1
|
Chang WH, Chin AI, Chen CH. Protocol for a patient-derived preclinical platform to model tumor-immune interactions and evaluate therapeutic efficacy. STAR Protoc 2025; 6:103623. [PMID: 39918963 DOI: 10.1016/j.xpro.2025.103623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/16/2024] [Accepted: 01/14/2025] [Indexed: 02/09/2025] Open
Abstract
Here, we present a protocol for a preclinical ex vivo platform combining experimental flexibility with preservation of the tumor microenvironment. We outline steps for isolating human peripheral blood mononuclear cells (PBMCs), preparing patient-derived precision-cut tumor slices (PCTSs), cryopreserving the samples, and setting up the co-culture system. We provide instructions for treatment applications, interactions, and analyzing therapy responses. By preserving tumor architecture and heterogeneity, this model is applicable for evaluating tumor characteristics, immune interactions, and treatment efficacy in translational cancer research.
Collapse
Affiliation(s)
- Wen-Hsin Chang
- Division of Nephrology, Department of Internal Medicine, University of California, Davis, Davis, CA, USA; Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, USA; Comprehensive Cancer Center, University of California, Davis, Sacramento, CA, USA
| | - Andrew I Chin
- Division of Nephrology, Department of Internal Medicine, University of California, Davis, Davis, CA, USA
| | - Ching-Hsien Chen
- Division of Nephrology, Department of Internal Medicine, University of California, Davis, Davis, CA, USA; Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, USA; Comprehensive Cancer Center, University of California, Davis, Sacramento, CA, USA.
| |
Collapse
|
2
|
Hoeffner C, Worek F, Horn G, Amend N. Optimization of long-term incubation of precision-cut kidney slices. Toxicol Mech Methods 2025; 35:11-18. [PMID: 39034673 DOI: 10.1080/15376516.2024.2382797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Precision-cut kidney slices (PCKS) provide a powerful model to close the gap between in vivo and in vitro research. Publications by various authors favor different incubation conditions, media, and antibiotics, that have not yet been compared in a standardized manner. After preparation, rat-PCKS were incubated in a total of nine combinations of incubation media and antibiotics for four days. We found that a combination of DMEM/F-12 and gentamicin showed the highest levels of viability. Utilizing both qualitative and quantitative methods, we observed stable levels of cellular viability for 10 days when incubated in the most suitable medium combination of DMEM and gentamicin. Additionally, a calcein acetoxymethyl/ethidium homodimer-1 based live/dead staining, analysis of total protein content and lactate dehydrogenase (LDH) were explored to assess both short- and long-term tissue viability. PCKS showed a significant decrease in total protein content, leveling off at around 60% over the duration of 10 days. To be able to evaluate viability irrespective of decreases in total protein detected, we chose to utilize the alamarBlue Cell Viability Assay. Quantifying both intra- and extracellular activity of LDH, while using different concentrations of ethanol as a positive control, we explored enzyme content as a parameter for cell membrane damage and cytotoxicity in PCKS. Overall, we showed that PCKS are suitable for both short- and long-term observation by optimizing incubation parameters, with numerous possibilities for other assays and methods in future studies.
Collapse
Affiliation(s)
- C Hoeffner
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - F Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - G Horn
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - N Amend
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
- Faculty of Medicine, Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
3
|
Ebrahimi A, Ak G, Özel C, İzgördü H, Ghorbanpoor H, Hassan S, Avci H, Metintaş M. Clinical Perspectives and Novel Preclinical Models of Malignant Pleural Mesothelioma: A Critical Review. ACS Pharmacol Transl Sci 2024; 7:3299-3333. [PMID: 39539262 PMCID: PMC11555512 DOI: 10.1021/acsptsci.4c00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024]
Abstract
Pleural mesothelioma (PM), a rare malignant tumor explicitly associated with asbestos and erionite exposures, has become a global health problem due to limited treatment options and a poor prognosis, in which the median life expectancy varies depending on the method of treatment. However, the importance of early diagnosis is emphasized, and the practical methods have not matured yet. This study provides a critical overview of PM, addressing various aspects like epidemiology, etiology, diagnosis, treatment options, and the potential use of advanced technologies like microfluidic chip-based models for research and diagnosis. It initially begins with fundamentals of clinical aspects and then discusses the identification of disease-specific biomarkers in patients' serum or plasma samples, which could potentially be used for early diagnosis. A detailed investigation of the sophisticated preclinical models is highlighted. Recent three-dimensional (3D) model accomplishments, including microarchitecture modeling by transwell coculture, spheroids, organoids, 3D bioprinting constructs, and ex vivo tumor slices, are discussed comprehensively. On-chip models that imitate physiological processes, such as detection chips and therapeutic screening chips, are assessed as potential techniques. The review concludes with a critical and constructive discussion of the growing interest in the topic and its limitations and suggestions.
