and methane synthesis in the rumen have been assessed. Alterations to the rumen microbiome may lead to changes in diversity, composition, and structure of the methanogen community. Legumes containing condensed tannins such as Leucaena leucocephala have shown a good methane mitigating effect when fed at levels of up to 30–35% of ration dry matter in cattle as a result of the effect of condensed tannins on rumen bacteria and methanogens. It has been shown that saponins disrupt the membrane of rumen protozoa, thus decreasing the numbers of both protozoa and methanogenic archaea. Trials carried out with cattle housed in respiration chambers have demonstrated the enteric methane mitigation effect in cattle and sheep of tropical legumes such as Enterolobium cyclocarpum and Samanea saman which contain saponins. Essential oils are volatile constituents of terpenoid or non-terpenoid origin which impair energy metabolism of archaea and have shown reductions of up to 26% in enteric methane emissions in ruminants. There is emerging evidence showing the potential of flavonoids as methane mitigating compounds, but more work is required in vivo to confirm preliminary findings. From the information hereby presented, it is clear that plant secondary metabolites can be a rational approach to modulate the rumen microbiome and modify its function, some species of rumen microbes improve protein and fiber degradation and reduce feed energy loss as methane in ruminants fed tropical plant species.
Collapse
Affiliation(s)
- Juan Carlos Ku-Vera
- Laboratory of Climate Change and Livestock Production, Department of Animal Nutrition, Faculty of Veterinary Medicine and Animal Science, University of Yucatan, Mérida, Mexico
| | - Rafael Jiménez-Ocampo
- Laboratory of Climate Change and Livestock Production, Department of Animal Nutrition, Faculty of Veterinary Medicine and Animal Science, University of Yucatan, Mérida, Mexico.,National Institute for Forestry, Agriculture and Livestock Research-INIFAP, Experimental Field Valle del Guadiana, Durango, Mexico
| | | | - María Denisse Montoya-Flores
- National Center for Disciplinary Research in Physiology and Animal Breeding, National Institute for Forestry, Agriculture and Livestock Research-INIFAP, Ajuchitlan, Queretaro, Mexico
| | | | - Jacobo Arango
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | | | - Carlos Fernando Aguilar-Pérez
- Laboratory of Climate Change and Livestock Production, Department of Animal Nutrition, Faculty of Veterinary Medicine and Animal Science, University of Yucatan, Mérida, Mexico
| | - Francisco Javier Solorio-Sánchez
- Laboratory of Climate Change and Livestock Production, Department of Animal Nutrition, Faculty of Veterinary Medicine and Animal Science, University of Yucatan, Mérida, Mexico
| |
Collapse
|
13
|
Hassan FU, Ebeid HM, Tang Z, Li M, Peng L, Peng K, Liang X, Yang C. A Mixed Phytogenic Modulates the Rumen Bacteria Composition and Milk Fatty Acid Profile of Water Buffaloes. Front Vet Sci 2020; 7:569. [PMID: 33005643 PMCID: PMC7479126 DOI: 10.3389/fvets.2020.00569] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/16/2020] [Indexed: 12/29/2022] Open
Abstract
This study was aimed to evaluate the effect of a mixed phytogenic (MP) on rumen bacteria and their potential association with rumen fermentation and milk yield parameters in water buffaloes. Twenty Murrah buffaloes were fed a basal diet (consisting of maize silage, brewers' grains, and concentrate mixture) for 6 weeks supplemented with 0 (control), 15 (MP15), 25 (MP25), and 35 (MP35) g of mixed phytogenic/buffalo per d. The mixed phytogenic contained fennel (seeds), ajwain (seeds), ginger (tubers), Swertia chirata (leaves), Citrullus colocynthis (fruit), turmeric, fenugreek (seeds), Terminalia chebula (fruit), licorice (roots), and Phyllanthus emblica (fruit) in equal quantities. After 2 weeks of adaptation, daily milk yield, and weekly milk composition were recorded. On the last day of the experiment (d 42), rumen contents were collected to determine rumen fermentation parameters and bacterial diversity through 16S rRNA sequencing. Results revealed no change in dry matter intake, milk yield and rumen fermentation parameters except pH, which increased (P = 0.029) in response to MP supplementation. The mixed phytogenic increased (P < 0.01) milk fatty acids (C4 to C14:0) in MP15 only. The milk C16:1 content and its unsaturation index were higher (P < 0.05) in MP35 as compared to the control and other treatments. Furthermore, C18:3n3 was higher (P < 0.05) in the control, MP15, and MP25, as compared to MP35. Supplementation of MP tended to increase (P = 0.095) the Shannon index of bacterial alpha diversity and a difference (P < 0.05) among treatment groups was observed in beta diversity. Feeding MP increased the Firmicutes, Proteobacteria, and Spirochaetes but decreased Bacteroidetes numerically. In addition, the dominant genus Prevotella decreased in all treatment groups while Pseudobutyrivibrio, Butyrivibrio, and Succinivibrioanceae increased numerically in MP25 and MP35. The mixed phytogenic promoted groups of rumen bacteria positively associated with milk and fat yield. Overall, our study revealed 14 positive correlations of rumen bacteria with milk yield and eight with rumen fermentation parameters. Our findings reveal substantial changes in the rumen bacteriome composition and milk fatty acid content in response to MP but these results should be interpreted carefully, as the sample size of our study was relatively small.
