1
|
Pu X, Liang Y, Lian J, Xu M, Yong Y, Zhang H, Zhang L, Zhang J. Effects of dietary dihydroartemisinin on growth performance, meat quality, and antioxidant capacity in broiler chickens. Poult Sci 2025; 104:104523. [PMID: 39571200 PMCID: PMC11617672 DOI: 10.1016/j.psj.2024.104523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/03/2024] [Accepted: 11/05/2024] [Indexed: 12/08/2024] Open
Abstract
This study aimed to investigate the effects of dietary dihydroartemisinin on the growth performance, meat quality, and antioxidant capacity of broiler chickens. Four-hundred one-day-old Arbor Acres male broilers were randomly assigned to five treatment groups with eight replicates and ten birds each. All broilers were fed a basal diet containing 0, 5, 10, 20 or 40 mg/kg dihydroartemisinin. The results showed that dihydroartemisinin at 10 mg/kg quadratically increased ADG, and dihydroartemisinin at 10 and 20 mg/kg quadratically increased ADFI during the days 1-21 period. Compared to the control group, dihydroartemisinin at 10 and 20 mg/kg quadratically decreased the drip loss at 24 h. Dihydroartemisinin linearly and quadratically decreased the L* value of breast muscles. Dihydroartemisinin at 20-40 mg/kg linearly and quadratically decreased the MDA concentrations at D5 and D 7 of postmortem storage. Dihydroartemisinin linearly and quadratically increased the ABTS scavenging activity at D 7 of postmortem storage. Dietary 20 mg/kg dihydroartemisinin at 21 days and 40 mg/kg dihydroartemisinin at 42 days linearly and quadratically increased serum glutathione concentrations. Dihydroartemisinin at 5-40 mg/kg linearly increased serum total superoxide dismutase activity at 42 days. Dihydroartemisinin at 10-20 mg/kg quadratically decreased serum malondialdehyde contents at 42 days. At 21 days, 20 mg/kg dihydroartemisinin quadratically increased hepatic glutathione concentrations and catalase activities. Compared to the control group, 40 mg/kg dihydroartemisinin linearly and quadratically decreased hepatic malondialdehyde contents. At 42 days, 20 mg/kg dihydroartemisinin quadratically increased catalase activities and reduced the malondialdehyde contents in liver. Dihydroartemisinin quadratically increased the hepatic mRNA expression of Nrf2. Compared to the control group, dihydroartemisinin at 10 and 20 mg/kg quadratically induced the hepatic mRNA expression of HO-1. Dihydroartemisinin at 10-40 mg/kg linearly and quadratically increased the mRNA expression of CAT in liver. These results showed that dihydroartemisinin improved growth performance, meat quality, and antioxidant capacity of broiler chickens, especially at 10 and 20 mg/kg.
Collapse
Affiliation(s)
- Xiaoxiao Pu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yuxuan Liang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Jiafang Lian
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Miaoxuan Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yalan Yong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Hao Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Lili Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Jingfei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
2
|
Shao D, Liu L, Tong H, Shi S. Dietary pyrroloquinoline quinone improvement of the antioxidant capacity of laying hens and eggs are linked to the alteration of Nrf2/HO-1 pathway and gut microbiota. Food Chem X 2023; 20:101021. [PMID: 38144785 PMCID: PMC10740097 DOI: 10.1016/j.fochx.2023.101021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/24/2023] [Accepted: 11/19/2023] [Indexed: 12/26/2023] Open
Abstract
Pyrroloquinoline quinone disodium (PQQ·Na2) has been considered a human food supplement for human health promotion with its antioxidant properties. To determine whether PQQ·Na2 had similar functions to improve the antioxidant ability of layers and eggs, 180 laying hens were fed with 0 or 0.4 mg/kg PQQ·Na2 diets. Supplementation with PQQ·Na2 increased the albumen height, Haugh unit of the eggs. PQQ·Na2 also led to a higher glutathione peroxidase (GSH-Px) concentration in plasma and a lower malondialdehyde (MDA) content in the liver and egg yolk. Similarly, liver gene and protein expression of nuclear factor erythroid 2-related 2 (Nrf2) and heme oxygenase 1 (HO-1) were up-regulated by PQQ·Na2. Moreover, PQQ·Na2 increased the abundance of Firmicutes, Microbacterium, Erysipelatoclostridium, Mailhella, Lachnospiraceae_UCG-010, and Herbaspirillum in gut. Overall, these results suggested PQQ·Na2 increased the antioxidant ability of layers and eggs which might be in connection with the activation of the Nrf2/HO-1 pathway and optimized gut microflora.
