1
|
Kim GJ, Elnaggar JH, Varnado M, Feehan AK, Tauzier D, Rose R, Lamers SL, Sevalia M, Nicholas N, Gravois E, Fort D, Crabtree JS, Miele L. A bioinformatic analysis of T-cell epitope diversity in SARS-CoV-2 variants: association with COVID-19 clinical severity in the United States population. Front Immunol 2024; 15:1357731. [PMID: 38784379 PMCID: PMC11112498 DOI: 10.3389/fimmu.2024.1357731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/05/2024] [Indexed: 05/25/2024] Open
Abstract
Long-term immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) requires the identification of T-cell epitopes affecting host immunogenicity. In this computational study, we explored the CD8+ epitope diversity estimated in 27 of the most common HLA-A and HLA-B alleles, representing most of the United States population. Analysis of 16 SARS-CoV-2 variants [B.1, Alpha (B.1.1.7), five Delta (AY.100, AY.25, AY.3, AY.3.1, AY.44), and nine Omicron (BA.1, BA.1.1, BA.2, BA.4, BA.5, BQ.1, BQ.1.1, XBB.1, XBB.1.5)] in analyzed MHC class I alleles revealed that SARS-CoV-2 CD8+ epitope conservation was estimated at 87.6%-96.5% in spike (S), 92.5%-99.6% in membrane (M), and 94.6%-99% in nucleocapsid (N). As the virus mutated, an increasing proportion of S epitopes experienced reduced predicted binding affinity: 70% of Omicron BQ.1-XBB.1.5 S epitopes experienced decreased predicted binding, as compared with ~3% and ~15% in the earlier strains Delta AY.100-AY.44 and Omicron BA.1-BA.5, respectively. Additionally, we identified several novel candidate HLA alleles that may be more susceptible to severe disease, notably HLA-A*32:01, HLA-A*26:01, and HLA-B*53:01, and relatively protected from disease, such as HLA-A*31:01, HLA-B*40:01, HLA-B*44:03, and HLA-B*57:01. Our findings support the hypothesis that viral genetic variation affecting CD8 T-cell epitope immunogenicity contributes to determining the clinical severity of acute COVID-19. Achieving long-term COVID-19 immunity will require an understanding of the relationship between T cells, SARS-CoV-2 variants, and host MHC class I genetics. This project is one of the first to explore the SARS-CoV-2 CD8+ epitope diversity that putatively impacts much of the United States population.
Collapse
Affiliation(s)
- Grace J. Kim
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Jacob H. Elnaggar
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Department of Microbiology, Immunology, and Parasitology, Lousiana State University Health Sciences Center (LSUHSC), New Orleans, LA, United States
| | - Mallory Varnado
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Amy K. Feehan
- Research and Development, Oschner Medical Center, New Orleans, LA, United States
| | - Darlene Tauzier
- Department of Pathology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Rebecca Rose
- Research and Development, BioInfoExperts, LLC, Thibodaux, LA, United States
| | - Susanna L. Lamers
- Research and Development, BioInfoExperts, LLC, Thibodaux, LA, United States
| | - Maya Sevalia
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Najah Nicholas
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Elizabeth Gravois
- Department of Pathology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Daniel Fort
- Research and Development, Oschner Medical Center, New Orleans, LA, United States
| | - Judy S. Crabtree
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Lucio Miele
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
2
|
Bakhshi P, Ho JQ, Zanganeh S. Sex-specific outcomes in cancer therapy: the central role of hormones. FRONTIERS IN MEDICAL TECHNOLOGY 2024; 6:1320690. [PMID: 38362126 PMCID: PMC10867131 DOI: 10.3389/fmedt.2024.1320690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024] Open
Abstract
Sex hormones play a pivotal role in modulating various physiological processes, with emerging evidence underscoring their influence on cancer progression and treatment outcomes. This review delves into the intricate relationship between sex hormones and cancer, elucidating the underlying biological mechanisms and their clinical implications. We explore the multifaceted roles of estrogen, androgens, and progesterone, highlighting their respective influence on specific cancers such as breast, ovarian, endometrial, and prostate. Special attention is given to estrogen receptor-positive (ER+) and estrogen receptor-negative (ER-) tumors, androgen receptor signaling, and the dual role of progesterone in both promoting and inhibiting cancer progression. Clinical observations reveal varied treatment responses contingent upon hormonal levels, with certain therapies like tamoxifen, aromatase inhibitors, and anti-androgens demonstrating notable success. However, disparities in treatment outcomes between males and females in hormone-sensitive cancers necessitate further exploration. Therapeutically, the utilization of hormone replacement therapy (HRT) during cancer treatments presents both potential risks and benefits. The promise of personalized therapies, tailored to an individual's hormonal profile, offers a novel approach to optimizing therapeutic outcomes. Concurrently, the burgeoning exploration of new drugs and interventions targeting hormonal pathways heralds a future of more effective and precise treatments for hormone-sensitive cancers. This review underscores the pressing need for a deeper understanding of sex hormones in cancer therapy and the ensuing implications for future therapeutic innovations.
