1
|
Goldberg SD, Satomaa T, Aina O, Aitio O, Burke K, Dudkin V, Geist B, Irrechukwu O, Hänninen AL, Heiskanen A, Helin J, Hiltunen JO, Kinyamu-Akunda J, Klein DM, Kohli N, Kotiranta T, Lähteenmäki T, Niemelä R, Pitkänen V, Pynnönen H, Rittase W, Wiley K, Zhou J, Saarinen J. Trastuzumab-MMAU Antibody-Auristatin Conjugates: Valine-Glucoserine Linker with Stabilized Maleimide Conjugation Improves In Vivo Efficacy and Tolerability. Mol Cancer Ther 2024; 23:1530-1543. [PMID: 38324296 DOI: 10.1158/1535-7163.mct-23-0591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/16/2023] [Accepted: 02/01/2024] [Indexed: 02/08/2024]
Abstract
Antibody-drug conjugates (ADC) have shown impressive clinical activity with approval of many agents in hematologic and solid tumors. However, challenges remain with both efficacy and safety of ADCs. This study describes novel trastuzumab-auristatin conjugates with the hydrophilic monomethylauristatin E (MMAE) prodrug MMAU, and optimization of a glycopeptide linker leading to a wider therapeutic window. Trastuzumab was conjugated with auristatin payloads via a series of linkers using a stabilized maleimide handle. The ADCs were characterized in vitro and their relative in vivo antitumor efficacies were assessed in HER2+ xenograft models. Relative linker stabilities and the mechanism of linker cleavage were studied using in vitro assays. Toxicity and toxicokinetics of the best performing ADC were evaluated in cynomolgus monkey (cyno). The trastuzumab-MMAU ADC with stabilized glycopeptide linker showed maleimide stabilization and higher resistance to cleavage by serum and lysosomal enzymes compared with a valine-citrulline conjugated trastuzumab ADC (trastuzumab-vc-MMAE). A single dose of 1 or 2 mg/kg of trastuzumab-MMAU at drug-to-antibody ratios (DAR) of eight and four respectively resulted in xenograft tumor growth inhibition, with superior efficacy to trastuzumab-vc-MMAE. Trastuzumab-MMAUDAR4 was tolerated at doses up to 12 mg/kg in cyno, which represents 2- to 4-fold higher dose than that observed with vedotin ADCs, and had increased terminal half-life and exposure. The optimized trastuzumab-MMAU ADC showed potent antitumor activity and was well tolerated with excellent pharmacokinetics in nonhuman primates, leading to a superior preclinical therapeutic window. The data support potential utility of trastuzumab-MMAU for treatment of HER2+ tumors.
Collapse
Affiliation(s)
| | | | - Olulanu Aina
- Janssen Pharmaceuticals, Spring House, Pennsylvania
| | | | - Krista Burke
- Janssen Pharmaceuticals, Spring House, Pennsylvania
| | - Vadim Dudkin
- Janssen Pharmaceuticals, Spring House, Pennsylvania
| | - Brian Geist
- Janssen Pharmaceuticals, Spring House, Pennsylvania
| | | | | | | | | | | | | | | | - Neeraj Kohli
- Janssen Pharmaceuticals, Spring House, Pennsylvania
| | | | | | | | | | | | | | | | - Junguo Zhou
- Janssen Pharmaceuticals, Spring House, Pennsylvania
| | | |
Collapse
|
2
|
Watanabe T, Arashida N, Fujii T, Shikida N, Ito K, Shimbo K, Seki T, Iwai Y, Hirama R, Hatada N, Nakayama A, Okuzumi T, Matsuda Y. Exo-Cleavable Linkers: Enhanced Stability and Therapeutic Efficacy in Antibody-Drug Conjugates. J Med Chem 2024; 67:18124-18138. [PMID: 39410752 PMCID: PMC11513888 DOI: 10.1021/acs.jmedchem.4c01251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024]
Abstract
Antibody-drug conjugates (ADCs) combine cytotoxic payloads with monoclonal antibodies through chemical linkers. Finding linkers that both enhance circulatory stability and enable effective tumor payload release remains a challenge. The conventional valine-citrulline (Val-Cit) linker is associated with several inherent drawbacks, including hydrophobicity-induced aggregation, a limited drug-antibody ratio (DAR), and premature payload release. This study introduces an exolinker approach, repositioning the cleavable peptide linker at the exo position of the p-aminobenzylcarbamate moiety, as an advancement over conventional linear linkers. This design, which incorporates hydrophilic glutamic acid, addresses the limitations of the Val-Cit platform and improves the ADC in vivo profiles. In vitro and in vivo evaluations showed that exolinker ADCs reduced premature payload release, increased drug-to-antibody ratios, and avoided significant aggregation, even with hydrophobic payloads. Furthermore, the payload remained stably attached to the ADC even in the presence of enzymes like carboxylesterases and human neutrophil elastase, indicating the potential for a favorable safety profile.
Collapse
Affiliation(s)
- Tomohiro Watanabe
- Ajinomoto
Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Naoko Arashida
- Ajinomoto
Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
- Ajinomoto
Bio-Pharma Services, 11040 Roselle Street, San Diego, California 92121, United States
| | - Tomohiro Fujii
- Ajinomoto
Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Natsuki Shikida
- Ajinomoto
Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Kenichiro Ito
- Ajinomoto
Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Kazutaka Shimbo
- Ajinomoto
Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Takuya Seki
- Ajinomoto
Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Yusuke Iwai
- Ajinomoto
Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Ryusuke Hirama
- Ajinomoto
Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Noriko Hatada
- Ajinomoto
Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Akira Nakayama
- Ajinomoto
Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Tatsuya Okuzumi
- Ajinomoto
Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Yutaka Matsuda
- Ajinomoto
Bio-Pharma Services, 11040 Roselle Street, San Diego, California 92121, United States
| |
Collapse
|
3
|
Takakura T, Shimizu T, Yamamoto N. Antibody-drug conjugates in solid tumors; new strategy for cancer therapy. Jpn J Clin Oncol 2024; 54:837-846. [PMID: 38704241 PMCID: PMC11322887 DOI: 10.1093/jjco/hyae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/12/2024] [Indexed: 05/06/2024] Open
Abstract
Antibody-drug conjugates (ADCs) have emerged as a novel class of anticancer treatment. ADCs are composed of three parts: a monoclonal antibody, a linker and a payload. A monoclonal antibody binds to the specific antigen present at the cancer cells, allowing selective delivery of the cytotoxic agents to the tumor site. Several ADCs are approved by the US Food and Drug Administration for the treatment of hematologic cancers and solid tumors with clinically meaningful survival benefit. However, the development of ADCs faces a lot of challenges and there is a need to get better understanding of ADCs in order to improve patient outcomes. Here, we briefly discuss the structure and mechanism of ADCs, as well as the clinical data of current approved ADCs in solid tumors.