Collapse
Affiliation(s)
- Dan Shao
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, China
| | - Liangji Liu
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, China
| | - Haibing Tong
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, China
| | - Shourong Shi
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, China
| |
Collapse
|
3
|
Qin P, Ma S, Li C, Di Y, Liu Z, Wang H, Li Y, Jiang S, Yang W, Jiao N. Cysteine Attenuates the Impact of Bisphenol A-Induced Oxidative Damage on Growth Performance and Intestinal Function in Piglets. TOXICS 2023; 11:902. [PMID: 37999554 PMCID: PMC10675709 DOI: 10.3390/toxics11110902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023]
Abstract
Bisphenol A (BPA), a kind of environmental toxin, widely impacts daily life. Cysteine (Cys) is a nutritionally important amino acid for piglets. However, it remains unclear whether Cys can alleviate BPA-induced oxidative damage in piglets. The aim of the present study was to explore the protective effects of Cys in BPA-challenged piglets. A total of twenty-four piglets were divided into four groups that were further subdivided based on the type of exposure (with or without 0.1% BPA) in a basal or Cys diet for a 28 d feeding trial. The results showed that BPA exposure decreased the piglets' average daily weight gain by 14.9%, and decreased dry matter, crude protein and ether extract digestibility by 3.3%, 4.5% and 2.3%, respectively; these decreases were attenuated by Cys supplementation. Additionally, Cys supplementation restored BPA-induced decreases in superoxide dismutase (SOD) and glutathione (GSH), and increases in malondialdehyde (MDA) levels, in the serum and jejunum (p < 0.05). Moreover, BPA decreased the jejunal mRNA expression of antioxidant genes, which were restored by Cys supplementation (p < 0.05). Cys also restored BPA and increased serum D-lactate levels and diamine oxidase (DAO) activity, and BPA decreased jejunal disaccharidase activity (p < 0.05). Further investigations in this study showed that the protective effects of Cys were associated with restoring intestinal barrier integrity by improving the jejunal morphology and enhancing the mRNA expression of tight junction proteins (p < 0.05). Collectively, the results herein demonstrated that Cys supplementation attenuated the impact of BPA-induced oxidative damage on growth performance, nutrient digestibility and intestinal function.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ning Jiao
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271018, China; (P.Q.); (S.M.); (C.L.); (Y.D.); (Z.L.); (H.W.); (Y.L.); (S.J.); (W.Y.)
| |
Collapse
|
4
|
Wang L, Jiang L, Chu Y, Feng F, Tang W, Chen C, Qiu Y, Hu Z, Diao H, Tang Z. Dietary Taurine Improves Growth Performance and Intestine Health via the GSH/GSSG Antioxidant System and Nrf2/ARE Signaling Pathway in Weaned Piglets. Antioxidants (Basel) 2023; 12:1852. [PMID: 37891931 PMCID: PMC10604690 DOI: 10.3390/antiox12101852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Early weaning of piglets was prone to increase reactive oxygen species, disrupt the redox balance, decrease antioxidant capacity, cause oxidative stress and intestinal oxidative damage, and lead to diarrhea in piglets. This research aimed to study dietary taurine (Tau) supplementation at a level relieving intestinal oxidative damage in early-weaned piglets. A total of 48 piglets were assigned to four groups of 12 individuals and fed a basal diet with 0.0% Tau (CON), 0.2% Tau (L-Tau), 0.3% Tau (M-Tau), or 0.4% Tau (H-Tau), respectively. The