1
|
Li Y, Shi C, Deng J, Qiu X, Zhang S, Wang H, Qin X, He Y, Cao B, Su H. Effects of Grape Pomace on Growth Performance, Nitrogen Metabolism, Antioxidants, and Microbial Diversity in Angus Bulls. Antioxidants (Basel) 2024; 13:412. [PMID: 38671860 PMCID: PMC11047470 DOI: 10.3390/antiox13040412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Polyphenol-rich grape pomace (GP) represents a valuable processing by-product with considerable potential as sustainable livestock feed. This study aimed to investigate the effects of different levels of GP on the growth performance and nitrogen utilization efficiency, antioxidant activity, and rumen and rectum microbiota of Angus bulls. Thirty Angus bulls were allocated three dietary treatments according to a completely randomized design: 0% (G0), 10% (G10), and 20% (G20) corn silage dry matter replaced with dried GP dry matter. The results showed that the average daily gain (ADG) of the G0 group and G10 group was higher than that of the G20 group (p < 0.05); urinary nitrogen levels decreased linearly with the addition of GP (linear, p < 0.05). In terms of antioxidants, the levels of catalase (CAT) in the G10 group were higher than in the G0 and G20 groups (p < 0.05), and the total antioxidative capacity (T-AOC) was significantly higher than that in the G20 group (p < 0.05). In addition, in the analysis of a microbial network diagram, the G10 group had better microbial community complexity and stability. Overall, these findings offer valuable insights into the potential benefits of incorporating GP into the diet of ruminants.
Collapse
Affiliation(s)
- Yingqi Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.L.); (C.S.); (J.D.); (S.Z.); (H.W.); (X.Q.); (Y.H.); (B.C.)
| | - Changxiao Shi
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.L.); (C.S.); (J.D.); (S.Z.); (H.W.); (X.Q.); (Y.H.); (B.C.)
| | - Jiajie Deng
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.L.); (C.S.); (J.D.); (S.Z.); (H.W.); (X.Q.); (Y.H.); (B.C.)
| | - Xinjun Qiu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China;
| | - Siyu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.L.); (C.S.); (J.D.); (S.Z.); (H.W.); (X.Q.); (Y.H.); (B.C.)
| | - Huili Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.L.); (C.S.); (J.D.); (S.Z.); (H.W.); (X.Q.); (Y.H.); (B.C.)
| | - Xiaoli Qin
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.L.); (C.S.); (J.D.); (S.Z.); (H.W.); (X.Q.); (Y.H.); (B.C.)
| | - Yang He
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.L.); (C.S.); (J.D.); (S.Z.); (H.W.); (X.Q.); (Y.H.); (B.C.)
| | - Binghai Cao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.L.); (C.S.); (J.D.); (S.Z.); (H.W.); (X.Q.); (Y.H.); (B.C.)
| | - Huawei Su
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.L.); (C.S.); (J.D.); (S.Z.); (H.W.); (X.Q.); (Y.H.); (B.C.)
| |
Collapse
|
2
|
Krusinski L, Maciel ICF, van Vliet S, Ahsin M, Lu G, Rowntree JE, Fenton JI. Measuring the Phytochemical Richness of Meat: Effects of Grass/Grain Finishing Systems and Grapeseed Extract Supplementation on the Fatty Acid and Phytochemical Content of Beef. Foods 2023; 12:3547. [PMID: 37835200 PMCID: PMC10572853 DOI: 10.3390/foods12193547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Grass-finished beef (GFB) can provide beneficial bioactive compounds to healthy diets, including omega-3 polyunsaturated fatty acids (n-3 PUFAs), conjugated linoleic acid (CLA), and secondary bioactive compounds, such as phytochemicals. The objective of this study was to compare fatty acids (FAs), micronutrients, and phytochemicals of beef fed a biodiverse pasture (GRASS), a total mixed ration (GRAIN), or a total mixed ration with 5% grapeseed extract (GRAPE). This was a two-year study involving fifty-four Red Angus steers (n = 54). GFB contained higher levels of n-3 PUFAs, vitamin E, iron, zinc, stachydrine, hippuric acid, citric acid, and succinic acid than beef from GRAIN and GRAPE (p < 0.001 for all). No differences were observed in quantified phytochemicals between beef from GRAIN and GRAPE (p > 0.05). Random forest analysis indicated that phytochemical and FA composition of meat can predict cattle diets with a degree of certainty, especially for GFB (5.6% class error). In conclusion, these results indicate that GFB contains higher levels of potentially beneficial bioactive compounds, such as n-3 PUFAs, micronutrients, and phytochemicals, compared to grain-finished beef. Additionally, the n-6:n-3 ratio was the most crucial factor capable of separating beef based on finishing diets.