Collapse
Affiliation(s)
- Aliakbar Ebrahimi
- Cellular
Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskişehir Osmangazi University, Eskişehir 26040, Turkey
| | - Güntülü Ak
- Eskisehir
Osmangazi University, Faculty of Medicine, Department of Pulmonary
Diseases, Lung and Pleural Cancers Research
and Clinical Center, Eskisehir 26040, Turkey
| | - Ceren Özel
- Cellular
Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskişehir Osmangazi University, Eskişehir 26040, Turkey
- Department
of Stem Cell, Institute of Health Sciences, Eskişehir Osmangazi University, Eskişehir 26040, Turkey
| | - Hüseyin İzgördü
- Eskisehir
Osmangazi University, Faculty of Medicine, Department of Pulmonary
Diseases, Lung and Pleural Cancers Research
and Clinical Center, Eskisehir 26040, Turkey
| | - Hamed Ghorbanpoor
- Cellular
Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskişehir Osmangazi University, Eskişehir 26040, Turkey
- Department
of Biomedical Engineering, Eskişehir
Osmangazi University, Eskişehir 26040, Turkey
| | - Shabir Hassan
- Department
of Biological Sciences, Khalifa University
of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Huseyin Avci
- Cellular
Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskişehir Osmangazi University, Eskişehir 26040, Turkey
- Department
of Stem Cell, Institute of Health Sciences, Eskişehir Osmangazi University, Eskişehir 26040, Turkey
- Department
of Metallurgical and Materials Engineering, Eskişehir Osmangazi University, Eskişehir 26040, Turkey
- Translational
Medicine Research and Clinical Center (TATUM), Eskişehir Osmangazi University, Eskişehir 26040, Turkey
| | - Muzaffer Metintaş
- Eskisehir
Osmangazi University, Faculty of Medicine, Department of Pulmonary
Diseases, Lung and Pleural Cancers Research
and Clinical Center, Eskisehir 26040, Turkey
- Translational
Medicine Research and Clinical Center (TATUM), Eskişehir Osmangazi University, Eskişehir 26040, Turkey
| |
Collapse
|
4
|
Hoeffner C, Worek F, Amend N. Effects of organophosphates on precision-cut kidney slices. Toxicol Mech Methods 2024; 34:855-866. [PMID: 38745427 DOI: 10.1080/15376516.2024.2356184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/16/2024]
Abstract
Organophosphate (OP) poisoning, both accidental and with suicidal intent, is a global medical challenge. While the primary toxicity of these pesticides is based on the inhibition of acetylcholinesterase (AChE), case reports describe patients developing OP-mediated renal insufficiency. We set out to investigate possible pathomechanisms utilizing rat precision-cut kidney slices (PCKS). Depending on the method of investigation, PCKS were observed for a maximum of 10 days. PCKS exposed to OP compounds (malaoxon, malathion, paraoxon, parathion) showed a dose-dependent loss of viability and a reduction of total protein content over the course of 10 days. A concentration of 500 µM OP showed the most differences between OP compounds. After two days of incubation parathion showed a significantly lower level of viability than malathion. The respective effects of paraoxon and malaoxon were not significantly different from the control. However, effects of OP were only observed in concentrations exceeding those that were needed to achieve significant AChE inhibition in rat kidney tissue. In addition, we observed histological changes, without inducing LDH leakage. Overall, results suggest that OP exert effects in kidney tissue, that exceed those expected from the sole inhibition of AChE and vary between compounds. Without signs of necrosis, findings call for studies that address other possible pathomechanisms, including inflammatory response, oxidative stress or activation of apoptosis to further understand the nephrotoxicity of OP compounds. Monitoring oxon concentration over time, we demonstrated reduced enzyme-inhibiting properties in the presence of PCKS, suggesting interactions between OP compound and kidney tissue.
