1
|
Śniatała B, Al-Hazmi HE, Sobotka D, Zhai J, Mąkinia J. Advancing sustainable wastewater management: A comprehensive review of nutrient recovery products and their applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173446. [PMID: 38788940 DOI: 10.1016/j.scitotenv.2024.173446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/25/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Wastewater serves as a vital resource for sustainable fertilizer production, particularly in the recovery of nitrogen (N) and phosphorus (P). This comprehensive study explores the recovery chain, from technology to final product reuse. Biomass growth is the most cost-effective method, valorizing up to 95 % of nutrients, although facing safety concerns. Various techniques enable the recovery of 100 % P and up to 99 % N, but challenges arise during the final product crystallization due to the high solubility of ammonium salts. Among these techniques, chemical precipitation and ammonia stripping/ absorption have achieved full commercialization, with estimated recovery costs of 6.0-10.0 EUR kgP-1 and 4.4-4.8 £ kgN-1, respectively. Multiple technologies integrating biomass thermo-chemical processing and P and/or N have also reached technology readiness level TRL = 9. However, due to maturing regulatory of waste-derived products, not all of their products are commercially available. The non-homogenous nature of wastewater introduces impurities into nutrient recovery products. While calcium and iron impurities may impact product bioavailability, some full-scale P recovery technologies deliver products containing this admixture. Recovered mineral nutrient forms have shown up to 60 % higher yield biomass growth compared to synthetic fertilizers. Life cycle assessment studies confirm the positive environmental outcomes of nutrient recycling from wastewater to agricultural applications. Integration of novel technologies may increase wastewater treatment costs by a few percent, but this can be offset through renewable energy utilization and the sale of recovered products. Moreover, simultaneous nutrient recovery and energy production via bio-electrochemical processes contributes to carbon neutrality achieving. Interdisciplinary cooperation is essential to offset both energy and chemicals inputs, increase their cos-efficiency and optimize technologies and understand the nutrient release patterns of wastewater-derived products on various crops. Addressing non-technological factors, such as legal and financial support, infrastructure redesign, and market-readiness, is crucial for successfully implementation and securing the global food production.
Collapse
Affiliation(s)
- Bogna Śniatała
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12, Gdańsk, Poland.
| | - Hussein E Al-Hazmi
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12, Gdańsk, Poland
| | - Dominika Sobotka
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12, Gdańsk, Poland
| | - Jun Zhai
- Institute for Smart City of Chongqing University in Liyang, Chongqing University, Jiangsu 213300, China
| | - Jacek Mąkinia
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12, Gdańsk, Poland.
| |
Collapse
|
2
|
Cândido D, Bolsan AC, Hollas CE, Venturin B, Tápparo DC, Bonassa G, Antes FG, Steinmetz RLR, Bortoli M, Kunz A. Integration of swine manure anaerobic digestion and digestate nutrients removal/recovery under a circular economy concept. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 301:113825. [PMID: 34571473 DOI: 10.1016/j.jenvman.2021.113825] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/15/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
The application of the circular economy concept should utilize the cycles of nature to preserve materials, energy and nutrients for economic use. A full-scale pig farm plant was developed and validated, showing how it is possible to integrate a circular economy concept into a wastewater treatment system capable of recovering energy, nutrients and enabling water reuse. A low-cost swine wastewater treatment system consisting of several treatment modules such as solid-liquid separation, anaerobic digestion, biological nitrogen removal by nitrification/denitrification and physicochemical phosphorus removal and recovery was able to generate 1880.6 ± 1858.5 kWh d-1 of energy, remove 98.6% of nitrogen and 89.7% of phosphorus present in the swine manure. In addition, it was possible to produce enough fertilizer to fertilize 350 ha per year, considering phosphorus and potassium. In addition, the effluent after the chemical phosphorus removal can be safely used in farm cleaning processes or disposed of in water bodies. Thus, the proposed process has proven to be an environmentally superior swine waste management technology, with a positive impact on water quality and ensuring environmental sustainability in intensive swine production.