Collapse
Affiliation(s)
- Lucas Krusinski
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA;
| | - Isabella C. F. Maciel
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA; (I.C.F.M.); (J.E.R.)
| | - Stephan van Vliet
- Center for Human Nutrition Studies, Department of Nutrition, Dietetics, and Food Sciences, Utah State University, Logan, UT 84322, USA; (S.v.V.); (M.A.)
| | - Muhammad Ahsin
- Center for Human Nutrition Studies, Department of Nutrition, Dietetics, and Food Sciences, Utah State University, Logan, UT 84322, USA; (S.v.V.); (M.A.)
| | - Guanqi Lu
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA;
| | - Jason E. Rowntree
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA; (I.C.F.M.); (J.E.R.)
| | - Jenifer I. Fenton
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA;
| |
Collapse
|
3
|
Di Meo MC, Salzano A, Zotti T, Palladino A, Giaquinto D, Maruccio L, Romanucci R, Rocco M, Zarrelli A, D'Occhio MJ, Campanile G, Varricchio E. Plasma fatty acid profile in Italian Holstein-Friesian dairy cows supplemented with natural polyphenols from the olive plant Olea Europaea L. Vet Anim Sci 2023; 21:100298. [PMID: 37252208 PMCID: PMC10220399 DOI: 10.1016/j.vas.2023.100298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/04/2023] [Accepted: 05/21/2023] [Indexed: 05/31/2023] Open
Abstract
This study evaluated the effects of supplementing with natural functional feed on the plasma fatty acid profile of lactating Italian Holstein-Friesian dairy cows. Thirty cows in mid-lactation received the natural olive extract PHENOFEED DRY (500 mg/cow/day) which mainly comprises hydroxytyrosol, tyrosol and verbascoside. The total content of polyphenols and the antioxidant power of standard feed, enriched feed and pure extract was evaluated respectively by Folin-Ciocalteu and DPPH assay, and a characterization in HPLC-UV (High-Performance Liquid Chromatography-Ultraviolet) of bioactive molecules present in the extract PHENOFEED DRY was performed. PHENOFEED DRY was provided for 60 days, and the plasma profile of fatty acids was determined by Gas Chromatography. The administration of enriched feed resulted in an increase in the ratio of Omega-6 to Omega-3 polyunsaturated fatty acids from 3:1 to 4:1 (p<0.001). This was not influenced by the calving order. The addition of polyphenols helped to keep monounsaturated (MUFA) and saturated (SFA) levels constant and results in a significant increase in polyunsaturated (PUFA) fatty acid after 15 days of administration. The Omega-6/Omega-3 ratio was in the optimal range. The findings show that inclusion of natural functional food such as plant polyphenols helps to maintain a healthy blood fatty acid profile in lactating dairy cows.
Collapse
Affiliation(s)
- Maria Chiara Di Meo
- Department of Sciences and Technologies (DST), University of Sannio, Benevento, BN 82100, Italy
| | - Angela Salzano
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, NA 80137, Italy
| | - Tiziana Zotti
- Department of Sciences and Technologies (DST), University of Sannio, Benevento, BN 82100, Italy
| | - Antonio Palladino
- Department of Agricultural Science, University of Naples Federico II, Portici, NA 80055, Italy
| | - Daniela Giaquinto
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, NA 80137, Italy
| | - Lucianna Maruccio
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, NA 80137, Italy
| | - Riccardo Romanucci
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, NA 80137, Italy
| | - Mariapina Rocco
- Department of Sciences and Technologies (DST), University of Sannio, Benevento, BN 82100, Italy
| | - Armando Zarrelli
- Department of Chemical Sciences, University of Naples Federico II, Naples, NA 80126, Italy
| | - Michael J. D'Occhio
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2000, Australia
| | - Giuseppe Campanile
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, NA 80137, Italy
| | - Ettore Varricchio
- Department of Sciences and Technologies (DST), University of Sannio, Benevento, BN 82100, Italy
| |
Collapse
|
4
|
Bullon N, Alfaro AC, Hamid N, Masoomi Dezfooli S, Seyfoddin A. Effect of Dietary Insect Meal and Grape Marc Inclusion on Flavor Volatile Compounds and Shell Color of Juvenile Abalone Haliotis iris. AQUACULTURE NUTRITION 2023; 2023:6628232. [PMID: 37496745 PMCID: PMC10368514 DOI: 10.1155/2023/6628232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/23/2023] [Accepted: 07/03/2023] [Indexed: 07/28/2023]
Abstract