Collapse
Affiliation(s)
- C Hoeffner
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - F Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - N Amend
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
- Walther-Straub-Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
5
|
Trivedi S, Tilsed C, Liousia M, Brody RM, Rajasekaran K, Singhal S, Albelda SM, Klampatsa A. Transcriptomic analysis-guided assessment of precision-cut tumor slices (PCTS) as an ex-vivo tool in cancer research. Sci Rep 2024; 14:11006. [PMID: 38744944 PMCID: PMC11094020 DOI: 10.1038/s41598-024-61684-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
With cancer immunotherapy and precision medicine dynamically evolving, there is greater need for pre-clinical models that can better replicate the intact tumor and its complex tumor microenvironment (TME). Precision-cut tumor slices (PCTS) have recently emerged as an ex vivo human tumor model, offering the opportunity to study individual patient responses to targeted therapies, including immunotherapies. However, little is known about the physiologic status of PCTS and how culture conditions alter gene expression. In this study, we generated PCTS from head and neck cancers (HNC) and mesothelioma tumors (Meso) and undertook transcriptomic analyses to understand the changes that occur in the timeframe between PCTS generation and up to 72 h (hrs) in culture. Our findings showed major changes occurring during the first 24 h culture period of PCTS, involving genes related to wound healing, extracellular matrix, hypoxia, and IFNγ-dependent pathways in both tumor types, as well as tumor-specific changes. Collectively, our data provides an insight into PCTS physiology, which should be taken into consideration when designing PCTS studies, especially in the context of immunology and immunotherapy.
Collapse
Affiliation(s)
- Sumita Trivedi
- Division of Hematology and Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Charlotte, NC, USA
| | - Caitlin Tilsed
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Center for Cellular Immunology, University of Pennsylvania, Philadelphia, PA, USA
| | - Maria Liousia
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Center for Cellular Immunology, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert M Brody
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Karthik Rajasekaran
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Sunil Singhal
- Division of Thoracic Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Steven M Albelda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Center for Cellular Immunology, University of Pennsylvania, Philadelphia, PA, USA
| | - Astero Klampatsa
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK.
| |
Collapse
|
6
|
Wang L, Hu D, Xu J, Hu J, Wang Y. Complex in vitro Model: A Transformative Model in Drug Development and Precision Medicine. Clin Transl Sci 2023; 17:e13695. [PMID: 38062923 PMCID: PMC10828975 DOI: 10.1111/cts.13695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/25/2023] [Accepted: 11/18/2023] [Indexed: 02/02/2024] Open
Abstract
In vitro and in vivo models play integral roles in preclinical drug research, evaluation, and precision medicine. In vitro models primarily involve research platforms based on cultured cells, typically in the form of two-dimensional (2D) cell models. However, notable disparities exist between 2D cultured cells and in vivo cells across various aspects, rendering the former inadequate for replicating the physiologically relevant functions of human or animal organs and tissues. Consequently, these models failed to accurately reflect real-life scenarios post-drug administration. Complex in vitro models (CIVMs) refer to in vitro models that integrate a multicellular environment and a three-dimensional (3D) structure using bio-polymer or tissue-derived matrices. These models seek to reconstruct the organ- or tissue-specific characteristics of the extracellular microenvironment. The utilization of CIVMs allows for enhanced physiological correlation of cultured cells, thereby better mimicking in vivo conditions without ethical concerns associated with animal experimentation. Consequently, CIVMs have gained prominence in disease research and drug development. This review aimed to comprehensively examine and analyze the various types, manufacturing techniques, and applications of CIVM in the domains of drug discovery, drug development, and precision medicine. The objective of this study was to provide a comprehensive understanding of the progress made in CIVMs and their potential future use in these fields.