Collapse
Affiliation(s)
- Faiz-Ul Hassan
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China.,Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Hossam M Ebeid
- Dairy Science Department, National Research Centre, Giza, Egypt
| | - Zhenhua Tang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Mengwei Li
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Lijuan Peng
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Kaiping Peng
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Xin Liang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Chengjian Yang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
14
|
Zhou L, Wang D, Hu H, Zhou H. Effects of Piper sarmentosum extract supplementation on growth performances and rumen fermentation and microflora characteristics in goats. J Anim Physiol Anim Nutr (Berl) 2019; 104:431-438. [PMID: 31889354 DOI: 10.1111/jpn.13284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 12/01/2022]
Abstract
This study was carried out to investigate the effect of diet Piper sarmentosum extract (PSE) on the growth performance, antioxidant properties, rumen fermentation and microflora in goats. Forty Hainan black goats with similar body weight were divided into four groups with supplementation of PSE in the concentrate at 0, 300, 600 and 1,200 mg/kg, respectively, and fed for 56 days. Results showed that average daily gain (ADG) was higher and feed intake/body gain (F/G) was lower in goats fed with PSE at 300 mg/kg (p < .05). The activities of glutathione peroxidase (GSH-Px) and total antioxidant capacity (T-AOC) in the serum of goats differed among treatments and were greatest linearly when PSE was added at 1,200 mg/kg (p < .05). The level of malondialdehyde (MDA) in the serum of goats differed among treatments and was lowest linearly when PSE was added at 1,200 mg/kg (p < .05). The level of protozoal protein in the rumen of goats differed among treatments and was lowest linearly when PSE was added at 1,200 mg/kg (p < .05). The concentrations of ruminal acetic acid and valeric acid and the ratio of acetate to propionate were reduced with PSE supplementation (p < .05). Protozoa, fungi, Ruminococcus flavefaciens and Fibrobacter succinogenes contents differed among treatments and were lowest linearly when PSE was added at 1,200 mg/kg (p < .05). Thus, supplementation of PSE at 300-1,200 mg/kg to goat concentrate is recommended for improving antioxidative ability and rumen efficiency and reducing protozoal content of goat.
Collapse
Affiliation(s)
- Luli Zhou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Dingfa Wang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Haichao Hu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Hanlin Zhou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| |
Collapse
|
15
|
Cherdthong A, Prachumchai R, Wanapat M, Foiklang S, Chanjula P. Effects of Supplementation with Royal Poinciana Seed Meal ( Delonix regia) on Ruminal Fermentation Pattern, Microbial Protein Synthesis, Blood Metabolites and Mitigation of Methane Emissions in Native Thai Beef Cattle. Animals (Basel) 2019; 9:ani9090625. [PMID: 31470582 PMCID: PMC6770115 DOI: 10.3390/ani9090625] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/25/2019] [Accepted: 08/26/2019] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Strategic feeding of ruminants with pellets containing phytochemical compounds is one approach that could enhance rumen fermentation and decrease greenhouse gases. It was found that feeding with the pellets containing royal poinciana seed meal at 150 g/d might be an alternative to improve rumen fermentation efficiency and reduce the environmental impact of ruminants. Abstract The object of this present work was to determine the effects of supplementation with pellets containing royal poinciana seed meal (PEREM) on feed use, ruminal fermentation efficiency, microbial protein synthesis, blood metabolites and mitigation of methane (CH4) emissions in cattle. The animals used in this experiment were four male Thai native beef cattle (Bos indicus) with initial body weights (BWs) of 125 ± 5.0 kg. Each of the animals were randomly assigned to receive PEREM doses at 0, 50, 100 and 150 g/d, respectively, according to a 4 × 4 Latin square design. Concentrates were fed at 0.5% BW daily, and rice straw was fed ad libitum. There were no significant differences (p > 0.05) on intakes of rice straw, concentrate and total diet. The intake of nutrients did not change among the levels of PEREM supplementation (p > 0.05), except for an intake of crude protein, which was linearly enhanced when increasing the dose of PEREM (p < 0.05). The inclusion of different doses of PEREM did not adversely affect the digestibility of dry matter, organic matter, crude protein, neutral detergent fiber and acid detergent fiber (p > 0.05). Adding various doses of PEREM did not alter ruminal pH and ruminal temperature, while concentrations of ammonia-nitrogen were significantly increased with an increased dose of PEREM supplementation (p < 0.01). The increasing doses of PEREM linearly reduced protozoal numbers (p < 0.01), with the lowest concentration when PEREM was added at 150 g. PEREM supplementation did not change (p > 0.05) the concentration of acetic acid or butyric acid or the ratio of acetic acid to propionic acid. Nevertheless, the total volatile fatty acid and propionic acid content were changed among PEREM levels (p < 0.05), which were linearly increased with an increasing dose of PEREM. At 4 h post feeding, the CH4 concentrations in the rumen of the animal were linearly reduced when the dose of pellets was increased (p < 0.01). In addition, the inclusion of PEREM did not adversely affect other blood metabolites, namely total protein, creatinine and albumin (p > 0.05). Furthermore, microbial crude protein and efficiency of microbial N synthesis were linearly enhanced when increasing levels of PEREM were added. The feeding of PEREM at 150 g/d might be an alternative with the potential to improve rumen fermentation efficiency and reduce the environmental effects produced by ruminants.
Collapse
Affiliation(s)
- Anusorn Cherdthong
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Rittikeard Prachumchai
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Metha Wanapat
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Suban Foiklang
- Faculty of Animal Science and Technology, Maejo University, Chiangmai 50290, Thailand
| | - Pin Chanjula
- Department of Animal Science, Faculty of Natural Resources, Prince of Songkla University, Songkhla 90112, Thailand
| |
Collapse
|