Collapse
Affiliation(s)
- Toshiaki Takakura
- Department of Pulmonary Medicine and Medical Oncology, Wakayama Medical University Faculty of Medicine, 811-1 Kimiidera, Wakayama, Wakayama 641-8510, Japan
| | - Toshio Shimizu
- Department of Pulmonary Medicine and Medical Oncology, Wakayama Medical University Faculty of Medicine, 811-1 Kimiidera, Wakayama, Wakayama 641-8510, Japan
| | - Nobuyuki Yamamoto
- Department of Pulmonary Medicine and Medical Oncology, Wakayama Medical University Faculty of Medicine, 811-1 Kimiidera, Wakayama, Wakayama 641-8510, Japan
| |
Collapse
|
4
|
Johann F, Wöll S, Gieseler H. "Negative" Impact: The Role of Payload Charge in the Physicochemical Stability of Auristatin Antibody-Drug Conjugates. J Pharm Sci 2024; 113:2433-2442. [PMID: 38679233 DOI: 10.1016/j.xphs.2024.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
Antibody-drug conjugates (ADCs) tend to be less stable than their parent antibodies, which is often attributed to the hydrophobic nature of their drug payloads. This study investigated how the payload charge affects ADC stability by comparing two interchain cysteine ADCs that had matched drug-to-antibody ratios and identical linkers but differently charged auristatin payloads, vcMMAE (neutral) and vcMMAF (negative). Both ADCs exhibited higher aggregation than their parent antibody under shaking stress and thermal stress conditions. However, conjugation with vcMMAF increased the aggregation rates to a greater extent than conjugation with uncharged but more hydrophobic vcMMAE. Consistent with the payload logD values, ADC-vcMMAE showed the greatest increase in hydrophobicity but minor changes in charge compared with the parent antibody, as indicated by hydrophobic interaction chromatography and capillary electrophoresis data. In contrast, ADC-vcMMAF showed a decrease in net charge and isoelectric point along with an increase in charge heterogeneity. This charge alteration likely contributed to a reduced electrostatic repulsion and increased surface activity in ADC-vcMMAF, thus affecting its aggregation propensity. These findings suggest that not only the hydrophobicity of the payload, but also its charge should be considered as a critical factor affecting the stability of ADCs.
Collapse
Affiliation(s)
- Florian Johann
- Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Department of Pharmaceutical Technology and Biopharmacy, Freeze Drying Focus Group (FDFG), Cauerstraße 4, 91058 Erlangen, Germany; Merck KGaA, Global CMC Development, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Steffen Wöll
- Merck KGaA, Global CMC Development, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Henning Gieseler
- Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Department of Pharmaceutical Technology and Biopharmacy, Freeze Drying Focus Group (FDFG), Cauerstraße 4, 91058 Erlangen, Germany; GILYOS GmbH, Friedrich-Bergius-Ring 15, 97076 Würzburg, Germany.
| |
Collapse
|
5
|
Satomaa T, Pynnönen H, Aitio O, Hiltunen JO, Pitkänen V, Lähteenmäki T, Kotiranta T, Heiskanen A, Hänninen AL, Niemelä R, Helin J, Kuusanmäki H, Vänttinen I, Rathod R, Nieminen AI, Yatkin E, Heckman CA, Kontro M, Saarinen J. Targeting CD33+ Acute Myeloid Leukemia with GLK-33, a Lintuzumab-Auristatin Conjugate with a Wide Therapeutic Window. Mol Cancer Ther 2024; 23:1073-1083. [PMID: 38561023 DOI: 10.1158/1535-7163.mct-23-0720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/25/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
CD33 (Siglec-3) is a cell surface receptor expressed in approximately 90% of acute myeloid leukemia (AML) blasts, making it an attractive target for therapy of AML. Although previous CD33-targeting antibody-drug conjugates (ADC) like gemtuzumab ozogamicin (GO, Mylotarg) have shown efficacy in AML treatment, they have suffered from toxicity and narrow therapeutic window. This study aimed to develop a novelADCwith improved tolerability and a wider therapeutic window. GLK-33 consists of the anti-CD33 antibody lintuzumab and eight mavg-MMAU auristatin linkerpayloads per antibody. The experimental methods included testing in cell cultures, patient-derived samples, mouse xenograft models, and rat toxicology studies. GLK-33 exhibited remarkable efficacy in reducing cell viability within CD33-positive leukemia cell lines and primary AML samples. Notably, GLK-33 demonstrated antitumor activity at single dose as low as 300 mg/kg in mice, while maintaining tolerability at single dose of 20 to 30 mg/kg in rats. In contrast with both GO and lintuzumab vedotin, GLK-33 exhibited a wide therapeutic window and activity against multidrug-resistant cells. The development of GLK-33 addresses the limitations of previous ADCs, offering a wider therapeutic window, improved tolerability, and activity against drug-resistant leukemia cells. These findings encourage further exploration of GLK-33 in AML through clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Heikki Kuusanmäki
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Finland
- Finnish Cancer Institute, Helsinki, Finland
| | - Ida Vänttinen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Finland
| | - Ramji Rathod
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Finland
| | - Anni I Nieminen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Finland
| | - Emrah Yatkin
- Central Animal Laboratory, University of Turku, Finland
| | - Caroline A Heckman
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Finland
| | - Mika Kontro
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Finland
- Finnish Cancer Institute, Helsinki, Finland
- Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | | |
Collapse
|
6
|
Li M, Zhao X, Yu C, Wang L. Antibody-Drug Conjugate Overview: a State-of-the-art Manufacturing Process and Control Strategy. Pharm Res 2024; 41:419-440. [PMID: 38366236 DOI: 10.1007/s11095-023-03649-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/16/2023] [Indexed: 02/18/2024]
Abstract
Antibody-drug conjugates (ADCs) comprise an antibody, linker, and drug, which direct their highly potent small molecule drugs to target tumor cells via specific binding between the antibody and surface antigens. The antibody, linker, and drug should be properly designed or selected to achieve the desired efficacy while minimizing off-target toxicity. With a unique and complex structure, there is inherent heterogeneity introduced by product-related variations and the manufacturing process. Here this review primarily covers recent key advances in ADC history, clinical development status, molecule design, manufacturing processes, and quality control. The manufacturing process, especially the conjugation process, should be carefully developed, characterized, validated, and controlled throughout its lifecycle. Quality control is another key element to ensure product quality and patient safety. A patient-centric strategy has been well recognized and adopted by the pharmaceutical industry for therapeutic proteins, and has been successfully implemented for ADCs as well, to ensure that ADC products maintain their quality until the end of their shelf life. Deep product understanding and process knowledge defines attribute testing strategies (ATS). Quality by design (QbD) is a powerful approach for process and product development, and for defining an overall control strategy. Finally, we summarize the current challenges on ADC development and provide some perspectives that may help to give related directions and trigger more cross-functional research to surmount those challenges.
Collapse
Affiliation(s)
- Meng Li
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Xueyu Zhao
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Chuanfei Yu
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Lan Wang
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, National Institutes for Food and Drug Control, Beijing, People's Republic of China.
| |
Collapse
|
7
|
Zhou L, Lu Y, Liu W, Wang S, Wang L, Zheng P, Zi G, Liu H, Liu W, Wei S. Drug conjugates for the treatment of lung cancer: from drug discovery to clinical practice. Exp Hematol Oncol 2024; 13:26. [PMID: 38429828 PMCID: PMC10908151 DOI: 10.1186/s40164-024-00493-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024] Open
Abstract
A drug conjugate consists of a cytotoxic drug bound via a linker to a targeted ligand, allowing the targeted delivery of the drug to one or more tumor sites. This approach simultaneously reduces drug toxicity and increases efficacy, with a powerful combination of efficient killing and precise targeting. Antibody‒drug conjugates (ADCs) are the best-known type of drug conjugate, combining the specificity of antibodies with the cytotoxicity of chemotherapeutic drugs to reduce adverse reactions by preferentially targeting the payload to the tumor. The structure of ADCs has also provided inspiration for the development of additional drug conjugates. In recent years, drug conjugates such as ADCs, peptide‒drug conjugates (PDCs) and radionuclide drug conjugates (RDCs) have been approved by the Food and Drug Administration (FDA). The scope and application of drug conjugates have been expanding, including combination therapy and precise drug delivery, and a variety of new conjugation technology concepts have emerged. Additionally, new conjugation technology-based drugs have been developed in industry. In addition to chemotherapy, targeted therapy and immunotherapy, drug conjugate therapy has undergone continuous development and made significant progress in treating lung cancer in recent years, offering a promising strategy for the treatment of this disease. In this review, we discuss recent advances in the use of drug conjugates for lung cancer treatment, including structure-based drug design, mechanisms of action, clinical trials, and side effects. Furthermore, challenges, potential approaches and future prospects are presented.