Collapse
Affiliation(s)
- Luming Wang
- Department of Thoracic SurgeryThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang ProvinceHangzhouChina
| | - Danping Hu
- Hangzhou Chexmed Technology Co., Ltd.HangzhouChina
| | - Jinming Xu
- Department of Thoracic SurgeryThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang ProvinceHangzhouChina
| | - Jian Hu
- Department of Thoracic SurgeryThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang ProvinceHangzhouChina
| | - Yifei Wang
- Hangzhou Chexmed Technology Co., Ltd.HangzhouChina
| |
Collapse
|
7
|
Jagatia R, Doornebal EJ, Rastovic U, Harris N, Feyide M, Lyons AM, Miquel R, Zen Y, Zamalloa A, Malik F, Prachalias A, Menon K, Boulter L, Eaton S, Heaton N, Phillips S, Chokshi S, Palma E. Patient-derived precision cut tissue slices from primary liver cancer as a potential platform for preclinical drug testing. EBioMedicine 2023; 97:104826. [PMID: 37806285 PMCID: PMC10667128 DOI: 10.1016/j.ebiom.2023.104826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 10/10/2023] Open
Abstract
BACKGROUND The exploitation of anti-tumour immunity, harnessed through immunomodulatory therapies, has fundamentally changed the treatment of primary liver cancer (PLC). However, this has posed significant challenges in preclinical research. Novel immunologically relevant models for PLC are urgently required to improve the translation from bench to bedside and back, explore and predict effective combinatorial therapies, aid novel drug discovery and develop personalised treatment modalities. METHODS We used human precision-cut tissue slices (PCTS) derived from resected tumours to create a patient-specific immunocompetent disease model that captures the multifaceted and intricate heterogeneity of the tumour and the tumour microenvironment. Tissue architecture, tumour viability and treatment response to single agent and combination therapies were assessed longitudinally over 8 days of ex vivo culture by histological analysis, detection of proliferation/cell death markers, ATP content via HPLC. Immune cell infiltrate was assessed using PCR and immunofluorescence. Checkpoint receptor expression was quantified via Quantigene RNA assay. FINDINGS After optimising the culture conditions, PCTS maintained the original tissue architecture, including tumour morphology, stroma and tumour-infiltrated leukocytes. Moreover, PCTS retained the tumour-specific immunophenotype over time, suggesting the utility of PCTS to investigate immunotherapeutic drug efficacy and identify non-responsiveness. INTERPRETATION Here we have characterised the PCTS model and demonstrated its effectiveness as a robust preclinical tool that will significantly support the development of successful (immuno)therapeutic strategies for PLC. FUNDING Foundation for Liver Research, London.
Collapse
Affiliation(s)
- Ravi Jagatia
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, 111, Coldharbour Lane, London SE5 9NT, United Kingdom; Faculty of Life Sciences and Medicine, King's College London, London WC2R 2LS, United Kingdom
| | - Ewald J Doornebal
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, 111, Coldharbour Lane, London SE5 9NT, United Kingdom; Faculty of Life Sciences and Medicine, King's College London, London WC2R 2LS, United Kingdom
| | - Una Rastovic
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, 111, Coldharbour Lane, London SE5 9NT, United Kingdom; Faculty of Life Sciences and Medicine, King's College London, London WC2R 2LS, United Kingdom
| | - Nicola Harris
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, 111, Coldharbour Lane, London SE5 9NT, United Kingdom; Faculty of Life Sciences and Medicine, King's College London, London WC2R 2LS, United Kingdom
| | - Moyosoreoluwa Feyide
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, 111, Coldharbour Lane, London SE5 9NT, United Kingdom; Faculty of Life Sciences and Medicine, King's College London, London WC2R 2LS, United Kingdom
| | - Anabel Martinez Lyons
- MRC Human Genetics Unit, Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, United Kingdom
| | - Rosa Miquel
- Liver Histopathology Laboratory, Institute of Liver Studies, King's College Hospital, Denmark Hill, London SE5 9RS, United Kingdom
| | - Yoh Zen
- Liver Histopathology Laboratory, Institute of Liver Studies, King's College Hospital, Denmark Hill, London SE5 9RS, United Kingdom
| | - Ane Zamalloa
- Institute of Liver Studies, King's College Hospital and King's College London, Denmark Hill, London SE5 9RS, United Kingdom
| | - Farooq Malik
- Institute of Liver Studies, King's College Hospital and King's College London, Denmark Hill, London SE5 9RS, United Kingdom
| | - Andreas Prachalias
- Institute of Liver Studies, King's College Hospital and King's College London, Denmark Hill, London SE5 9RS, United Kingdom
| | - Krishna Menon
- Institute of Liver Studies, King's College Hospital and King's College London, Denmark Hill, London SE5 9RS, United Kingdom
| | - Luke Boulter
- MRC Human Genetics Unit, Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, United Kingdom; Cancer Research UK Scottish Centre, Institute of Genetics and Cancer, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, United Kingdom
| | - Simon Eaton
- Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, United Kingdom
| | - Nigel Heaton
- Institute of Liver Studies, King's College Hospital and King's College London, Denmark Hill, London SE5 9RS, United Kingdom
| | - Sandra Phillips
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, 111, Coldharbour Lane, London SE5 9NT, United Kingdom; Faculty of Life Sciences and Medicine, King's College London, London WC2R 2LS, United Kingdom
| | - Shilpa Chokshi
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, 111, Coldharbour Lane, London SE5 9NT, United Kingdom; Faculty of Life Sciences and Medicine, King's College London, London WC2R 2LS, United Kingdom
| | - Elena Palma
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, 111, Coldharbour Lane, London SE5 9NT, United Kingdom; Faculty of Life Sciences and Medicine, King's College London, London WC2R 2LS, United Kingdom.