Almost 60% of the fish meal produced globally is used in aquaculture feeds. Fish meal production relies on finite wild-marine resources and is considered as an unsustainable ingredient. Insect meal (IM) is considered a sustainable source with high levels of protein suitable for growth promotion. Grape marc (GM) is a waste byproduct of the winery industry rich in pigments with antioxidant capacity. However, the inclusion of both ingredients can affect the flavor of the meat of abalone and the color of the shell due to different nutritional profiles. The aim of this study was to evaluate the effect of the dietary inclusion of IM and GM on the flavor volatile compounds and shell color of the juvenile Haliotis iris in a 165-days feeding trial. Abalone were offered four experimental diets with different levels of IM and GM inclusion and a commercial diet (no IM or GM). Soft bodies of abalone were used to characterize volatile compounds using solid-phase microextraction gas chromatography-mass spectrometry, and color changes were analyzed in ground powder of abalone shells using color spectrophotometry 400-700 nm (visible). The results showed 18 volatile compounds significantly different among the dietary treatments. The inclusion of IM did not significantly affect the flavor volatile compounds detected, whereas the inclusion of GM reduced volatile compounds associated with lipid-peroxidation in abalone meat. The inclusion of IM and GM did not significantly affect the lightness nor the yellowness, blueness, redness, and greenness of the ground shells. The supplementation of abalone feeds with GM can help to reduce off-flavour compounds which may extend shelf-life of raw abalone meat.
Collapse
Affiliation(s)
- Natalia Bullon
- Drug Delivery Research Group, School of Science, Auckland University of Technology, Auckland, New Zealand
- Aquaculture Biotechnology Research Group, School of Science, Auckland University of Technology, Auckland, New Zealand
| | - Andrea C. Alfaro
- Aquaculture Biotechnology Research Group, School of Science, Auckland University of Technology, Auckland, New Zealand
| | - Nazimah Hamid
- Department of Food Science, Auckland University of Technology, Auckland, New Zealand
| | - Sara Masoomi Dezfooli
- Aquaculture Biotechnology Research Group, School of Science, Auckland University of Technology, Auckland, New Zealand
| | - Ali Seyfoddin
- Drug Delivery Research Group, School of Science, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
5
|
Bennato F, Ianni A, Bellocci M, Grotta L, Sacchetti G, Martino G. Influence of dietary grape pomace supplementation on chemical and sensorial properties of ewes’ cheese. Int Dairy J 2023. [DOI: 10.1016/j.idairyj.2023.105671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
6
|
Dietary Grape Pomace Supplementation in Lambs Affects the Meat Fatty Acid Composition, Volatile Profiles and Oxidative Stability. Foods 2023; 12:foods12061257. [PMID: 36981183 PMCID: PMC10048055 DOI: 10.3390/foods12061257] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
The aim of this study was to evaluate the effects of supplementing grape pomace (GP) in lambs’ diets. A total of 30 lambs homogeneous for body weight (13.1 ± 2.1 kg) and age (25–30 days) were randomly allocated into two groups. The control group (CTR) received a standard diet for 45 days, while in the same period the experimental group (GP+) was fed with a diet containing 10% GP on a dry matter (DM) basis. The meat samples from the two groups showed no significant differences in drip loss, cooking loss, meat color and total lipid amount. However, the experimental feeding strategy influenced the meat fatty acid composition, with an increase in the relative percentages of stearic, vaccenic and rumenic acids. In particular, the increase in rumenic acids is associated with several health benefits attributed to its high bioactive properties. In cooked meat samples stored for 5 days at 4 °C, the dietary GP supplementation induced an increase in nonanal and 1-octen-3-ol and a significant reduction of hexanal, an indicator of oxidation; this improved resistance to oxidation in the GP+ samples and was also confirmed by the thiobarbituric acid reactive species (TBARS) test. In summary, the present study showed that the dietary GP supplementation was effective in improving the fatty acid composition and the oxidative stability of lamb meat. The use and valorization of the GP as a matrix of interest for zootechnical nutrition can, therefore, represent a suitable strategy for improving the qualitative aspects of animal production.