animal experiment lasted 30 days. The final weight, weight gain, average daily gain, and feed conversion rate increased with the increase in dietary Tau (Linear, p < 0.05; Quadratic p < 0.05), while the diarrhea index of piglets decreased with the increase in dietary Tau (Linear, p < 0.05). Serum malondialdehyde, nitric oxide (NO), D-lactose, and oxidized glutathione (GSSG) concentrations decreased with the increase in dietary Tau (Linear, p < 0.05). The O2•- and •OH clearance rate in serum, liver, and jejunum mucosa increased with the increase in dietary Tau (Linear, p < 0.05). Serum superoxide dismutase (SOD) activity, glutathione peroxidase (GPX) activity, catalase (CAT) activity, and peroxidase (POD) activity and total antioxidant capacity increased with the increase in dietary Tau (Linear, p < 0.05). The serum glutathione (GSH) concentration and the ratio of GSH to GSSG increased with the increase in dietary Tau (Linear, p < 0.05). The POD and glutathione synthase activity in the liver and jejunum mucosa increased with the increase in dietary Tau (Linear, p < 0.05). The mRNA abundances of HO-1 and GPX1 in the H-Tau group were higher than that in the L-Tau, M-Tau, and CON groups (p < 0.05). The mRNA abundances of SOD1 and Nrf2 in the M-Tau and H-Tau groups were higher than in the L-Tau and CON groups (p < 0.05). The mRNA abundance of SOD2 in the L-Tau, M-Tau, and H-Tau groups was higher than in the CON group (p < 0.05). The VH and the ratio of VH to CD of jejunum and ileum increased with the increase in dietary Tau (Linear, p < 0.05). The mRNA abundances of occludens 1 and claudin 1 in the H-Tau group were higher than that in the CON, L-Tau, and M-Tau (p < 0.05). The mRNA abundance of occludin in the L-Tau, M-Tau, and H-Tau groups was higher than that in CON (p < 0.05). The abundance of Firmicutes increased with the increase in dietary Tau (Linear, p < 0.05), while Proteobacteria and Spirochaetota decreased with the increase in dietary Tau (Linear, p < 0.05). Collectively, dietary supplementation of 0.3% and 0.4% Tau in feed could significantly improve the growth performance and enhance the antioxidant capacity of piglets.
Collapse
Affiliation(s)
- Lingang Wang
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (L.W.); (L.J.); (Y.C.); (F.F.); (C.C.); (Y.Q.); (Z.H.)
| | - Liwen Jiang
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (L.W.); (L.J.); (Y.C.); (F.F.); (C.C.); (Y.Q.); (Z.H.)
| | - Yunyun Chu
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (L.W.); (L.J.); (Y.C.); (F.F.); (C.C.); (Y.Q.); (Z.H.)
| | - Fu Feng
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (L.W.); (L.J.); (Y.C.); (F.F.); (C.C.); (Y.Q.); (Z.H.)
| | - Wenjie Tang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China; (W.T.); (H.D.)
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animtche Group Co., Ltd., Chengdu 610066, China
| | - Chen Chen
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (L.W.); (L.J.); (Y.C.); (F.F.); (C.C.); (Y.Q.); (Z.H.)
| | - Yibin Qiu
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (L.W.); (L.J.); (Y.C.); (F.F.); (C.C.); (Y.Q.); (Z.H.)
| | - Zhijin Hu
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (L.W.); (L.J.); (Y.C.); (F.F.); (C.C.); (Y.Q.); (Z.H.)
| | - Hui Diao
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China; (W.T.); (H.D.)
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animtche Group Co., Ltd., Chengdu 610066, China
| | - Zhiru Tang
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (L.W.); (L.J.); (Y.C.); (F.F.); (C.C.); (Y.Q.); (Z.H.)