Collapse
Affiliation(s)
- Ling Zhou
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunlong Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wei Liu
- Department of Geriatrics, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shanglong Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lingling Wang
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengdou Zheng
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guisha Zi
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030000, China.
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030000, China.
| |
Collapse
|
8
|
Wang L, Hobson AD, Fitzgibbons J, Hernandez A, Jia Y, Xu Z, Wang Z, Yu Y, Li X. Impact of dipeptide on ADC physicochemical properties and efficacy identifies Ala-Ala as the optimal dipeptide. RSC Med Chem 2024; 15:355-365. [PMID: 38283215 PMCID: PMC10809321 DOI: 10.1039/d3md00473b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/17/2023] [Indexed: 01/30/2024] Open
Abstract
Side chains of natural occurring amino acids vary greatly in terms of charge state, polarity, size and hydrophobicity. Using a linear synthetic route, two amino acids were sequentially coupled to a potent glucocorticoid receptor modulator (GRM) to afford a library of dipeptide-GRM linker payloads with a range of in silico properties. The linker payloads were conjugated to a mouse anti-TNF antibody through interchain disulfide Cys. Impact of various dipeptide linkers on ADC physical properties, including solubility, hydrophobicity, and aggregation were evaluated and the in silico properties pI, Log P and tPSA of the linker drugs used to correlate with these properties. ADCs were screened in a GRE luciferase reporter assay to compare their in vitro efficacy. Data identified Ala-Ala as a superior dipeptide linker that allowed a maximum drug load of 10 while affording ADCs with low aggregation.
Collapse
Affiliation(s)
- Lu Wang
- AbbVie Bioresearch Center 381 Plantation Street Worcester Massachusetts 01605 USA
| | - Adrian D Hobson
- AbbVie Bioresearch Center 381 Plantation Street Worcester Massachusetts 01605 USA
| | - Julia Fitzgibbons
- AbbVie Bioresearch Center 381 Plantation Street Worcester Massachusetts 01605 USA
| | - Axel Hernandez
- AbbVie Bioresearch Center 381 Plantation Street Worcester Massachusetts 01605 USA
| | - Ying Jia
- AbbVie Bioresearch Center 381 Plantation Street Worcester Massachusetts 01605 USA
| | - Zhou Xu
- WuXi AppTec 168 Nanhai Road, Tianjin Economic-Technological Development Area TEDA TJS 300457 China
| | - Zhongyuan Wang
- WuXi AppTec 168 Nanhai Road, Tianjin Economic-Technological Development Area TEDA TJS 300457 China
| | - Yajie Yu
- WuXi AppTec 168 Nanhai Road, Tianjin Economic-Technological Development Area TEDA TJS 300457 China
| | - Xiang Li
- WuXi AppTec 168 Nanhai Road, Tianjin Economic-Technological Development Area TEDA TJS 300457 China
| |
Collapse
|
9
|
Feng Y, Lee J, Yang L, Hilton MB, Morris K, Seaman S, Edupuganti VVSR, Hsu KS, Dower C, Yu G, So D, Bajgain P, Zhu Z, Dimitrov DS, Patel NL, Robinson CM, Difilippantonio S, Dyba M, Corbel A, Basuli F, Swenson RE, Kalen JD, Suthe SR, Hussain M, Italia JS, Souders CA, Gao L, Schnermann MJ, St Croix B. Engineering CD276/B7-H3-targeted antibody-drug conjugates with enhanced cancer-eradicating capability. Cell Rep 2023; 42:113503. [PMID: 38019654 PMCID: PMC10872261 DOI: 10.1016/j.celrep.2023.113503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/18/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023] Open
Abstract
CD276/B7-H3 represents a promising target for cancer therapy based on widespread overexpression in both cancer cells and tumor-associated stroma. In previous preclinical studies, CD276 antibody-drug conjugates (ADCs) exploiting a talirine-type pyrrolobenzodiazepine (PBD) payload showed potent activity against various solid tumors but with a narrow therapeutic index and dosing regimen higher than that tolerated in clinical trials using other antibody-talirine conjugates. Here, we describe the development of a modified talirine PBD-based fully human CD276 ADC, called m276-SL-PBD, that is cross-species (human/mouse) reactive and can eradicate large 500-1,000-mm3 triple-negative breast cancer xenografts at doses 10- to 40-fold lower than the maximum tolerated dose. By combining CD276 targeting with judicious genetic and chemical ADC engineering, improved ADC purification, and payload sensitivity screening, these studies demonstrate that the therapeutic index of ADCs can be substantially increased, providing an advanced ADC development platform for potent and selective targeting of multiple solid tumor types.
Collapse
Affiliation(s)
- Yang Feng
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA
| | - Jaewon Lee
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA
| | - Liping Yang
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA
| | - Mary Beth Hilton
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA; Basic Research Program, Frederick National Laboratory for Cancer Research (FNLCR), Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Karen Morris
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA; Basic Research Program, Frederick National Laboratory for Cancer Research (FNLCR), Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Steven Seaman
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA
| | | | - Kuo-Sheng Hsu
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA
| | - Christopher Dower
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA
| | - Guojun Yu
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA
| | - Daeho So
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA
| | - Pradip Bajgain
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA
| | - Zhongyu Zhu
- Protein Interactions Section, Cancer and Inflammation Program, NCI, NIH, Frederick, MD 21702, USA
| | - Dimiter S Dimitrov
- Protein Interactions Section, Cancer and Inflammation Program, NCI, NIH, Frederick, MD 21702, USA
| | - Nimit L Patel
- Small Animal Imaging Program, FNLCR, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Christina M Robinson
- Animal Research Technical Support, FNLCR, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Simone Difilippantonio
- Animal Research Technical Support, FNLCR, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Marzena Dyba
- Biophysics Resource in the Center for Structural Biology, NCI, NIH, Frederick, MD, USA
| | - Amanda Corbel
- Invention Development Program, Technology Transfer Center, NCI, Frederick, MD 21701, USA
| | - Falguni Basuli
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, NIH, Rockville, MD 20850, USA
| | - Rolf E Swenson
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, NIH, Rockville, MD 20850, USA
| | - Joseph D Kalen
- Small Animal Imaging Program, FNLCR, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | | | | | | | | | - Ling Gao
- Veterans Affairs Long Beach Healthcare System, Long Beach, CA 90822, USA
| | - Martin J Schnermann
- Organic Synthesis Section, Chemical Biology Laboratory, CCR, NCI, Frederick, MD 21702, USA
| | - Brad St Croix
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA.
| |
Collapse
|
10
|
Kondrashov A, Sapkota S, Sharma A, Riano I, Kurzrock R, Adashek JJ. Antibody-Drug Conjugates in Solid Tumor Oncology: An Effectiveness Payday with a Targeted Payload. Pharmaceutics 2023; 15:2160. [PMID: 37631374 PMCID: PMC10459723 DOI: 10.3390/pharmaceutics15082160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are at the forefront of the drug development revolution occurring in oncology. Formed from three main components-an antibody, a linker molecule, and a cytotoxic agent ("payload"), ADCs have the unique ability to deliver cytotoxic agents to cells expressing a specific antigen, a great leap forward from traditional chemotherapeutic approaches that cause widespread effects without specificity. A variety of payloads can be used, including most frequently microtubular inhibitors (auristatins and maytansinoids), as well as topoisomerase inhibitors and alkylating agents. Finally, linkers play a critical role in the ADCs' effect, as cleavable moieties that serve as linkers impact site-specific activation as well as bystander killing effects, an upshot that is especially important in solid tumors that often express a variety of antigens. While ADCs were initially used in hematologic malignancies, their utility has been demonstrated in multiple solid tumor malignancies, including breast, gastrointestinal, lung, cervical, ovarian, and urothelial cancers. Currently, six ADCs are FDA-approved for the treatment of solid tumors: ado-trastuzumab emtansine and trastuzumab deruxtecan, both anti-HER2; enfortumab-vedotin, targeting nectin-4; sacituzuzmab govitecan, targeting Trop2; tisotumab vedotin, targeting tissue factor; and mirvetuximab soravtansine, targeting folate receptor-alpha. Although they demonstrate utility and tolerable safety profiles, ADCs may become ineffective as tumor cells undergo evolution to avoid expressing the specific antigen being targeted. Furthermore, the current cost of ADCs can be limiting their reach. Here, we review the structure and functions of ADCs, as well as ongoing clinical investigations into novel ADCs and their potential as treatments of solid malignancies.