Collapse
|
7
|
Inclusion of Grape Pomace in Finishing Cattle Diets: Carcass Traits, Meat Quality and Fatty Acid Composition. Animals (Basel) 2022; 12:ani12192597. [PMID: 36230337 PMCID: PMC9559692 DOI: 10.3390/ani12192597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Because of its high content of polyphenolic compounds, dietary inclusion of grape pomace (GP) in finishing cattle diet could possibly enhance product quality and the health value of beef lipids. Therefore, the aim of this study was to evaluate the effects of feeding a high amount of grape pomace in finishing cattle diets on carcass traits, product quality, and fatty acid (FA) composition of beef. Jersey × Holstein crosses (n = 24) were fed either a typical finishing diet (CON) or a finishing diet containing 58% grape pomace (DM basis; HGP). Following the feeding period, animals were harvested, and carcass traits measured. Longissimus lumborum (LL) and semimembranosus (SM) muscle were then collected from each carcass for sensory quality evaluation and FA profile analysis. Hot carcass weight, backfat thickness, and preliminary and final yield grades were greater (p ≤ 0.04) for CON than HGP steers. However, there was no diet effect on rib eye area (REA), kidney, pelvic, and heart (KPH) fat, and marbling. Feeding the HGP compared to CON diet reduced lipid oxidation of LL and SM steaks over time; the malondialdehyde (MDA) concentration, which did not differ on d 0 and 2 of 8-d simulated retail display, was lower on d 4, 6 and 8 for HGP than CON steers (treatment × day of simulated display interaction; p < 0.01). Brightness (L* values) and redness (b*) were greater for LL steaks from HGP than CON steers on most days of simulated display (treatment × day of simulated display interaction; p < 0.01). In addition, the LL and SM muscle content of several FA linked to positive health outcomes in humans including 18:2 n-6, 18:2 c9t11, total conjugated linoleic acid (CLA) and total polyunsaturated fatty acid (PUFA) was also greater (p ≤ 0.02) for steers fed the HGP compared to the CON diet. In summary, current findings suggest that although it could possibly limit growth performance, feeding a high amount of grape pomace to finishing cattle could enhance both the sensory quality and the health value of beef lipids, which are key in increasing consumer acceptability of beef.
Collapse
|
8
|
Bennato F, Ianni A, Florio M, Grotta L, Pomilio F, Saletti MA, Martino G. Nutritional Properties of Milk from Dairy Ewes Fed with a Diet Containing Grape Pomace. Foods 2022; 11:foods11131878. [PMID: 35804692 PMCID: PMC9265667 DOI: 10.3390/foods11131878] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
The aim of the present study was to evaluate the effects of a diet containing a 10% of grape pomace (GP) on the milk yield, chemical-nutritional characteristics, total phenolic compounds (TPCs), antioxidant activity (AOA), fatty acids and proteins profile of dairy ewe’s milk. Forty-six ewes were dived into two groups: a control group (Ctrl), fed a standard diet, and an experimental group (GP+), whose diet was supplemented with 10% of GP on dry matter. The trial lasted 60 days and milk samples were collected and analyzed at the beginning (T0) and after 60 (T60) days. Dietary enrichment with GP did not affect the yield and the chemical composition of the milk. TPCs and AOA were not affected by the diet. After 60 days, the diet induced an increase in monounsaturated fatty acids (MUFA) and a decrease in medium chain saturated fatty acids (MCSFA), but the total saturated fatty acids (SFA), polyunsaturated fatty acids (PUFA), short chain saturated fatty acids (SCSFA) and long chain saturated fatty acids (LCSFA) were not modified. A decrease in the C14 desaturation index and an increase in the C18 index were also detected. Total caseins and whey protein were not affected by GP, even if a lower content of k-casein in GP+ milk compared to Ctrl milk was observed on the 60th day. The results of the present study suggest that 10% of GP can be included in the diet of lactating ewes without modifying milk gross composition but inducing significantly changes the fatty acid profile.