| |
Collapse
|
5
|
Tang X, Xiong K, Li M. Effects of dietary epidermal growth factor supplementation on liver antioxidant capacity of piglets with intrauterine growth retardation. J Anim Sci 2023; 101:skad323. [PMID: 37812936 PMCID: PMC10576518 DOI: 10.1093/jas/skad323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/10/2023] [Indexed: 10/11/2023] Open
Abstract
The present experiment was conducted to study the effects of dietary epidermal growth factor (EGF) supplementation on the liver antioxidant capacity of piglets with intrauterine growth retardation (IUGR). The present study consists of two experiments. In experiment 1, six normal-birth-weight (NBW) and six IUGR newborn piglets were slaughtered within 2 to 4 h after birth to compare the effects of IUGR on the liver antioxidant capacity of newborn piglets. The results showed that compared with NBW piglets, IUGR piglets had a lower birth weight and liver relative weight; IUGR piglets had a higher serum malondialdehyde (MDA) level, liver MDA level and hydrogen peroxide (H2O2) level, and had a lower liver total antioxidant capacity (T-AOC) level and glutathione peroxidase (GSH-Px) activity; IUGR trended to increase serum alanine aminotransferase activity, aspartate aminotransferase activity, and H2O2 level, and trended to decrease liver total superoxide dismutase activity. In experiment 2, six NBW piglets, and 12 IUGR piglets weaned at 21 d of age were randomly divided into the NC group (NBW piglets fed with basal diet); IC group (IUGR piglets fed with basal diet), and IE group (IUGR piglets fed with basal diet plus 2 mg/kg EGF), and feeding for 14 d. Organ index, serum parameters, liver antioxidant capacity, and liver antioxidant-related genes expression were measured. The results showed that compared to the IC group, dietary EGF supplementation (IE group) significantly reduced serum malondialdehyde level and H2O2 level, and liver protein carbonyl (PC) level and 8-hydroxydeoxyguanosine level of piglets with IUGR; dietary EGF supplementation (IE group) significantly increased serum T-AOC level, liver T-AOC level and GSH-Px activity; dietary supplemented with EGF (IE group) enhanced liver Nrf2, NQO1, HO1, and GPX1 mRNA expression compared to IC group. Pearson's correlation analysis further showed that EGF can alleviate liver oxidative injury caused by IUGR and improve the performance of IUGR piglets. In conclusion, EGF exhibited potent protective effects on IUGR-induced liver oxidative injury, by activating the Nrf2 signaling pathway to mediate the expression of downstream antioxidant enzymes and phase II detoxification enzymes (NQO1 and HO1), thereby alleviating liver oxidative damage and promoting the growth performance of IUGR piglets.
Collapse
Affiliation(s)
- Xiaopeng Tang
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang 550001, China
| | - Kangning Xiong
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang 550001, China
| | - Meijun Li
- College of Animal Science and Technology, Hunan Biological and Electromechanical Polytechnic, Changsha 410127, China
| |
Collapse
|
6
|
Polydatin Attenuates Intra-Uterine Growth Retardation-Induced Liver Injury and Mitochondrial Dysfunction in Weanling Piglets by Improving Energy Metabolism and Redox Balance. Antioxidants (Basel) 2022; 11:antiox11040666. [PMID: 35453351 PMCID: PMC9028342 DOI: 10.3390/antiox11040666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 02/08/2023] Open
Abstract
The present study investigated the potential of polydatin to protect against liver injury and the mitochondrial dysfunction of weanling piglets suffering from intra-uterine growth retardation (IUGR). Thirty-six normal birth weight weanling piglets and an equal number of IUGR littermates were given a basal diet with or without polydatin (250 mg/kg) from 21 to 35 d of age. Plasma and liver samples were collected to measure biochemistry parameters at 35 d of age. IUGR caused hepatic apoptosis, mitochondrial dysfunction, and oxidative damage, along with a lower efficiency of energy metabolism and inferior antioxidant ability. Polydatin decreased apoptotic rate, improved the features of mitochondrial damage, inhibited mitochondrial swelling and superoxide anion formation, and preserved mitochondrial membrane potential in the liver. Concurrently, polydatin promoted mitochondrial biogenesis, increased sirtuin 1 activity, and upregulated the expression levels of several genes related to mitochondrial function and fitness. Polydatin also facilitated mitochondrial oxidative metabolism with a beneficial outcome of increased energy production. Furthermore, polydatin mitigated the IUGR-induced reduction in manganese superoxide dismutase activity and prevented the excessive accumulation of oxidative damaging products in the liver. These findings indicate that polydatin confers protection against hepatic injury and mitochondrial dysfunction in the IUGR piglets by improving energy metabolism and redox balance.