Collapse
Affiliation(s)
- Aleksei Kondrashov
- Department of Internal Medicine, Saint Agnes Hospital, Baltimore, MD 21229, USA; (A.K.); (S.S.)
| | - Surendra Sapkota
- Department of Internal Medicine, Saint Agnes Hospital, Baltimore, MD 21229, USA; (A.K.); (S.S.)
| | - Aditya Sharma
- Department of Internal Medicine, Dartmouth Health, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; (A.S.); (I.R.)
| | - Ivy Riano
- Department of Internal Medicine, Dartmouth Health, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; (A.S.); (I.R.)
- Division of Hematology and Oncology, Dartmouth Cancer Center, Lebanon, NH 03755, USA
| | - Razelle Kurzrock
- WIN Consortium, 94550 Paris, France;
- MCW Cancer Center, Milwaukee, WI 53226, USA
- Division of Oncology and Hematology, University of Nebraska, Omaha, NE 68198, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | - Jacob J. Adashek
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Hospital, Baltimore, MD 21287, USA
| |
Collapse
|
11
|
Fujii T, Matsuda Y, Seki T, Shikida N, Iwai Y, Ooba Y, Takahashi K, Isokawa M, Kawaguchi S, Hatada N, Watanabe T, Takasugi R, Nakayama A, Shimbo K, Mendelsohn BA, Okuzumi T, Yamada K. AJICAP Second Generation: Improved Chemical Site-Specific Conjugation Technology for Antibody-Drug Conjugate Production. Bioconjug Chem 2023. [PMID: 36894324 PMCID: PMC10119932 DOI: 10.1021/acs.bioconjchem.3c00040] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
The site-directed chemical conjugation of antibodies remains an area of great interest and active efforts within the antibody-drug conjugate (ADC) community. We previously reported a unique site modification using a class of immunoglobulin-G (IgG) Fc-affinity reagents to establish a versatile, streamlined, and site-selective conjugation of native antibodies to enhance the therapeutic index of the resultant ADCs. This methodology, termed "AJICAP", successfully modified Lys248 of native antibodies to produce site-specific ADC with a wider therapeutic index than the Food and Drug Administration-approved ADC, Kadcyla. However, the long reaction sequences, including the reduction-oxidation (redox) treatment, increased the aggregation level. In this manuscript, we aimed to present an updated Fc-affinity-mediated site-specific conjugation technology named "AJICAP second generation" without redox treatment utilizing a "one-pot" antibody modification reaction. The stability of Fc affinity reagents was improved owing to structural optimization, enabling the production of various ADCs without aggregation. In addition to Lys248 conjugation, Lys288 conjugated ADCs with homogeneous drug-to-antibody ratio of 2 were produced using different Fc affinity peptide reagent possessing a proper spacer linkage. These two conjugation technologies were used to produce over 20 ADCs from several combinations of antibodies and drug linkers. The in vivo profile of Lys248 and Lys288 conjugated ADCs was also compared. Furthermore, nontraditional ADC production, such as antibody-protein conjugates and antibody-oligonucleotide conjugates, were achieved. These results strongly indicate that this Fc affinity conjugation approach is a promising strategy for manufacturing site-specific antibody conjugates without antibody engineering.
Collapse
Affiliation(s)
- Tomohiro Fujii
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Yutaka Matsuda
- Ajinomoto Bio-Pharma Services, 11040 Roselle Street, San Diego, California 92121, United States
| | - Takuya Seki
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Natsuki Shikida
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Yusuke Iwai
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Yuri Ooba
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Kazutoshi Takahashi
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Muneki Isokawa
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Sayaka Kawaguchi
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Noriko Hatada
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Tomohiro Watanabe
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Rika Takasugi
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Akira Nakayama
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Kazutaka Shimbo
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Brian A Mendelsohn
- Ajinomoto Bio-Pharma Services, 11040 Roselle Street, San Diego, California 92121, United States
| | - Tatsuya Okuzumi
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Kei Yamada
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| |
Collapse
|
12
|
Maecker H, Jonnalagadda V, Bhakta S, Jammalamadaka V, Junutula JR. Exploration of the antibody-drug conjugate clinical landscape. MAbs 2023; 15:2229101. [PMID: 37639687 PMCID: PMC10464553 DOI: 10.1080/19420862.2023.2229101] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 08/31/2023] Open
Abstract
The antibody-drug conjugate (ADC) field has undergone a renaissance, with substantial recent developmental investment and subsequent drug approvals over the past 6 y. In November 2022, ElahereTM became the latest ADC to be approved by the US Food and Drug Administration (FDA). To date, over 260 ADCs have been tested in the clinic against various oncology indications. Here, we review the clinical landscape of ADCs that are currently FDA approved (11), agents currently in clinical trials but not yet approved (164), and candidates discontinued following clinical testing (92). These clinically tested ADCs are further analyzed by their targeting tumor antigen(s), linker, payload choices, and highest clinical stage achieved, highlighting limitations associated with the discontinued drug candidates. Lastly, we discuss biologic engineering modifications preclinically demonstrated to improve the therapeutic index that if incorporated may increase the proportion of molecules that successfully transition to regulatory approval.
Collapse
|
13
|
Matikonda SS, McLaughlin R, Shrestha P, Lipshultz C, Schnermann MJ. Structure-Activity Relationships of Antibody-Drug Conjugates: A Systematic Review of Chemistry on the Trastuzumab Scaffold. Bioconjug Chem 2022; 33:1241-1253. [PMID: 35801843 DOI: 10.1021/acs.bioconjchem.2c00177] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Antibody-drug conjugates (ADCs) are a rapidly growing class of cancer therapeutics that seek to overcome the low therapeutic index of conventional cytotoxic agents. However, realizing this goal has been a significant challenge. ADCs comprise several independently modifiable components, including the antibody, payload, linker, and bioconjugation method. Many approaches have been developed to improve the physical properties, potency, and selectivity of ADCs. The anti-HER-2 antibody trastuzumab, first approved in 1998, has emerged as an exceptional targeting agent for ADCs, as well as a broadly used platform for testing new technologies. The extensive work in this area enables the comparison of various linker strategies, payloads, drug-to-antibody ratios (DAR), and mode of attachment. In this review, these conjugates, ranging from the first clinically approved trastuzumab ADC, ado-trastuzumab emtansine (Kadcyla), to the latest variants are described with the goal of providing a broad overview, as well as enabling the comparison of existing and emerging conjugate technologies.