Collapse
Affiliation(s)
- Francesca Bennato
- Faculty of BioScience and Technology for Food, Agriculture, and Environment, University of Teramo, 64100 Teramo, Italy; (F.B.); (A.I.); (M.F.); (L.G.)
| | - Andrea Ianni
- Faculty of BioScience and Technology for Food, Agriculture, and Environment, University of Teramo, 64100 Teramo, Italy; (F.B.); (A.I.); (M.F.); (L.G.)
| | - Marco Florio
- Faculty of BioScience and Technology for Food, Agriculture, and Environment, University of Teramo, 64100 Teramo, Italy; (F.B.); (A.I.); (M.F.); (L.G.)
| | - Lisa Grotta
- Faculty of BioScience and Technology for Food, Agriculture, and Environment, University of Teramo, 64100 Teramo, Italy; (F.B.); (A.I.); (M.F.); (L.G.)
| | - Francesco Pomilio
- Istituto Zooprofilattico Sperimentale Dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (F.P.); (M.A.S.)
| | - Maria Antonietta Saletti
- Istituto Zooprofilattico Sperimentale Dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (F.P.); (M.A.S.)
| | - Giuseppe Martino
- Faculty of BioScience and Technology for Food, Agriculture, and Environment, University of Teramo, 64100 Teramo, Italy; (F.B.); (A.I.); (M.F.); (L.G.)
- Correspondence: ; Tel.: +39-0861-266-950
| |
Collapse
|
9
|
Qualitative Attributes of Commercial Pig Meat from an Italian Native Breed: The Nero d’Abruzzo. Foods 2022; 11:foods11091297. [PMID: 35564019 PMCID: PMC9102233 DOI: 10.3390/foods11091297] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/10/2022] [Accepted: 04/25/2022] [Indexed: 11/26/2022] Open
Abstract
The main objective of this study was to characterize the main qualitative properties of commercial meat obtained from the Nero d’Abruzzo pig, a native breed of Central Italy. In order to valorize this animal production, a direct comparison was made with commercial meat products obtained from hybrid pigs. Over a period of 30 days, 76 steaks for each breed were purchased from the market, and samples were analyzed for total lipid content, fatty acids profile, Coenzyme Q10 content, resistance of meat to oxidative processes, volatile profile of cooked meat and electrophoretic profile of myofibrillar and sarcoplasmic proteins. Results showed the Nero d’Abruzzo to be richer in fat, which, however, is characterized by a higher concentration of α-linolenic acid, to which are attributed important health benefits. The native breed was also richer in Coenzyme Q10, a compound credited with antioxidant potential, whose presence could explain the better oxidative stability of meat samples that were cooked and stored for up to 7 days at +4 °C. In support of this last data, our finding of the characterization of the volatile profile of cooked meat, at the end of the storage period, showed in Nero d’Abruzzo a reduction in the accumulation of hexanal, notoriously associated with oxidative events and the development of unpleasant aromatic notes. In conclusion, aspects that can justify the nutritional superiority of this niche production compared to meat coming from cosmopolitan breeds have been identified.
Collapse
|
10
|
Vastolo A, Calabrò S, Cutrignelli MI. A review on the use of agro-industrial CO-products in animals’ diets. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2022.2039562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Alessandro Vastolo
- Department of Veterinary Medicine and Animal Production, University of Napoli, Federico II, Napoli, Italy
| | - Serena Calabrò
- Department of Veterinary Medicine and Animal Production, University of Napoli, Federico II, Napoli, Italy
| | | |
Collapse
|
11
|
Muñoz P, Pérez K, Cassano A, Ruby-Figueroa R. Recovery of Anthocyanins and Monosaccharides from Grape Marc Extract by Nanofiltration Membranes. Molecules 2021; 26:molecules26072003. [PMID: 33916021 PMCID: PMC8036690 DOI: 10.3390/molecules26072003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 11/25/2022] Open
Abstract
Wastewaters and by-products generated in the winemaking process are important and inexpensive sources of value-added compounds that can be potentially reused for the development of new products of commercial interest (i.e., functional foods). This research was undertaken in order to evaluate the potential of nanofiltration (NF) membranes in the recovery of anthocyanins and monosaccharides from a clarified Carménère grape marc obtained through a combination of ultrasound-assisted extraction and microfiltration. Three different flat-sheet nanofiltration (NF) membranes, covering the range of molecular weight cut-off (MWCO) from 150 to 800 Da, were evaluated for their productivity as well as for their rejection towards anthocyanins (malvidin-3-O-glucoside, malvidin 3-(acetyl)-glucoside, and malvidin 3-(coumaroyl)-glucoside) and sugars (glucose and fructose) in selected operating conditions. The selected membranes showed differences in their performance in terms of permeate flux and rejection of target compounds. The NFX membrane, with the lowest MWCO (150–300 Da), showed a lower flux decay in comparison to the other investigated membranes. All the membranes showed rejection higher than 99.42% for the quantified anthocyanins. Regarding sugars rejection, the NFX membrane showed the highest rejection for glucose and fructose (100 and 92.60%, respectively), whereas the NFW membrane (MWCO 300–500 Da) was the one with the lowest rejection for these compounds (80.57 and 71.62%, respectively). As a general trend, the tested membranes did not show a preferential rejection of anthocyanins over sugars. Therefore, all tested membranes were suitable for concentration purposes.