Collapse
|
7
|
Tang X, Xiong K. Intrauterine Growth Retardation Affects Intestinal Health of Suckling Piglets via Altering Intestinal Antioxidant Capacity, Glucose Uptake, Tight Junction, and Immune Responses. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2644205. [PMID: 35345830 PMCID: PMC8957421 DOI: 10.1155/2022/2644205] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/23/2022] [Accepted: 03/02/2022] [Indexed: 02/06/2023]
Abstract
The aim of the present study was to investigate the effects of intrauterine growth retardation (IUGR) on the intestinal morphology, intestinal epithelial cell apoptosis, intestinal antioxidant capacity, intestinal glucose absorption capacity, and intestinal barrier function of piglets during the suckling period. A total of eight normal-birth-weight (NBW) piglets and eight IUGR newborn piglets (Duroc × Landrace × Yorkshire) were selected from eight litters, one NBW and one IUGR newborn piglet per litter. In each litter, piglets with birth weight of 1.54 ± 0.04 kg (within one SD of the mean birth weight) were selected as NBW piglets and piglets with birth weight of 0.82 ± 0.03 kg (two SD below the mean birth weight) were selected as IUGR piglets. At 21 days of age, all piglets were killed by exsanguinations for sampling. The results showed the body weight (BW) of IUGR piglets on day 0, day 7, day 14, and day 21, and the body weight gain (BWG) of IUGR piglets was significantly lower than that of NBW piglets. IUGR piglets exhibited impaired intestinal morphology, raised enterocyte apoptosis, and increased oxidative damage. It showed that IUGR leads to a lower antioxidant capacity and glucose absorption in the jejunum. In accordance, IUGR caused the intestinal barrier dysfunction by impairing tight junctions and increasing intestinal inflammatory injury. Collectively, these results add to our understanding that IUGR affects intestinal health of suckling piglets via altering intestinal antioxidant capacity, glucose uptake, tight junction, and immune responses, and the slow growth of piglets with IUGR may be associated with intestinal injury.
Collapse
Affiliation(s)
- Xiaopeng Tang
- School of Karst Science, Guizhou Normal University, No. 116 North Baoshan Road, Yunyan District, Guiyang 550001, China
- State Engineering Technology Institute for Karst Desertification Control, No. 116 North Baoshan Road, Yunyan District, Guiyang 550001, China
| | - Kangning Xiong
- School of Karst Science, Guizhou Normal University, No. 116 North Baoshan Road, Yunyan District, Guiyang 550001, China
- State Engineering Technology Institute for Karst Desertification Control, No. 116 North Baoshan Road, Yunyan District, Guiyang 550001, China
| |
Collapse
|
8
|
Hepatic Lipid Accumulation and Dysregulation Associate with Enhanced Reactive Oxygen Species and Pro-Inflammatory Cytokine in Low-Birth-Weight Goats. Animals (Basel) 2022; 12:ani12060766. [PMID: 35327163 PMCID: PMC8944635 DOI: 10.3390/ani12060766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022] Open
Abstract
Occurrence of low birth weight (LBW) is a major concern in livestock production, resulting in poor postnatal growth, lowered efficiency of feed utilization, and impaired metabolic health in adult life. In the southwest region of China, birth weight of indigenous strains of goats varies seasonally with lower weights in summer and winter, but the metabolic regulation of the LBW offspring is still unknown. In this study, by comparing LBW goats to normal birth weight group, we examined hepatic lipid content in association with regulatory mechanisms. Histological studies showed higher microvesicular morphology in the liver of LBW goats in accompany with a significantly higher level of hepatic free fatty acids, total triglycerides, and cholesterols. Lipid metabolism impairment, increased oxidative stress, and inflammation were observed by transcriptome analysis. Meanwhile, Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation further demonstrated lipid peroxidation, antioxidant pathway, and pro-inflammatory response involved in the hepatic lipid dysregulation from LBW group. Therefore, dysregulations of hepatic lipid metabolism, including fatty acid biosynthesis and degradation, lipid transportation, and oxidative stress, played important roles to contribute the lipid accumulation in LBW goats. Moreover, due to impaired antioxidant capacity, the oxidative damage could interact with persisting pro-inflammatory responses, leading to a higher risk of liver injury and metabolic syndromes in their adult life.