| |
Collapse
|
8
|
Carranza-Rosales P, Valencia-Mercado D, Esquivel-Hernández O, González-Geroniz MI, Bañuelos-García JI, Castruita-Ávila AL, Sánchez-Prieto MA, Viveros-Valdez E, Morán-Martínez J, Balderas-Rentería I, Guzmán-Delgado NE, Carranza-Torres IE. Breast Cancer Tissue Explants: An Approach to Develop Personalized Therapy in Public Health Services. J Pers Med 2023; 13:1521. [PMID: 37888132 PMCID: PMC10608341 DOI: 10.3390/jpm13101521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/18/2023] [Accepted: 10/21/2023] [Indexed: 10/28/2023] Open
Abstract
Breast cancer is one of the main causes of death worldwide. Lately, there is great interest in developing methods that assess individual sensitivity and/or resistance of tumors to antineoplastics to provide personalized therapy for patients. In this study we used organotypic culture of human breast tumor slices to predict the experimental effect of antineoplastics on the viability of tumoral tissue. Samples of breast tumor were taken from 27 patients with clinically advanced breast cancer; slices were obtained and incubated separately for 48 h with paclitaxel, docetaxel, epirubicin, 5-fluorouracil, cyclophosphamide, and cell culture media (control). We determined an experimental tumor sensitivity/resistance (S/R) profile by evaluating tissue viability using the Alamar Blue® metabolic test, and by structural viability (histopathological analyses, necrosis, and inflammation). These parameters were related to immunohistochemical expression of the estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2. The predominant histological type found was infiltrating ductal carcinoma (85.2%), followed by lobular carcinoma (7.4%) and mixed carcinoma (7.4%). Experimental drug resistance was related to positive hormone receptor status in 83% of samples treated with cyclophosphamide (p = 0.027). Results suggest that the tumor S/R profile can help to predict personalized therapy or optimize chemotherapeutic treatments in breast cancer.
Collapse
Affiliation(s)
- Pilar Carranza-Rosales
- Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Calle Jesús Dionisio González # 501, Col. Independencia, Monterrey 64720, NL, Mexico;
| | - Daniel Valencia-Mercado
- Unidad Médica de Alta Especialidad, Hospital de Ginecología y Obstetricia No. 23, Instituto Mexicano del Seguro Social, Avenida Constitución y Félix U, Gómez s/n, Colonia Centro, Monterrey 64000, NL, Mexico; (D.V.-M.); (O.E.-H.); (M.I.G.-G.); (J.I.B.-G.)
| | - Olga Esquivel-Hernández
- Unidad Médica de Alta Especialidad, Hospital de Ginecología y Obstetricia No. 23, Instituto Mexicano del Seguro Social, Avenida Constitución y Félix U, Gómez s/n, Colonia Centro, Monterrey 64000, NL, Mexico; (D.V.-M.); (O.E.-H.); (M.I.G.-G.); (J.I.B.-G.)
| | - Manuel Ismael González-Geroniz
- Unidad Médica de Alta Especialidad, Hospital de Ginecología y Obstetricia No. 23, Instituto Mexicano del Seguro Social, Avenida Constitución y Félix U, Gómez s/n, Colonia Centro, Monterrey 64000, NL, Mexico; (D.V.-M.); (O.E.-H.); (M.I.G.-G.); (J.I.B.-G.)
| | - José Inocente Bañuelos-García
- Unidad Médica de Alta Especialidad, Hospital de Ginecología y Obstetricia No. 23, Instituto Mexicano del Seguro Social, Avenida Constitución y Félix U, Gómez s/n, Colonia Centro, Monterrey 64000, NL, Mexico; (D.V.-M.); (O.E.-H.); (M.I.G.-G.); (J.I.B.-G.)