Collapse
Affiliation(s)
- Paul Muñoz
- Department of Chemistry, Universidad Tecnológica Metropolitana, Las palmeras 3360, 7800003 Santiago, Chile;
| | - Karla Pérez
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, 8940577 Santiago, Chile;
| | - Alfredo Cassano
- Institute on Membrane Technology, ITM-CNR, via P. Bucci, 17/C, I-87036 Rende, Italy
- Correspondence: (A.C.); (R.R.-F.); Tel.: +39-0984-492067 (A.C.); +56-2-2787-7907 (R.R.-F.)
| | - René Ruby-Figueroa
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, 8940577 Santiago, Chile;
- Correspondence: (A.C.); (R.R.-F.); Tel.: +39-0984-492067 (A.C.); +56-2-2787-7907 (R.R.-F.)
| |
Collapse
|
12
|
Vinyard JR, Myers CA, Murdoch GK, Rezamand P, Chibisa GE. Optimum grape pomace proportion in feedlot cattle diets: ruminal fermentation, total tract nutrient digestibility, nitrogen utilization, and blood metabolites. J Anim Sci 2021; 99:6131974. [PMID: 33564882 DOI: 10.1093/jas/skab044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/04/2021] [Indexed: 01/04/2023] Open
Abstract
Because of its high content of polyphenolic compounds, the dietary inclusion of grape pomace (GP) in ruminant diets can reduce reactive nitrogen (N) and methane emissions and enhance the shelf life and beneficial fatty acids (FAs) content of meat. However, the dietary inclusion of GP beyond a threshold that is still to be determined for feedlot cattle can also compromise nutrient supply and, thus, growth performance. This study investigated the optimum proportion of GP in finishing cattle diets. Nutrient intake and apparent total tract digestion, ruminal pH and fermentation, estimated microbial protein synthesis, route of N excretion, and blood metabolites were measured. Six ruminally fistulated crossbred beef heifers (mean initial body weight ± SD: 714 ± 50.7 kg) were used in a replicated 3 × 3 Latin square with 21-d periods. Dietary treatments were 0%, 15%, and 30% of dietary dry matter (DM) as GP, with diets containing 84%, 69%, and 54% dry-rolled barley grain, respectively. There was a linear increase (P = 0.07) in DM intake and quadratic change (P ≤ 0.01) in neutral detergent fiber (NDF) intake. There was a quadratic change (P ≤ 0.04) in apparent total tract DM, NDF, and crude protein digestibility as dietary GP content increased. However, there were no treatment effects (P ≥ 0.18) on total ruminal short-chain FA concentration and duration and area pH < 6.2, 5.8, and 5.5. Although N intake did not differ (269, 262, 253 g/d; P = 0.33) across dietary treatments, feeding GP led to a tendency for a quadratic change (P ≤ 0.07) in ruminal ammonia-N and plasma urea-N concentrations. Total N excretion also changed (quadratic, P = 0.03) because of changes (quadratic, P = 0.02) in fecal N excretion as urinary excretion of N and urea-N did not differ (P ≥ 0.15) across treatments. Feeding GP led to quadratic changes (P ≤ 0.01) in fecal excretion of fiber-bound N. Microbial N flow and apparent N retention also changed (quadratic, P ≤ 0.04) as dietary GP proportion increased. In conclusion, responses to dietary GP proportion were mostly quadratic with indications that nutrient supply as reflected by changes in apparent total tract nutrient digestibility, microbial N supply, and apparent N retention could be compromised beyond a 15% dietary inclusion level.