Collapse
Affiliation(s)
- Siddharth S Matikonda
- Chemical Biology Laboratory, NIH/NCI/CCR, 376 Boyles Street, Frederick, Maryland 21702, United States
| | - Ryan McLaughlin
- Chemical Biology Laboratory, NIH/NCI/CCR, 376 Boyles Street, Frederick, Maryland 21702, United States
| | - Pradeep Shrestha
- Chemical Biology Laboratory, NIH/NCI/CCR, 376 Boyles Street, Frederick, Maryland 21702, United States
| | - Carol Lipshultz
- Chemical Biology Laboratory, NIH/NCI/CCR, 376 Boyles Street, Frederick, Maryland 21702, United States
| | - Martin J Schnermann
- Chemical Biology Laboratory, NIH/NCI/CCR, 376 Boyles Street, Frederick, Maryland 21702, United States
| |
Collapse
|
14
|
Matsuda Y, Seki T, Yamada K, Ooba Y, Takahashi K, Fujii T, Kawaguchi S, Narita T, Nakayama A, Kitahara Y, Mendelsohn BA, Okuzumi T. Chemical Site-Specific Conjugation Platform to Improve the Pharmacokinetics and Therapeutic Index of Antibody-Drug Conjugates. Mol Pharm 2021; 18:4058-4066. [PMID: 34579528 DOI: 10.1021/acs.molpharmaceut.1c00473] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To overcome a lack of selectivity during the chemical modification of native non-engineered antibodies, we have developed a technology platform termed "AJICAP" for the site-specific chemical conjugation of antibodies through the use of a class of IgG Fc-affinity reagents. To date, a limited number of antibody-drug conjugates (ADCs) have been synthesized via this approach, and no toxicological study was reported. Herein, we describe the compatibility and robustness of AJICAP technology, which enabled the synthesis of a wide variety of ADCs. A stability assessment of a thiol-modified antibody synthesized by AJICAP technology indicated no appreciable increase in aggregation or decomposition upon prolonged storage, indicating that the unexpectedly stable thiol intermediate has a great potential intermediate for payload or linker screening or large-scale manufacturing. Payload conjugation with this stable thiol intermediate generated several AJICAP-ADCs. In vivo xenograft studies indicated that the AJICAP-ADCs displayed significant tumor inhibition comparable to benchmark ADC Kadcyla. Furthermore, a rat pharmacokinetic analysis and toxicology study indicated an increase in the maximum tolerated dose, demonstrating an expansion of the AJICAP-ADC therapeutic index, compared with stochastic conjugation technology. This is the first report of the therapeutic index estimation of site-specific ADCs produced by utilizing Fc affinity reagent conjugation. The described site-specific conjugation technology is a powerful platform to enable next-generation ADCs through reduced heterogeneity and enhanced therapeutic index.
Collapse
Affiliation(s)
- Yutaka Matsuda
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan.,Ajinomoto Bio-Pharma Services, 11040 Roselle Street, San Diego, California 92121, United States
| | - Takuya Seki
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Kei Yamada
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Yuri Ooba
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Kazutoshi Takahashi
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Tomohiro Fujii
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Sayaka Kawaguchi
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Takahiro Narita
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Akira Nakayama
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Yoshiro Kitahara
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Brian A Mendelsohn
- Ajinomoto Bio-Pharma Services, 11040 Roselle Street, San Diego, California 92121, United States
| | - Tatsuya Okuzumi
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| |
Collapse
|
15
|
Mckertish CM, Kayser V. Advances and Limitations of Antibody Drug Conjugates for Cancer. Biomedicines 2021; 9:872. [PMID: 34440076 PMCID: PMC8389690 DOI: 10.3390/biomedicines9080872] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 12/27/2022] Open
Abstract
The popularity of antibody drug conjugates (ADCs) has increased in recent years, mainly due to their unrivalled efficacy and specificity over chemotherapy agents. The success of the ADC is partly based on the stability and successful cleavage of selective linkers for the delivery of the payload. The current research focuses on overcoming intrinsic shortcomings that impact the successful development of ADCs. This review summarizes marketed and recently approved ADCs, compares the features of various linker designs and payloads commonly used for ADC conjugation, and outlines cancer specific ADCs that are currently in late-stage clinical trials for the treatment of cancer. In addition, it addresses the issues surrounding drug resistance and strategies to overcome resistance, the impact of a narrow therapeutic index on treatment outcomes, the impact of drug-antibody ratio (DAR) and hydrophobicity on ADC clearance and protein aggregation.
Collapse
Affiliation(s)
| | - Veysel Kayser
- Sydney School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia;
| |
Collapse
|
16
|
Jabbour E, Paul S, Kantarjian H. The clinical development of antibody-drug conjugates - lessons from leukaemia. Nat Rev Clin Oncol 2021; 18:418-433. [PMID: 33758376 DOI: 10.1038/s41571-021-00484-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2021] [Indexed: 02/06/2023]
Abstract
Advances in our understanding of cancer biology have enabled drug development to progress towards better targeted therapies that are both more effective and safer owing to their lack of off-target toxicities. In this regard, antibody-drug conjugates (ADCs), which have the potential to combine the selectivity of therapeutic antibodies with the cytotoxicity of highly toxic small molecules, are a rapidly developing drug class. The complex and unique structure of an ADC, composed of a monoclonal antibody conjugated to a potent cytotoxic payload via a chemical linker, is designed to selectively target a specific tumour antigen. The success of an ADC is highly dependent on the specific properties of its components, all of which have implications for the stability, cytotoxicity, pharmacokinetics and antitumour activity of the ADC. The development of therapeutic ADCs, including gemtuzumab ozogamicin and inotuzumab ozogamicin, provided great knowledge of the refinements needed for the optimization of such agents. In this Review, we describe the key components of ADC structure and function and focus on the clinical development and subsequent utilization of two leukaemia-directed ADCs - gemtuzumab ozogamicin and inotuzumab ozogamicin - as well as on the mechanisms of resistance and predictors of response to these two agents.
Collapse
Affiliation(s)
- Elias Jabbour
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Shilpa Paul
- Department of Clinical Pharmacy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hagop Kantarjian
- Department of Clinical Pharmacy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
17
|
Walsh SJ, Bargh JD, Dannheim FM, Hanby AR, Seki H, Counsell AJ, Ou X, Fowler E, Ashman N, Takada Y, Isidro-Llobet A, Parker JS, Carroll JS, Spring DR. Site-selective modification strategies in antibody-drug conjugates. Chem Soc Rev 2021; 50:1305-1353. [PMID: 33290462 DOI: 10.1039/d0cs00310g] [Citation(s) in RCA: 220] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Antibody-drug conjugates (ADCs) harness the highly specific targeting capabilities of an antibody to deliver a cytotoxic payload to specific cell types. They have garnered widespread interest in drug discovery, particularly in oncology, as discrimination between healthy and malignant tissues or cells can be achieved. Nine ADCs have received approval from the US Food and Drug Administration and more than 80 others are currently undergoing clinical investigations for a range of solid tumours and haematological malignancies. Extensive research over the past decade has highlighted the critical nature of the linkage strategy adopted to attach the payload to the antibody. Whilst early generation ADCs were primarily synthesised as heterogeneous mixtures, these were found to have sub-optimal pharmacokinetics, stability, tolerability and/or efficacy. Efforts have now shifted towards generating homogeneous constructs with precise drug loading and predetermined, controlled sites of attachment. Homogeneous ADCs have repeatedly demonstrated superior overall pharmacological profiles compared to their heterogeneous counterparts. A wide range of methods have been developed in the pursuit of homogeneity, comprising chemical or enzymatic methods or a combination thereof to afford precise modification of specific amino acid or sugar residues. In this review, we discuss advances in chemical and enzymatic methods for site-specific antibody modification that result in the generation of homogeneous ADCs.
Collapse
Affiliation(s)
- Stephen J Walsh
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Dean AQ, Luo S, Twomey JD, Zhang B. Targeting cancer with antibody-drug conjugates: Promises and challenges. MAbs 2021; 13:1951427. [PMID: 34291723 PMCID: PMC8300931 DOI: 10.1080/19420862.2021.1951427] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 01/03/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are a rapidly expanding class of biotherapeutics that utilize antibodies to selectively deliver cytotoxic drugs to the tumor site. As of May 2021, the U.S. Food and Drug Administration (FDA) has approved ten ADCs, namely Adcetris®, Kadcyla®, Besponsa®, Mylotarg®, Polivy®, Padcev®, Enhertu®, Trodelvy®, Blenrep®, and Zynlonta™ as monotherapy or combinational therapy for breast cancer, urothelial cancer, myeloma, acute leukemia, and lymphoma. In addition, over 80 investigational ADCs are currently being evaluated in approximately 150 active clinical trials. Despite the growing interest in ADCs, challenges remain to expand their therapeutic index (with greater efficacy and less toxicity). Recent advances in the manufacturing technology for the antibody, payload, and linker combined with new bioconjugation platforms and state-of-the-art analytical techniques are helping to shape the future development of ADCs. This review highlights the current status of marketed ADCs and those under clinical investigation with a focus on translational strategies to improve product quality, safety, and efficacy.
