1
|
Sapoznikov A, Gal Y, Alcalay R, Evgy Y, Sabo T, Kronman C, Falach R. Characterization of Lung Injury following Abrin Pulmonary Intoxication in Mice: Comparison to Ricin Poisoning. Toxins (Basel) 2022; 14:614. [PMID: 36136552 PMCID: PMC9504197 DOI: 10.3390/toxins14090614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022] Open
Abstract
Abrin is a highly toxic protein obtained from the seeds of the rosary pea plant Abrus precatorius, and it is closely related to ricin in terms of its structure and chemical properties. Both toxins inhibit ribosomal function, halt protein synthesis and lead to cellular death. The major clinical manifestations following pulmonary exposure to these toxins consist of severe lung inflammation and consequent respiratory insufficiency. Despite the high similarity between abrin and ricin in terms of disease progression, the ability to protect mice against these toxins by postexposure antibody-mediated treatment differs significantly, with a markedly higher level of protection achieved against abrin intoxication. In this study, we conducted an in-depth comparison between the kinetics of in vivo abrin and ricin intoxication in a murine model. The data demonstrated differential binding of abrin and ricin to the parenchymal cells of the lungs. Accordingly, toxin-mediated injury to the nonhematopoietic compartment was shown to be markedly lower in the case of abrin intoxication. Thus, profiling of alveolar epithelial cells demonstrated that although toxin-induced damage was restricted to alveolar epithelial type II cells following abrin intoxication, as previously reported for ricin, it was less pronounced. Furthermore, unlike following ricin intoxication, no direct damage was detected in the lung endothelial cell population following abrin exposure. Reduced impairment of intercellular junction molecules following abrin intoxication was detected as well. In contrast, similar damage to the endothelial surface glycocalyx layer was observed for the two toxins. We assume that the reduced damage to the lung stroma, which maintains a higher level of tissue integrity following pulmonary exposure to abrin compared to ricin, contributes to the high efficiency of the anti-abrin antibody treatment at late time points after exposure.
Collapse
Affiliation(s)
- Anita Sapoznikov
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 74100, Israel
| | | | | | | | | | | | - Reut Falach
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 74100, Israel
| |
Collapse
|
2
|
Bai X, Hu C, Chen L, Wang J, Li Y, Wan W, Jin Z, Li Y, Xin W, Kang L, Jin H, Yang H, Wang J, Gao S. A Self-Driven Microfluidic Chip for Ricin and Abrin Detection. SENSORS 2022; 22:s22093461. [PMID: 35591151 PMCID: PMC9101213 DOI: 10.3390/s22093461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/17/2022] [Accepted: 04/28/2022] [Indexed: 12/02/2022]
Abstract
Ricin and abrin are phytotoxins that can be easily used as biowarfare and bioterrorism agents. Therefore, developing a rapid detection method for both toxins is of great significance in the field of biosecurity. In this study, a novel nanoforest silicon microstructure was prepared by the micro-electro-mechanical systems (MEMS) technique; particularly, a novel microfluidic sensor chip with a capillary self-driven function and large surface area was designed. Through binding with the double antibodies sandwich immunoassay, the proposed sensor chip is confirmed to be a candidate for sensing the aforementioned toxins. Compared with conventional immunochromatographic test strips, the proposed sensor demonstrates significantly enhanced sensitivity (≤10 pg/mL for both toxins) and high specificity against the interference derived from juice or milk, while maintaining good linearity in the range of 10–6250 pg/mL. Owing to the silicon nanoforest microstructure and improved homogeneity of the color signal, short detection time (within 15 min) is evidenced for the sensor chip, which would be helpful for the rapid tracking of ricin and abrin for the field of biosecurity.
Collapse
Affiliation(s)
- Xuexin Bai
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Chenyi Hu
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Liang Chen
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Jing Wang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yanwei Li
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Wei Wan
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Zhiying Jin
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yue Li
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Wenwen Xin
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Lin Kang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Han Jin
- Institute of Micro-Nano Science and Technology, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Yang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Jinglin Wang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Shan Gao
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| |
Collapse
|
3
|
Li Z, Xu H, Ma B, Luo L, Guo L, Zhang P, Zhao Y, Wang L, Xie J. Neutralizing Monoclonal Antibody, mAb 10D8, Is an Effective Detoxicant against Abrin-a Both In Vitro and In Vivo. Toxins (Basel) 2022; 14:toxins14030164. [PMID: 35324661 PMCID: PMC8955035 DOI: 10.3390/toxins14030164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 02/05/2023] Open
Abstract
Abrin is a types II ribosome-inactivating protein (RIP) isolated from Abrus precatorious seeds, which comprises a catalytically active A chain and a lectin-like B chain linked by a disulfide bond. Four isotoxins of abrin have been reported with similar amino-acid composition but different cytotoxicity, of which abrin-a is the most potent toxin. High lethality and easy availability make abrin a potential bioterrorism agent. However, there are no antidotes available for managing abrin poisoning, and treatment is only symptomatic. Currently, neutralizing antibodies remain the most effective therapy against biotoxin poisoning. In this study, we prepared, identified, and acquired a high-affinity neutralizing monoclonal antibody (mAb) 10D8 with a potent pre- and post-exposure protective effect against cytotoxicity and animal toxicity induced by abrin-a or abrin crude extract. The mAb 10D8 could rescue the mouse injected intraperitoneally with a 25 × LD50 dose of abrin-a from lethality and prevent tissue damages. Results indicated that 10D8 does not prevent the binding and internalization of abrin-a to cells but inhibits the enzymatic activity of abrin-a and reduces protein synthesis inhibition of cells. The high affinity, good specificity, and potent antitoxic efficiency of 10D8 make it a promising candidate for therapeutic antibodies against abrin.
Collapse
Affiliation(s)
- Zhi Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China; (Z.L.); (B.M.); (L.L.); (L.G.); (L.W.)
| | - Hua Xu
- State Key Laboratory of Toxicology and Medical Countermeasures, Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China; (Z.L.); (B.M.); (L.L.); (L.G.); (L.W.)
- Correspondence: (H.X.); (J.X.); Tel.: +86-10-66930621 (H.X.); +86-10-68225893 (J.X.)
| | - Bo Ma
- State Key Laboratory of Toxicology and Medical Countermeasures, Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China; (Z.L.); (B.M.); (L.L.); (L.G.); (L.W.)
| | - Li Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China; (Z.L.); (B.M.); (L.L.); (L.G.); (L.W.)
| | - Lei Guo
- State Key Laboratory of Toxicology and Medical Countermeasures, Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China; (Z.L.); (B.M.); (L.L.); (L.G.); (L.W.)
| | - Pingping Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of POCT for Bioemergency and Clinic, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (P.Z.); (Y.Z.)
| | - Yong Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of POCT for Bioemergency and Clinic, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (P.Z.); (Y.Z.)
| | - Lili Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China; (Z.L.); (B.M.); (L.L.); (L.G.); (L.W.)
| | - Jianwei Xie
- State Key Laboratory of Toxicology and Medical Countermeasures, Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China; (Z.L.); (B.M.); (L.L.); (L.G.); (L.W.)
- Correspondence: (H.X.); (J.X.); Tel.: +86-10-66930621 (H.X.); +86-10-68225893 (J.X.)
| |
Collapse
|