Collapse
|
9
|
Xiong Y, Huang J. Anti-malarial drug: the emerging role of artemisinin and its derivatives in liver disease treatment. Chin Med 2021; 16:80. [PMID: 34407830 PMCID: PMC8371597 DOI: 10.1186/s13020-021-00489-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/04/2021] [Indexed: 12/20/2022] Open
Abstract
Artemisinin and its derivatives belong to a family of drugs approved for the treatment of malaria with known clinical safety and efficacy. In addition to its anti-malarial effect, artemisinin displays anti-viral, anti-inflammatory, and anti-cancer effects in vivo and in vitro. Recently, much attention has been paid to the therapeutic role of artemisinin in liver diseases. Several studies suggest that artemisinin and its derivatives can protect the liver through different mechanisms, such as those pertaining to inflammation, proliferation, invasion, metastasis, and induction of apoptosis and autophagy. In this review, we provide a comprehensive discussion of the underlying molecular mechanisms and signaling pathways of artemisinin and its derivatives in treating liver diseases. Further pharmacological research will aid in determining whether artemisinin and its derivatives may serve as promising medicines for the treatment of liver diseases in the future. ![]()
Collapse
Affiliation(s)
- Ye Xiong
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Jianrong Huang
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China.
| |
Collapse
|
10
|
Zi Y, Ma C, Li H, Shen S, Liu Y, Li M, Gao F. Effects of intrauterine growth restriction during late pregnancy on the ovine fetal renal function and antioxidant capacity. Anim Sci J 2021; 92:e13613. [PMID: 34374164 DOI: 10.1111/asj.13613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/15/2021] [Accepted: 06/24/2021] [Indexed: 11/26/2022]
Abstract
This study investigated the effects of intrauterine growth restriction during late pregnancy on the ovine fetal renal function and renal antioxidant capacity. Eighteen ewes pregnant were randomly divided into control group (CG, ad libitum, 0.67 MJ ME·BW-0.75 ·day-1 , n = 6), restricted group 1 (RG1, 0.18 MJ ME·BW-0.75 ·day-1 , n = 6), and restricted group 2 (RG2, 0.33 MJ ME·BW-0.75 ·day-1 , n = 6). At 140 days, the fetal blood, allantoic fluid and kidney tissue were collected to determinate fetal renal function and renal antioxidant capacity. The results showed that the fetal weight, kidney weight, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), aquaporin-2 (AQP-2) and aquaporin-3 (AQP-3), and total antioxidant capacity (T-AOC) in RG1 group were decreased compared with the CG (P < 0.05), but the contents of β2-Microglobulin (β 2-MG), cystatin C (Cys-C), filtered sodium excretion fraction (FENa), malondialdehyde (MDA), and hydroxyl radical (OH) in RG1 group were increased (P < 0.05). The impaired ovine fetal renal growth, antioxidant imbalance and dysfunction of glomerulus ultrafiltration, and the renal tubules reabsorption were induced by maternal malnutrition during late pregnancy.
Collapse
Affiliation(s)
- Yang Zi
- College of Animal Science, Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Chi Ma
- College of Animal Science, Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Huimin Li
- College of Animal Science, Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Suting Shen
- College of Animal Science, Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yingchun Liu
- College of Life Science, Inner Mongolia Key Laboratory of Biomanufacturing, Inner Mongolia Agricultural University, Hohhot, China
| | - Ming Li
- College of Animal Science, Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Feng Gao
- College of Animal Science, Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
11
|
Zeng X, Liu R, Li Y, Li J, Zhao Q, Li X, Bao J. Excessive ammonia inhalation causes liver damage and dysfunction by altering gene networks associated with oxidative stress and immune function. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 217:112203. [PMID: 33873080 DOI: 10.1016/j.ecoenv.2021.112203] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Ammonia (NH3) is a major gaseous pollutant in livestock production and has adverse effects on production, health and welfare of animals. The liver is one of the target organs of NH3, and excessive NH3 inhalation can induce liver damage. However, the toxicity assessment of NH3 on pig liver and its mechanism have not been reported yet. Recently, transcriptome analysis has become a major method to study the toxic mechanism of pollutants in environmental toxicology. Therefore, in the present study, we examined the effects of excessive NH3 inhalation on the liver of fattening pig through chemical analysis, ELISA, transcriptome analysis and real-time quantitative PCR (qRT-PCR). Our results showed that the transcriptome analysis database of fattening pig liver under excessive NH3 exposure, and 449 differentially expressed genes (DEGs) (including 181 up-regulated DEGs and 168 down-regulated DEGs) were found. Some genes associated with the 3 Gene Ontology (GO) terms (liver function, immune, antioxidant defense) were validated by quantitative real-time PCR. In addition, the activities of GPT and GOT in NH3 group were significantly increased by 63.5% and 37.4% (P < 0.05), respectively. Our results indicated that NH3 exposure could cause changes in transcriptional profiles and liver function, and induce liver damage in fattening pigs through oxidative stress and immune dysfunction. Our study results not only provide a new perspective for the toxicity assessment of NH3, but also enrich the toxicological mechanism of NH3.