Collapse
Affiliation(s)
- Alexis Q. Dean
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Shen Luo
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Julianne D. Twomey
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Baolin Zhang
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
19
|
Khera E, Cilliers C, Smith MD, Ganno ML, Lai KC, Keating TA, Kopp A, Nessler I, Abu-Yousif AO, Thurber GM. Quantifying ADC bystander payload penetration with cellular resolution using pharmacodynamic mapping. Neoplasia 2020; 23:210-221. [PMID: 33385970 PMCID: PMC7779838 DOI: 10.1016/j.neo.2020.12.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
With the recent approval of 3 new antibody drug conjugates (ADCs) for solid tumors, this class of drugs is gaining momentum for the targeted treatment of cancer. Despite significant investment, there are still fundamental issues that are incompletely understood. Three of the recently approved ADCs contain payloads exhibiting bystander effects, where the payload can diffuse out of a targeted cell into adjacent cells. These effects are often studied using a mosaic of antigen positive and negative cells. However, the distance these payloads can diffuse in tumor tissue while maintaining a lethal concentration is unclear. Computational studies suggest bystander effects partially compensate for ADC heterogeneity in tumors in addition to targeting antigen negative cells. However, this type of study is challenging to conduct experimentally due to the low concentrations of extremely potent payloads. In this work, we use a series of 3-dimensional cell culture and primary human tumor xenograft studies to directly track fluorescently labeled ADCs and indirectly follow the payload via an established pharmacodynamic marker (γH2A. X). Using TAK-164, an anti-GCC ADC undergoing clinical evaluation, we show that the lipophilic DNA-alkylating payload, DGN549, penetrates beyond the cell targeted layer in GCC-positive tumor spheroids and primary human tumor xenograft models. The penetration distance is similar to model predictions, where the lipophilicity results in moderate tissue penetration, thereby balancing improved tissue penetration with sufficient cellular uptake to avoid significant washout. These results aid in mechanistic understanding of the interplay between antigen heterogeneity, bystander effects, and heterogeneous delivery of ADCs in the tumor microenvironment to design clinically effective therapeutics.
Collapse
Affiliation(s)
- Eshita Khera
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Cornelius Cilliers
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | - Anna Kopp
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Ian Nessler
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | - Greg M Thurber
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
20
|
Jammal N, Chew S, Jabbour E, Kantarjian H. Antibody based therapy in relapsed acute lymphoblastic leukemia. Best Pract Res Clin Haematol 2020; 33:101225. [PMID: 33279181 DOI: 10.1016/j.beha.2020.101225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 10/22/2022]
Abstract
Outcomes for relapsed and refractory acute lymphoblastic leukemia (ALL) remain poor. With the advent of targeted monoclonal antibodies and antibody constructs, these outcomes have been significantly improved both in the frontline and salvage setting. These targets include a bispecific antibody that targets both CD3 and CD19, known as blinatumomab, as well as a conjugated antibody that targets CD22, known as inotuzumab ozogamicin. These agents have been thoroughly studied and successively approved for use as monotherapy, however, more recently they have been incorporated in combination or sequentially with cytotoxic chemotherapy. In this chapter, we will discuss the role that these monoclonal antibodies play as monotherapy and in combination in the treatment of ALL in the salvage setting, and how they continue to transform the treatment management of relapsed and refractory ALL.
Collapse
Affiliation(s)
- Nadya Jammal
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Serena Chew
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elias Jabbour
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Hagop Kantarjian
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
21
|
Krzyscik MA, Zakrzewska M, Otlewski J. Site-Specific, Stoichiometric-Controlled, PEGylated Conjugates of Fibroblast Growth Factor 2 (FGF2) with Hydrophilic Auristatin Y for Highly Selective Killing of Cancer Cells Overproducing Fibroblast Growth Factor Receptor 1 (FGFR1). Mol Pharm 2020; 17:2734-2748. [PMID: 32501706 PMCID: PMC7588128 DOI: 10.1021/acs.molpharmaceut.0c00419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
In
spite of significant progress in the field of targeted anticancer
therapy, the FDA has approved only five ADC-based drugs. Hence the
search for new targeted anticancer agents is an unfulfilled necessity.
Here, we present novel types of protein–drug conjugates (PDCs)
that exhibit superior anticancer activities. Instead of a monoclonal
antibody, we used fibroblast growth factor 2 (FGF2) as a targeting
molecule. FGF2 is a natural ligand of fibroblast growth factor receptor
1 (FGFR1), a transmembrane receptor overproduced in various types
of cancers. We synthesized site-specific and stoichiometric-controlled
conjugates of FGF2 with a highly potent, hydrophilic derivative of
auristatin called auristatin Y. To increase the hydrophilicity and
hydrodynamic radius of conjugates, we employed PEG4 and PEG27 molecules
as a spacer between the targeting molecule and the cytotoxic payload.
All conjugates were selective to FGFR1-positive cell lines, effectively
internalized via the FGFR1-dependent pathway, and exhibited a highly
cytotoxic effect only on FGFR1-positive cancer cell lines.
Collapse
|
22
|
A Purification Strategy Utilizing Hydrophobic Interaction Chromatography to Obtain Homogeneous Species from a Site-Specific Antibody Drug Conjugate Produced by AJICAP™ First Generation. Antibodies (Basel) 2020; 9:antib9020016. [PMID: 32443479 PMCID: PMC7344391 DOI: 10.3390/antib9020016] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/14/2022] Open
Abstract
In recent years, site-specific antibody drug conjugates (ADC)s have been in great demand because they have an expanded therapeutic index compared with conventional ADCs. AJICAP™ technology is a chemical conjugation platform to obtain site-specific ADCs through the use of a class of Fc-affinity compounds. Promising results from early technology development studies led to further investigation of AJICAP™ ADC materials to obtain site-specific and homogeneous drug antibody ratio (DAR) ADCs. Here we report site-specific conjugation followed by a preparative hydrophobic interaction chromatography (HIC) purification strategy to obtain purified “DAR = 1.0” and “DAR = 2.0” AJICAP™ ADC materials. Optimization of the mobile phase conditions and resin achieved a high recovery rate. In vitro biological assay demonstrated the target selective activity for purified homogeneous DAR ADCs. These results indicate the ability of a HIC purification strategy to provide “DAR = 1.0” and “DAR = 2.0” AJICAP™ ADCs with considerable potency and target selectivity.
Collapse
|
23
|
Yang K, Chen B, Gianolio DA, Stefano JE, Busch M, Manning C, Alving K, Gregory RC, Brondyk WH, Miller RJ, Dhal PK. Convergent synthesis of hydrophilic monomethyl dolastatin 10 based drug linkers for antibody-drug conjugation. Org Biomol Chem 2019; 17:8115-8124. [PMID: 31460552 DOI: 10.1039/c9ob01639b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We report a modular approach to synthesize maleimido group containing hydrophilic dolastatin 10 (Dol10) derivatives as drug-linkers for the syntheses of antibody-drug conjugates (ADCs). Discrete polyethylene glycol (PEG) moieties of different chain lengths were introduced as part of the linker to impart hydrophilicity to these drug linkers. The synthesis process involved construction of PEG maleimido derivatives of the tetrapeptide intermediate (N-methylvaline-valine-dolaisoleucine-dolaproine), which were subsequently coupled with dolaphenine to generate the desired drug linkers. The synthetic method reported in this manuscript circumvents the use of highly cytotoxic Dol10 in its native form. By using trastuzumab (Herceptin®) as the antibody we have synthesized Dol10 containing ADCs. The presence of a discrete PEG chain in the drug linkers resulted in ADCs free from aggregation. The effect of PEG chain length on the biological activities of these Dol10 containing ADCs was investigated by in vitro cytotoxicity assays. ADCs containing PEG6 and PEG8 spacers exhibited the highest level of in vitro anti-proliferative activity against HER2-positive (SK-BR-3) human tumor cells. ADCs derived from Herceptin® and PEG8-Dol10, at a dose of 10 mg kg-1, effectively delayed the tumor growth and prolonged the survival time in mice bearing human ovarian SKOV-3 xenografts.