Collapse
Affiliation(s)
- Daniela Cândido
- Universidade Federal da Fronteira Sul, 99700-000, Erechim, RS, Brazil
| | | | | | - Bruno Venturin
- Universidade Estadual Do Oeste Do Paraná, 85819-110, Cascavel, PR, Brazil
| | | | - Gabriela Bonassa
- Universidade Estadual Do Oeste Do Paraná, 85819-110, Cascavel, PR, Brazil
| | | | | | - Marcelo Bortoli
- Universidade Tecnológica Federal Do Paraná, 85601-970, Francisco Beltrão, PR, Brazil
| | - Airton Kunz
- Universidade Federal da Fronteira Sul, 99700-000, Erechim, RS, Brazil; Universidade Estadual Do Oeste Do Paraná, 85819-110, Cascavel, PR, Brazil; Embrapa Suínos e Aves, 89715-899, Concórdia, SC, Brazil.
| |
Collapse
|
3
|
Shim S, Reza A, Kim S, Won S, Ra C. Nutrient recovery from swine wastewater at full-scale: An integrated technical, economic and environmental feasibility assessment. CHEMOSPHERE 2021; 277:130309. [PMID: 34384179 DOI: 10.1016/j.chemosphere.2021.130309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/25/2021] [Accepted: 03/14/2021] [Indexed: 06/13/2023]
Abstract
In this study, the technical, economic and environmental attributes of a full-scale nutrient recovery process connected to the centralized swine wastewater treatment facility (CSWTF) were evaluated. The performance of the process was assessed by introducing influent to the recovery reactor from different components of the CSWTF such as sedimentation tank (swine wastewater) and biological treatment reactor (biologically oxidized material and supernatant of the biologically oxidized material). The results of technical performance assessment revealed that the O-P recovery (87.1-90.7%) and NH4-N removal (66.9-72.1%) efficiencies from the influent of biological treatment reactor were significantly higher than the influent from sedimentation tank (81.7 and 19.8%, respectively, p < 0.05). The economic evaluation elucidated that by increasing the treatment capacity of the recovery reactor from 30 m3/d to 100 m3/d, operating expenses could be covered through the commercialization of struvite, while it would take around seven years to get back the capital investment. Additional economic savings could also be possible when using the recovered struvite as a fertilizer raw material along with other environmental benefits. Considering the current farming practices in Korea, the complete recovery of O-P from CSWTFs as struvite could drop the soil phosphorus surplus by 40%, minimize the phosphatic fertilizer consumption by 6.4% and ultimately reduce CO2 equivalent emissions of 6522 tons/year in comparison to chemical fertilizer production. However, during the continuous operation of the full-scale nutrient recovery process, influent characteristics need to be incessantly monitored and adjusted to the optimum conditions to improve the economics of recovered products. Overall, the nutrient recovery process at full-scale not only solves the problem of treating highly polluted swine wastewater but also helps to ensure societal and environmental sustainability.
Collapse
Affiliation(s)
- Soomin Shim
- Department of Animal Industry Convergence, College of Animal Life Sciences, Kangwon National University, Chuncheon, 24341, South Korea
| | - Arif Reza
- Department of Animal Industry Convergence, College of Animal Life Sciences, Kangwon National University, Chuncheon, 24341, South Korea; Department of Environmental Science, College of Agricultural Sciences, International University of Business Agriculture and Technology, Dhaka, 1230, Bangladesh
| | - Seungsoo Kim
- Department of Animal Industry Convergence, College of Animal Life Sciences, Kangwon National University, Chuncheon, 24341, South Korea
| | - Seunggun Won
- Department of Animal Resources, College of Natural and Life Sciences, Daegu University, Gyeongsan, 38453, South Korea
| | - Changsix Ra
- Department of Animal Industry Convergence, College of Animal Life Sciences, Kangwon National University, Chuncheon, 24341, South Korea.