| | - Ana Lilia Castruita-Ávila
- Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 25, Instituto Mexicano del Seguro Social, Av Fidel Velázquez s/n, Mitras Nte., Monterrey 64180, NL, Mexico; (A.L.C.-Á.); (M.A.S.-P.)
| | - Mario Alberto Sánchez-Prieto
- Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 25, Instituto Mexicano del Seguro Social, Av Fidel Velázquez s/n, Mitras Nte., Monterrey 64180, NL, Mexico; (A.L.C.-Á.); (M.A.S.-P.)
| | - Ezequiel Viveros-Valdez
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Pedro de Alba s/n, San Nicolás de los Garza 66450, NL, Mexico;
| | - Javier Morán-Martínez
- Departamento de Biología Celular y Ultraestructura, Facultad de Medicina, Universidad Autónoma de Coahuila, Av. Morelos 900-Oriente, Primera de Cobián Centro, Torreón 27000, CH, Mexico;
| | - Isaías Balderas-Rentería
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Av. Pedro de Alba s/n, San Nicolás de los Garza 66450, NL, Mexico;
| | - Nancy Elena Guzmán-Delgado
- Unidad Médica de Alta Especialidad, Hospital de Cardiología No. 34, Instituto Mexicano del Seguro Social, Av. Lincoln S/N, Col. Valle Verde 2do. Sector, Monterrey 64360, NL, Mexico
| | - Irma Edith Carranza-Torres
- Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Calle Jesús Dionisio González # 501, Col. Independencia, Monterrey 64720, NL, Mexico;
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Pedro de Alba s/n, San Nicolás de los Garza 66450, NL, Mexico;
| |
Collapse
|
9
|
Huang YL, Dickerson LK, Kenerson H, Jiang X, Pillarisetty V, Tian Q, Hood L, Gujral TS, Yeung RS. Organotypic Models for Functional Drug Testing of Human Cancers. BME FRONTIERS 2023; 4:0022. [PMID: 37849667 PMCID: PMC10275620 DOI: 10.34133/bmef.0022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 05/30/2023] [Indexed: 10/19/2023] Open
Abstract
In the era of personalized oncology, there have been accelerated efforts to develop clinically relevant platforms to test drug sensitivities of individual cancers. An ideal assay will serve as a diagnostic companion to inform the oncologist of the various treatments that are sensitive and insensitive, thus improving outcome while minimizing unnecessary toxicities and costs. To date, no such platform exists for clinical use, but promising approaches are on the horizon that take advantage of improved techniques in creating human cancer models that encompass the entire tumor microenvironment, alongside technologies for assessing and analyzing tumor response. This review summarizes a number of current strategies that make use of intact human cancer tissues as organotypic cultures in drug sensitivity testing.
Collapse
Affiliation(s)
- Yu Ling Huang
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Heidi Kenerson
- Department of Surgery, University of Washington, Seattle, WA, USA
| | - Xiuyun Jiang
- Department of Surgery, University of Washington, Seattle, WA, USA
| | | | - Qiang Tian
- National Research Center for Translational Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Leroy Hood
- Institute for Systems Biology, Phenome Health Institute, Seattle, WA, USA
| | - Taranjit S. Gujral
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Raymond S. Yeung
- Department of Surgery, University of Washington, Seattle, WA, USA
| |
Collapse
|
10
|
Wu KZ, Adine C, Mitriashkin A, Aw BJJ, Iyer NG, Fong ELS. Making In Vitro Tumor Models Whole Again. Adv Healthc Mater 2023; 12:e2202279. [PMID: 36718949 PMCID: PMC11469124 DOI: 10.1002/adhm.202202279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/04/2023] [Indexed: 02/01/2023]
Abstract
As a reductionist approach, patient-derived in vitro tumor models are inherently still too simplistic for personalized drug testing as they do not capture many characteristics of the tumor microenvironment (TME), such as tumor architecture and stromal heterogeneity. This is especially problematic for assessing stromal-targeting drugs such as immunotherapies in which the density and distribution of immune and other stromal cells determine drug efficacy. On the other end, in vivo models are typically costly, low-throughput, and time-consuming to establish. Ex vivo patient-derived tumor explant (PDE) cultures involve the culture of resected tumor fragments that potentially retain the intact TME of the original tumor. Although developed decades ago, PDE cultures have not been widely adopted likely because of their low-throughput and poor long-term viability. However, with growing recognition of the importance of patient-specific TME in mediating drug response, especially in the field of immune-oncology, there is an urgent need to resurrect these holistic cultures. In this Review, the key limitations of patient-derived tumor explant cultures are outlined and technologies that have been developed or could be employed to address these limitations are discussed. Engineered holistic tumor explant cultures may truly realize the concept of personalized medicine for cancer patients.