Collapse
Affiliation(s)
- James R Vinyard
- Department of Animal, Veterinary, and Food Sciences, University of Idaho, Moscow, ID
| | - Cheyanne A Myers
- Department of Animal, Veterinary, and Food Sciences, University of Idaho, Moscow, ID
| | - Gordon K Murdoch
- Department of Animal, Veterinary, and Food Sciences, University of Idaho, Moscow, ID
| | - Pedram Rezamand
- Department of Animal, Veterinary, and Food Sciences, University of Idaho, Moscow, ID
| | - Gwinyai E Chibisa
- Department of Animal, Veterinary, and Food Sciences, University of Idaho, Moscow, ID
| |
Collapse
|
13
|
Tayengwa T, Chikwanha OC, Neethling J, Dugan MER, Mutsvangwa T, Mapiye C. Polyunsaturated fatty acid, volatile and sensory profiles of beef from steers fed citrus pulp or grape pomace. Food Res Int 2020; 139:109923. [PMID: 33509490 DOI: 10.1016/j.foodres.2020.109923] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 11/11/2020] [Accepted: 11/22/2020] [Indexed: 02/07/2023]
Abstract
The present study compared the effects of feeding dried grape pomace (DGP) or citrus pulp (DCP) at 150 g/kg dry matter compared to a control diet on major polyunsaturated fatty acids (PUFA), volatile and sensory profiles of beef. Feeding DGP or DCP diets to Angus steers for 90 d increased the proportions of C18:2n-6, C20:4n-6, C18:3n-3, total conjugated linoleic acid (CLA), n-3 and n-6 PUFA in muscle. Control-fed beef had greater concentrations of C18:1n-9, total aldehydes, ketones, and alcohols compared to DCP and DGP. Feeding DGP and DCP diets produced less tender beef than control. Overall, finishing steers on diets containing DGP or DCP compared to control increased proportions of total CLA, n-3 and n-6 PUFA, and reduced concentrations of aldehydes, ketones, and alcohols, but did not affect beef sensory attributes except for a slight reduction in tenderness.
Collapse
Affiliation(s)
- Tawanda Tayengwa
- Department of Animal Sciences, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Obert C Chikwanha
- Department of Animal Sciences, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Jeannine Neethling
- Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Michael E R Dugan
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada
| | - Timothy Mutsvangwa
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, Canada
| | - Cletos Mapiye
- Department of Animal Sciences, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| |
Collapse
|
14
|
Nutrigenomic Effects of Long-Term Grape Pomace Supplementation in Dairy Cows. Animals (Basel) 2020; 10:ani10040714. [PMID: 32325906 PMCID: PMC7222749 DOI: 10.3390/ani10040714] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The aim of this study was to evaluate the effect of grape pomace (GP), the polyphenol-rich agricultural by-product, on dairy cows’ whole-blood transcriptome, milk production and composition. Twelve lactating Holstein-Friesian cows were randomly assigned to two groups; the first received a GP-supplemented diet for 60 days (group GP), whereas the second was given only a basal diet (CTR). The results reveal 40 protein-coding genes differentially expressed in the GP group when compared with the CTR group, but no effects were noticed on milk production, concentrations of crude protein, fat, casein, lactose and urea, or somatic cell count. Compared to CTR, GP had a transcriptomic signature mainly reflecting a reinforced immunogenic response. Abstract The increasing demand for more animal products put pressure on improving livestock production efficiency and sustainability. In this context, advanced animal nutrition studies appear indispensable. Here, the effect of grape pomace (GP), the polyphenol-rich agricultural by-product, was evaluated on Holstein-Friesian cows’ whole-blood transcriptome, milk production and composition. Two experimental groups were set up. The first one received a basal diet and served as a control, while the second one received a 7.5% GP-supplemented diet for a total of 60 days. Milk production and composition were not different between the group; however, the transcriptome analysis revealed a total of 40 genes significantly affected by GP supplementation. Among the most interesting down-regulated genes, we found the DnaJ heat-shock protein family member A1 (DNAJA1), the mitochondrial fission factor (MFF), and the impact RWD domain protein (IMPACT) genes. The gene set enrichment analysis evidenced the positive enrichment of ‘interferon alpha (IFN-α) and IFN-γ response’, ‘IL6-JAK-STAT3 signaling’ and ‘complement’ genes. Moreover, the functional analysis denoted positive enrichment of the ‘response to protozoan’ and ‘negative regulation of viral genome replication’ biological processes. Our data provide an overall view of the blood transcriptomic signature after a 60-day GP supplementation in dairy cows which mainly reflects a GP-induced immunomodulatory effect.