Collapse
Affiliation(s)
- Xiangyin Zeng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Runze Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yutao Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Qian Zhao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, People's Republic of China
| | - Xiang Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, People's Republic of China.
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, People's Republic of China.
| |
Collapse
|
12
|
Huang C, Fan Z, Han D, Johnston LJ, Ma X, Wang F. Pyrroloquinoline quinone regulates the redox status in vitro and in vivo of weaned pigs via the Nrf2/HO-1 pathway. J Anim Sci Biotechnol 2021; 12:77. [PMID: 34140030 PMCID: PMC8212497 DOI: 10.1186/s40104-021-00595-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/11/2021] [Indexed: 12/28/2022] Open
Abstract
Background Oxidative stress is a main cause of piglet gut damage and diarrhea. Pyrroloquinoline quinone (PQQ), is a novel redox cofactor with antioxidant properties. However, the effect and mechanism that PQQ supplementation decreases oxidative injury in weaned pigs is not understood. Therefore, the aim of this study is to confirm the effect of PQQ on regulating redox status in weaned pigs and the mechanism for antioxidant function by porcine intestinal epithelial cell line (IPEC-J2) challenged with H2O2. Results Experiment 1, 144 Duroc × Landrace × Yorkshire pigs (weaned at 28 d) were allocated to four groups: received a basal diet (control) and diets supplemented with 0.15%, 0.30% and 0.45% PQQ, respectively. On d 28, growth performance, diarrhea incidence and redox factors were measured. Experiment 2, IPEC-J2 were treated with or without PQQ in the presence or absence of H2O2 for indicated time points. Experiment 3, IPEC-J2 were transfected with or without Nrf2 siRNA, then treated according to Experiment 2. The cell viability, redox factors, protein of tight junctions and Nrf2 pathway were determined. In vivo, PQQ supplementation demonstrated dose-related improvements in average daily gain, and gain to feed ratio (Linear P < 0.05). During d 0–28, compared to controls, 0.45% PQQ supplementation for pigs decreased diarrhea incidence and MDA content in liver and jejunum, and increased concentration of SOD in liver; 0.3% PQQ supplementation decreased ileal and liver MDA concentration; and 0.15% PQQ supplementation decreased ileal MDA concentration (P < 0.05). In vitro, compared to cells cultured with H2O2, pre-treatment with PQQ increased cell viability, tight junction proteins expression including ZO-1, ZO-2, Occludin and Claudin-1; and decreased ROS concentration and level of Caspase-3 (P < 0.05); as well as upregulated the ratio of Bcl-2 to Bax and protein expression of nuclear Nrf2, HO-1. Notably, Nrf2 knockdown by transfection with Nrf2 siRNA largely abrogated the positive effects of PQQ pretreatment on H2O2-induced intracellular changes. Conclusions PQQ administration attenuated oxidative stress in weaned pigs which is associated with activation of Nrf2/HO-1 pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-021-00595-x.
Collapse
Affiliation(s)
- Caiyun Huang
- State Key Lab of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing, 100193, China
| | - Zijuan Fan
- State Key Lab of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing, 100193, China
| | - Dandan Han
- State Key Lab of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing, 100193, China
| | - Lee J Johnston
- Swine Nutrition and Production, West Central Research and Outreach Center, University of Minnesota, Morris, MN, USA
| | - Xi Ma
- State Key Lab of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing, 100193, China.,Department of Internal Medicine/Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Fenglai Wang
- State Key Lab of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|