Collapse
Affiliation(s)
- Kenny Zhuoran Wu
- Department of Biomedical EngineeringCollege of Design and EngineeringNational University of SingaporeSingapore119276Singapore
| | - Christabella Adine
- Department of Biomedical EngineeringCollege of Design and EngineeringNational University of SingaporeSingapore119276Singapore
| | - Aleksandr Mitriashkin
- Department of Biomedical EngineeringCollege of Design and EngineeringNational University of SingaporeSingapore119276Singapore
| | - Benjamin Jun Jie Aw
- Department of Biomedical EngineeringCollege of Design and EngineeringNational University of SingaporeSingapore119276Singapore
| | - N. Gopalakrishna Iyer
- Department of Head and Neck Surgery, Division of Surgery and Surgical OncologyDuke‐NUS Medical SchoolSingapore169857Singapore
- Department of Head and Neck SurgeryNational Cancer Centre SingaporeSingapore169610Singapore
| | - Eliza Li Shan Fong
- Department of Biomedical EngineeringCollege of Design and EngineeringNational University of SingaporeSingapore119276Singapore
- The N.1 Institute for HealthNational University of SingaporeSingapore117456Singapore
- Cancer Science Institute (CSI)National University of SingaporeSingapore117599Singapore
| |
Collapse
|
11
|
Jurado A, Ulldemolins A, Lluís H, Gasull X, Gavara N, Sunyer R, Otero J, Gozal D, Almendros I, Farré R. Fast cycling of intermittent hypoxia in a physiomimetic 3D environment: A novel tool for the study of the parenchymal effects of sleep apnea. Front Pharmacol 2023; 13:1081345. [PMID: 36712654 PMCID: PMC9879064 DOI: 10.3389/fphar.2022.1081345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Background: Patients with obstructive sleep apnea (OSA) experience recurrent hypoxemic events with a frequency sometimes exceeding 60 events/h. These episodic events induce downstream transient hypoxia in the parenchymal tissue of all organs, thereby eliciting the pathological consequences of OSA. Whereas experimental models currently apply intermittent hypoxia to cells conventionally cultured in 2D plates, there is no well-characterized setting that will subject cells to well-controlled intermittent hypoxia in a 3D environment and enable the study of the effects of OSA on the cells of interest while preserving the underlying tissue environment. Aim: To design and characterize an experimental approach that exposes cells to high-frequency intermittent hypoxia mimicking OSA in 3D (hydrogels or tissue slices). Methods: Hydrogels made from lung extracellular matrix (L-ECM) or brain tissue slices (300-800-μm thickness) were placed on a well whose bottom consisted of a permeable silicone membrane. The chamber beneath the membrane was subjected to a square wave of hypoxic/normoxic air. The oxygen concentration at different depths within the hydrogel/tissue slice was measured with an oxygen microsensor. Results: 3D-seeded cells could be subjected to well-controlled and realistic intermittent hypoxia patterns mimicking 60 apneas/h when cultured in L-ECM hydrogels ≈500 μm-thick or ex-vivo in brain slices 300-500 μm-thick. Conclusion: This novel approach will facilitate the investigation of the effects of intermittent hypoxia simulating OSA in 3D-residing cells within the parenchyma of different tissues/organs.
Collapse
Affiliation(s)
- Alicia Jurado
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Anna Ulldemolins
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Helena Lluís
- Neurophysiology Laboratory, Department of Biomedicine, School of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Spain,Institut Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain
| | - Xavier Gasull
- Neurophysiology Laboratory, Department of Biomedicine, School of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Spain,Institut Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain
| | - Núria Gavara
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain,The Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Raimon Sunyer
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain,The Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Jorge Otero
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain,The Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain,CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - David Gozal
- Department of Child Health, The University of Missouri School of Medicine, Columbia, KY, United States
| | - Isaac Almendros
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain,Institut Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain,CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain,Institut Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain,CIBER de Enfermedades Respiratorias, Madrid, Spain,*Correspondence: Ramon Farré,
| |
Collapse
|