Collapse
|
15
|
Bennato F, Di Luca A, Martino C, Ianni A, Marone E, Grotta L, Ramazzotti S, Cichelli A, Martino G. Influence of Grape Pomace Intake on Nutritional Value, Lipid Oxidation and Volatile Profile of Poultry Meat. Foods 2020; 9:foods9040508. [PMID: 32316475 PMCID: PMC7230919 DOI: 10.3390/foods9040508] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023] Open
Abstract
Grape pomace (GP) represents the main solid by-product deriving from grape processing. The aim of this study was to evaluate the effect of dietary GP intake on nutritional quality, lipid oxidation and volatile profile of chicken meat. A total of 112 Ross 508 broilers were randomly divided into 4 groups and fed for 21 days with a standard diet. For the remaining 28 days of the trial, the control group (CG) continued to receive a standard diet, while the experimental groups (EGs) were fed with diets containing different GP concentrations: 2.5% (EG1), 5% (EG2) and 7% (EG3). Following the slaughtering, samples of breast meat were collected from each group. No significant differences were observed for pH, cooking loss and meat brightness, whereas the GP intake showed effectiveness in inducing variations in drip loss, meat yellowness and redness. The experimental feeding strategy also induced changes in the fatty acid profile, with an overall increase in polyunsaturated fatty acids (PUFA), mainly due to the increase in concentration of linoleic acid. The dietary supplementation also induced a decrease in lipid oxidation in meat, a finding also confirmed by the reduction in volatile aldehydes in 7 days stored raw meat. The feeding strategy based on the use of GP did not induce detrimental effects on the quality of broiler meat and showed the potential to lengthen the shelf-life as a direct consequence of the improvement in the oxidative stability. Overall, the present study showed a viable way for the recovery and the valorization of an agro-industrial by-product, with potential benefits also from an environmental point of view.
Collapse
Affiliation(s)
- Francesca Bennato
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy; (F.B.); (A.D.L.); (A.I.); (E.M.); (L.G.); (S.R.)
| | - Alessio Di Luca
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy; (F.B.); (A.D.L.); (A.I.); (E.M.); (L.G.); (S.R.)
| | - Camillo Martino
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Via Campo Boario 37, 64100 Teramo, Italy;
| | - Andrea Ianni
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy; (F.B.); (A.D.L.); (A.I.); (E.M.); (L.G.); (S.R.)
| | - Elettra Marone
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy; (F.B.); (A.D.L.); (A.I.); (E.M.); (L.G.); (S.R.)
| | - Lisa Grotta
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy; (F.B.); (A.D.L.); (A.I.); (E.M.); (L.G.); (S.R.)
| | - Solange Ramazzotti
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy; (F.B.); (A.D.L.); (A.I.); (E.M.); (L.G.); (S.R.)
| | - Angelo Cichelli
- Department of Medical and Oral Sciences and Biotechnologies, D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Giuseppe Martino
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy; (F.B.); (A.D.L.); (A.I.); (E.M.); (L.G.); (S.R.)
- Correspondence:
| |
Collapse
|
16
|
Ianni A, Martino G. Dietary Grape Pomace Supplementation in Dairy Cows: Effect on Nutritional Quality of Milk and Its Derived Dairy Products. Foods 2020; 9:E168. [PMID: 32050684 PMCID: PMC7073903 DOI: 10.3390/foods9020168] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 02/07/2023] Open
Abstract
Grape pomace (GP) is the main solid by-product of winemaking and represents a rich source of potent bioactive compounds which could display a wide range of beneficial effects in human health for their association with reduced risk of several chronic diseases. Several studies have proposed the use of GP as a macro-ingredient to obtain economically worthwhile animal feedstuffs naturally enriched by polyphenols and dietary fibers. Moreover, the research carried out in this field in the last two decades evidences the ability of GP to induce beneficial effects in cow milk and its derived dairy products. First of all, a general increase in concentration of polyunsaturated fatty acids (PUFA) was observed, and this could be considered the reflection of the high content of these compounds in the by-product. Furthermore, an improvement in the oxidative stability of dairy products was observed, presumably as a direct consequence of the high content of bioactive compounds in GP that are credited with high and well-characterized antioxidant functions. Last but not least, particularly in ripened cheeses, volatile compounds (VOCs) were identified, arising both from lipolytic and proteolytic processes and commonly associated with pleasant aromatic notes. In conclusion, the GP introduction in the diet of lactating cows made it possible to obtain dairy products characterized by improved nutritional properties and high health functionality. Furthermore, the presumable improvement of organoleptic properties seems to be effective in contributing to an increase in the consumer acceptability of the novel products. This review aims to evaluate the effect of the dietary GP supplementation on the quality of milk and dairy products deriving from lactating dairy cows.
Collapse
Affiliation(s)
| | - Giuseppe Martino
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy;
| |
Collapse
|