Collapse
Affiliation(s)
- Parisa Bakhshi
- Research and Development, MetasFree Biopharmaceutical Company, Mansfield, MA, United States
| | - Jim Q. Ho
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Steven Zanganeh
- Research and Development, MetasFree Biopharmaceutical Company, Mansfield, MA, United States
| |
Collapse
|
3
|
Li D, Zhao H, Liao Y, Jiang G, Cui P, Zhang Y, Yu L, Fan S, Li H, Li Q. Long-Term Cross Immune Response in Mice following Heterologous Prime-Boost COVID-19 Vaccination with Full-Length Spike mRNA and Recombinant S1 Protein. Vaccines (Basel) 2023; 11:vaccines11050963. [PMID: 37243067 DOI: 10.3390/vaccines11050963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
(1) Background: As the COVID-19 pandemic enters its fourth year, it continues to cause significant morbidity and mortality worldwide. Although various vaccines have been approved and the use of homologous or heterologous boost doses is widely promoted, the impact of vaccine antigen basis, forms, dosages, and administration routes on the duration and spectrum of vaccine-induced immunity against variants remains incompletely understood. (2) Methods: In this study, we investigated the effects of combining a full-length spike mRNA vaccine with a recombinant S1 protein vaccine, using intradermal/intramuscular, homologous/heterologous, and high/low dosage immunization strategies. (3) Results: Over a period of seven months, vaccination with a mutant recombinant S1 protein vaccine based on the full-length spike mRNA vaccine maintained a broadly stable humoral immunity against the wild-type strain, a partially attenuated but broader-spectrum immunity against variant strains, and a comparable level of cellular immunity across all tested strains. Furthermore, intradermal vaccination enhanced the heterologous boosting of the protein vaccine based on the mRNA vaccine. (4) Conclusions: This study provides valuable insights into optimizing vaccination strategies to address the ongoing challenges posed by emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Dandan Li
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Heng Zhao
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Yun Liao
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Guorun Jiang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Pingfang Cui
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Ying Zhang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Li Yu
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Shengtao Fan
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Hangwen Li
- Stemirna Therapeutics Co., Ltd., Shanghai 201206, China
| | - Qihan Li
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| |
Collapse
|
4
|
Martinez-Sobrido L, Kobie JJ. Antibodies, B Cell Responses and Immune Responses to SARS-CoV-2 Infections. Antibodies (Basel) 2023; 12:12. [PMID: 36810517 PMCID: PMC9944790 DOI: 10.3390/antib12010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/29/2022] [Indexed: 02/04/2023] Open
Abstract
Coronaviruses (CoV) are enveloped, positive-sense, single-stranded RNA viruses responsible for causing seasonal, mild respiratory disease in humans [...].
Collapse
Affiliation(s)
| | - James J. Kobie
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|