Collapse
Affiliation(s)
- Kanwen Yang
- Sanofi Global R&D, 153 Second Avenue, Waltham, MA 02139, USA.
| | - Bo Chen
- Sanofi Global R&D, 153 Second Avenue, Waltham, MA 02139, USA.
| | | | - James E Stefano
- Sanofi Global R&D, 153 Second Avenue, Waltham, MA 02139, USA.
| | - Michelle Busch
- Sanofi Global R&D, 153 Second Avenue, Waltham, MA 02139, USA.
| | | | - Kim Alving
- Sanofi Global R&D, 153 Second Avenue, Waltham, MA 02139, USA.
| | | | | | - Robert J Miller
- Sanofi Global R&D, 153 Second Avenue, Waltham, MA 02139, USA.
| | - Pradeep K Dhal
- Sanofi Global R&D, 153 Second Avenue, Waltham, MA 02139, USA.
| |
Collapse
|
24
|
Chio TI, Gu H, Mukherjee K, Tumey LN, Bane SL. Site-Specific Bioconjugation and Multi-Bioorthogonal Labeling via Rapid Formation of a Boron-Nitrogen Heterocycle. Bioconjug Chem 2019; 30:1554-1564. [PMID: 31026151 PMCID: PMC6585445 DOI: 10.1021/acs.bioconjchem.9b00246] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Precise control of covalent bond formation in the presence of multiple functional groups is pertinent in the development of many next-generation bioconjugates and materials. Strategies derived from bioorthogonal chemistries are contributing greatly in that regard; however, the gain of chemoselectivity is often compromised by the slow rates of many of these existing chemistries. Recent work on a variation of the classical aldehyde/ketone condensation based on ortho-carbonylphenylboronic acids has uncovered markedly accelerated rates compared to those of the simple carbonyl counterparts. The products of these reactions are distinct, often in the form of boron-nitrogen heterocycles. In particular, we have shown that 2-formylphenylboronic acid (2fPBA), when coupled with an α-amino-hydrazide, produces a unique zwitterionic and stable 2,3,1-benzodiazaborine derivative. In this work, we apply this chemistry to generate chemically defined and functional bioconjugates, herein illustrated with immunoconjugates. We show that an antibody and a fluorophore (as payload) equipped with the relevant reactive handles undergo rapid conjugation at near-stoichiometric ratios, displaying a reaction half-life of only ∼5 min with 2 equiv of the linker payload. Importantly, the reaction can be extended to multicomponent labeling by partnering with the popular strain-promoted azide-alkyne cycloaddition and tetrazine- trans-cyclooctene (Tz-TCO) ligation. The mutual orthogonality to both of these chemistries allows simultaneous triple bioorthogonal conjugations, a rare feat thus far that will widen the scope of various multilabeling applications. Further collaboration with the Tz-TCO reaction enables rapid one-pot synthesis of a site-specific dual-payload antibody conjugate. Altogether, we envision that the 2fPBA-α-amino-hydrazide ligation will facilitate efficient assembly of diverse bioconjugates and materials, enabling access to more complex modalities via partnership with other orthogonal chemistries.
Collapse
Affiliation(s)
- Tak Ian Chio
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, New York 13902, United States
| | - Han Gu
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, New York 13902, United States
| | - Kamalika Mukherjee
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, New York 13902, United States
| | - L. Nathan Tumey
- Department of Pharmaceutical Sciences, Binghamton University, State University of New York, Binghamton, New York 13902, United States
| | - Susan L. Bane
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, New York 13902, United States
| |
Collapse
|
25
|
Ruokonen SK, Ekholm FS, Wiedmer SK. Assessing the Interactions of Auristatin Derivatives with Mixed Phospholipid-Sodium Dodecyl Sulfate Aggregate Dispersions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:5232-5240. [PMID: 30889955 PMCID: PMC6727603 DOI: 10.1021/acs.langmuir.9b00116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/09/2019] [Indexed: 06/09/2023]
Abstract
The aim of this study was to assess what properties of the pseudostationary phases in electrokinetic capillary chromatography affect the interactions between monomethyl auristatin E (MMAE) and hydrophilically modified structural analogues thereof with various lipophilic phases. MMAE is a widely used cytotoxic agent in antibody-drug conjugates (ADC), which are used as selective biopharmaceutical drugs in the treatment of cancers. MMAE and its derivatives are highly lipophilic, yet they fail to interact with biomimicking phosphatidylcholine-phosphatidylserine liposomes. To reveal what properties affect the interaction of the auristatin derivatives with cell plasma membrane-mimicking vesicles, capillary electrokinetic chromatography was used with four different types of micellar and vesicular pseudostationary phases: pure vesicles, mixed vesicles, mixed micelles, and pure micelles. Vesicular phases were composed of pure phospholipids [dimyristoylphosphatidylcholine (DMPC) and dilauroylphosphatidylcholine (DLPC)] and phospholipid-surfactant mixtures [sodium dodecyl sulfate, (SDS) with DMPC and DLPC] while the micellar phases comprised pure surfactant (SDS) and surfactant-phospholipid mixtures (SDS-DMPC and SDS-DLPC). In addition, differential scanning calorimetry and dynamic light scattering were used to monitor the aggregate composition. Our data shows that the interaction between hydrophobic auristatin derivatives and hydrophobic pseudostationary phases critically depends on the type, size, and hydrogen bonding capability of the pseudostationary phases.
Collapse
Affiliation(s)
- Suvi-Katriina Ruokonen
- Department
of Chemistry, A. I. Virtasen
aukio 1, POB 55, 00014 University of Helsinki, Helsinki, Finland
| | - Filip S. Ekholm
- Department
of Chemistry, A. I. Virtasen
aukio 1, POB 55, 00014 University of Helsinki, Helsinki, Finland
- Glykos Finland Ltd., Viikinkaari 6, 00790 Helsinki, Finland
| | - Susanne K. Wiedmer
- Department
of Chemistry, A. I. Virtasen
aukio 1, POB 55, 00014 University of Helsinki, Helsinki, Finland
| |
Collapse
|
26
|
Schneider H, Deweid L, Pirzer T, Yanakieva D, Englert S, Becker B, Avrutina O, Kolmar H. Dextramabs: A Novel Format of Antibody-Drug Conjugates Featuring a Multivalent Polysaccharide Scaffold. ChemistryOpen 2019; 8:354-357. [PMID: 30976476 PMCID: PMC6437811 DOI: 10.1002/open.201900066] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Indexed: 11/09/2022] Open
Abstract
Antibody-drug conjugates (ADCs) are multicomponent biomolecules that have emerged as a powerful tool for targeted tumor therapy. Combining specific binding of an immunoglobulin with toxic properties of a payload, they however often suffer from poor hydrophilicity when loaded with a high amount of toxins. To address these issues simultaneously, we developed dextramabs, a novel class of hybrid antibody-drug conjugates. In these architectures, the therapeutic antibody trastuzumab is equipped with a multivalent dextran polysaccharide that enables efficient loading with a potent toxin in a controllable fashion. Our modular chemoenzymatic approach provides an access to synthetic dextramabs bearing monomethyl auristatin as releasable cytotoxic cargo. They possess high drug-to-antibody ratios, remarkable hydrophilicity, and high toxicity in vitro.