| |
Collapse
|
4
|
Shim S, Reza A, Kim S, Ahmed N, Won S, Ra C. Simultaneous Removal of Pollutants and Recovery of Nutrients from High-Strength Swine Wastewater Using a Novel Integrated Treatment Process. Animals (Basel) 2020; 10:ani10050835. [PMID: 32408573 PMCID: PMC7278415 DOI: 10.3390/ani10050835] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Due to the increasing trend of swine consumption in recent decades, swine husbandry practices have become more intensive in Korea. Intensive swine farming practices inevitably result in an increment of wastewater production. Treatment of high strength swine wastewater (SWW) is therefore becoming a matter of concern in Korea. Moreover, with the increasing number of swine heads, swine farms are having issues with malodor, sanitation, and disease control. In this study, a novel integrated treatment process was tested for the simultaneous removal of pollutants and nutrient recovery from high strength swine wastewater. The integrated treatment process used in this study successfully removed the nutrients and other pollutants through biological treatment, recovered the nutrients using struvite crystallization process and decolorized as well as disinfected the effluent before discharge into water bodies by electrochemical treatment. Therefore, using the proposed integrated treatment process, it might be possible to ensure efficient SWW management along with societal and environmental sustainability. Abstract In this study, a novel treatment approach combining biological treatment, struvite crystallization, and electrochemical treatment was developed and its efficiency for the simultaneous removal of pollutants and recovery of nutrients from high strength swine wastewater (SWW) was verified. For all the parameters, maximum removal efficiencies in the lab-scale test were obtained in the range of 93.0–98.7% except for total solids (TS) (79.4%). Farm-scale process showed overall removal efficiencies for total nitrogen (TN), total phosphorus (TP), soluble total organic carbon (sTOC), and color as 94.5%, 67.0%, 96.1%, and 98.9%, respectively, while TS, suspended solids (SS), ammonium nitrogen (NH4-N), and ortho-phosphate (O-P) concentrations were reduced by 91.5%, 99.6%, 98.6%, and 91.9%, respectively. Moreover, the struvite recovered from SWW showed heavy metal concentrations within the range of the Korean standard for fertilizers and feedstocks and thus, suggesting its potential application as fertilizer and in animal feed production. Using the proposed process, the SWW was converted to liquid compost as a quick-acting fertilizer, struvite as a slow-release fertilizer, and the decolorized and disinfected effluent after electrochemical treatment was safe for discharge according to Korean standard. Therefore, the novel integrated treatment process used in this study can be considered as a solution for SWW management and for the simultaneous removal and recycling of nutrients (N and P).
Collapse
Affiliation(s)
- Soomin Shim
- Department of Animal Industry Convergence, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea; (S.S.); (A.R.); (S.K.); (N.A.)
| | - Arif Reza
- Department of Animal Industry Convergence, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea; (S.S.); (A.R.); (S.K.); (N.A.)
- Department of Environmental Science, College of Agricultural Sciences, IUBAT—International University of Business Agriculture and Technology, Dhaka 1230, Bangladesh
| | - Seungsoo Kim
- Department of Animal Industry Convergence, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea; (S.S.); (A.R.); (S.K.); (N.A.)
| | - Naveed Ahmed
- Department of Animal Industry Convergence, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea; (S.S.); (A.R.); (S.K.); (N.A.)
- U.S. Pakistan Center for Advanced Studies in Water, Mehran University of Engineering and Technology, Jamshoro 76062, Sindh, Pakistan
| | - Seunggun Won
- Department of Animal Resources, College of Life and Environmental Science, Daegu University, Gyeongsan 38453, Korea;
| | - Changsix Ra
- Department of Animal Industry Convergence, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea; (S.S.); (A.R.); (S.K.); (N.A.)
- Correspondence: ; Tel.: +82-33-250-8618
| |
Collapse
|
5
|
Design and Optimization of Fluidized Bed Reactor Operating Conditions for Struvite Recovery Process from Swine Wastewater. Processes (Basel) 2020. [DOI: 10.3390/pr8040422] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Struvite crystallization using fluidized bed reactors (FBRs) is one of the most commonly used methods for nutrient recovery from different waste streams. However, struvite recovery from swine wastewater containing much higher solids using FBR has not been studied extensively. In this study, we therefore designed and optimized the key operating conditions parameters, i.e., pH (9.0, 9.5, and 10.0), circulation rate (CR) (1.5, 3.0, and 4.5 L/Lreactor·h), and hydraulic retention time (HRT) (1, 3, and 5 h) of FBR to ensure efficient nutrient removal and struvite crystallization from swine wastewater using response surface methodology (RSM) with central composite design (CCD) as experimental design. A magnesium/phosphorus (Mg/P) molar ratio of 1.3 was maintained with MgCl2 according to ortho-phosphate (O-P) concentration of influent and an air diffuser was set to supply air with 0.03 L air/Lreactor·min. The O-P recovery efficiency of over 91% was achieved through the entire runs. Among the operational parameters, pH did not show any significant effect on NH4-N recovery, particle size, and struvite production rate (SPR). The optimal CR over 2.94 L/Lreactor·h was found to be appropriate for efficient removal of nutrients and struvite crystallization. While optimizing the HRT, priority of the process operation such as the production of larger struvite particles or increased struvite productivity should be considered. Therefore, the optimal operational parameters of pH 9.0, CR > 2.94 L/Lreactor·h, and HRT of 1 or 5 h were chosen to obtain better responses through RSM analyses. The findings of this study would be useful in designing and operating either pilot- or full-scale FBR for struvite crystallization from swine wastewater.
Collapse
|