Collapse
Affiliation(s)
- Hendrik Schneider
- Clemens-Schöpf-Institut für Organische Chemie und BiochemieTechnische Universität DarmstadtAlarich-Weiss-Straße 464287DarmstadtGermany
| | - Lukas Deweid
- Clemens-Schöpf-Institut für Organische Chemie und BiochemieTechnische Universität DarmstadtAlarich-Weiss-Straße 464287DarmstadtGermany
| | - Thomas Pirzer
- Clemens-Schöpf-Institut für Organische Chemie und BiochemieTechnische Universität DarmstadtAlarich-Weiss-Straße 464287DarmstadtGermany
| | - Desislava Yanakieva
- Clemens-Schöpf-Institut für Organische Chemie und BiochemieTechnische Universität DarmstadtAlarich-Weiss-Straße 464287DarmstadtGermany
| | - Simon Englert
- Clemens-Schöpf-Institut für Organische Chemie und BiochemieTechnische Universität DarmstadtAlarich-Weiss-Straße 464287DarmstadtGermany
| | - Bastian Becker
- Clemens-Schöpf-Institut für Organische Chemie und BiochemieTechnische Universität DarmstadtAlarich-Weiss-Straße 464287DarmstadtGermany
| | - Olga Avrutina
- Clemens-Schöpf-Institut für Organische Chemie und BiochemieTechnische Universität DarmstadtAlarich-Weiss-Straße 464287DarmstadtGermany
| | - Harald Kolmar
- Clemens-Schöpf-Institut für Organische Chemie und BiochemieTechnische Universität DarmstadtAlarich-Weiss-Straße 464287DarmstadtGermany
| |
Collapse
|
27
|
Peciak K, Laurine E, Tommasi R, Choi JW, Brocchini S. Site-selective protein conjugation at histidine. Chem Sci 2019; 10:427-439. [PMID: 30809337 PMCID: PMC6354831 DOI: 10.1039/c8sc03355b] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 10/09/2018] [Indexed: 12/20/2022] Open
Abstract
Site-selective conjugation generally requires both (i) molecular engineering of the protein of interest to introduce a conjugation site at a defined location and (ii) a site-specific conjugation technology. Three N-terminal interferon α2-a (IFN) variants with truncated histidine tags were prepared and conjugation was examined using a bis-alkylation reagent, PEG(10kDa)-mono-sulfone 3. A histidine tag comprised of two histidines separated by a glycine (His2-tag) underwent PEGylation. Two more IFN variants were then prepared with the His2-tag engineered at different locations in IFN. Another IFN variant was prepared with the His-tag introduced in an α-helix, and required three contiguous histidines to ensure that two histidine residues in the correct conformation would be available for conjugation. Since histidine is a natural amino acid, routine methods of site-directed mutagenesis were used to generate the IFN variants from E. coli in soluble form at titres comparable to native IFN. PEGylation conversions ranged from 28-39%. A single step purification process gave essentially the pure PEG-IFN variant (>97% by RP-HPLC) in high recovery with isolated yields ranging from 21-33%. The level of retained bioactivity was strongly dependent on the site of PEG conjugation. The highest biological activity of 74% was retained for the PEG10-106(HGHG)-IFN variant which is unprecedented for a PEGylated IFN. The His2-tag at 106(HGHG)-IFN is engineered at the flexible loop most distant from IFN interaction with its dimeric receptor. The biological activity for the PEG10-5(HGH)-IFN variant was determined to be 17% which is comparable to other PEGylated IFN conjugates achieved at or near the N-terminus that have been previously described. The lowest retained activity (10%) was reported for PEG10-120(HHH)-IFN which was prepared as a negative control targeting a IFN site thought to be involved in receptor binding. The presence of two histidines as a His2-tag to generate a site-selective target for bis-alkylating PEGylation is a feasible approach for achieving site-selective PEGylation. The use of a His2-tag to strategically engineer a conjugation site in a protein location can result in maximising the retention of the biological activity following protein modification.
Collapse
Affiliation(s)
- Karolina Peciak
- UCL School of Pharmacy , University College London , 29-39 Brunswick Square , London , WC1N 1AX , UK .
- Abzena , Babraham Research Campus, Babraham , Cambridge CB22 3AT , UK
| | | | - Rita Tommasi
- Abzena , Babraham Research Campus, Babraham , Cambridge CB22 3AT , UK
| | - Ji-Won Choi
- Abzena , Babraham Research Campus, Babraham , Cambridge CB22 3AT , UK
| | - Steve Brocchini
- UCL School of Pharmacy , University College London , 29-39 Brunswick Square , London , WC1N 1AX , UK .
| |
Collapse
|
28
|
Khera E, Thurber GM. Pharmacokinetic and Immunological Considerations for Expanding the Therapeutic Window of Next-Generation Antibody-Drug Conjugates. BioDrugs 2019; 32:465-480. [PMID: 30132210 DOI: 10.1007/s40259-018-0302-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Antibody-drug conjugate (ADC) development has evolved greatly over the last 3 decades, including the Food and Drug Administration (FDA) approval of several new drugs. However, translating ADCs from the design stage and preclinical promise to clinical success has been a major hurdle for the field, particularly for solid tumors. The challenge in clinical development can be attributed to the difficulty in connecting the design of these multifaceted agents with the impact on clinical efficacy, especially with the accelerated development of 'next-generation' ADCs containing a variety of innovative biophysical developments. Given their complex nature, there is an urgent need to integrate holistic ADC characterization approaches. This includes comprehensive in vivo assessment of systemic, intratumoral and cellular pharmacokinetics, pharmacodynamics, toxicodynamics, and interactions with the immune system, with the aim of optimizing the ADC therapeutic window. Pharmacokinetic/pharmacodynamic factors influencing the ADC therapeutic window include (1) selecting optimal target and ADC components for prolonged and stable plasma circulation to increase tumoral uptake with minimal non-specific systemic toxicity, (2) balancing homogeneous intratumoral distribution with efficient cellular uptake, and (3) translating improved ADC potency to better clinical efficacy. Balancing beneficial immunological effects such as Fc-mediated and payload-mediated immune cell activation against harmful immunogenic/toxic effects is also an emerging concern for ADCs. Here, we review practical considerations for tracking ADC efficacy and toxicity, as aided by high-resolution biomolecular and immunological tools, quantitative pharmacology, and mathematical models, all of which can elucidate the relative contributions of the multitude of interactions governing the ADC therapeutic window.
Collapse
Affiliation(s)
- Eshita Khera
- Department of Chemical Engineering, University of Michigan, 2800 Plymouth Rd, Ann Arbor, MI, 48109, USA
| | - Greg M Thurber
- Department of Chemical Engineering, University of Michigan, 2800 Plymouth Rd, Ann Arbor, MI, 48109, USA. .,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
29
|
Hydrophilic Monomethyl Auristatin E Derivatives as Novel Candidates for the Design of Antibody-Drug Conjugates. SEPARATIONS 2018. [DOI: 10.3390/separations6010001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Antibody-drug conjugates (ADCs) are promising state-of-the-art biopharmaceutical drugs for selective drug-delivery applications and the treatment of diseases such as cancer. The idea behind the ADC technology is remarkable as it combines the highly selective targeting capacity of monoclonal antibodies with the cancer-killing ability of potent cytotoxic agents. The continuous development of improved ADCs requires systematic studies on the nature and effects of warhead modification. Recently, we focused on the hydrophilic modification of monomethyl auristatin E (MMAE), the most widely used cytotoxic agent in current clinical trial ADCs. Herein, we report on the use of micellar electrokinetic chromatography (MEKC) for studying the hydrophobic character of modified MMAE derivatives. Our data reveal a connection between the hydrophobicity of the modified warheads as free molecules and their cytotoxic activity. In addition, MMAE-trastuzumab ADCs were constructed and evaluated in preliminary cytotoxic assays.
Collapse
|