1
|
Vargas-Junior V, Guimarães ACR, Caffarena ER, Antunes D. Genome-Wide Exploration of Thiamin Pyrophosphate Riboswitches in Medically Relevant Fungi Reveals Diverse Distribution and Implications for Antimicrobial Drug Targeting. ACS OMEGA 2024; 9:50134-50146. [PMID: 39741832 PMCID: PMC11683625 DOI: 10.1021/acsomega.4c00158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 11/08/2024] [Accepted: 11/22/2024] [Indexed: 01/03/2025]
Abstract
The rising incidence of fungal infections coupled with limited treatment options underscores the urgent need for novel antifungal therapies. Riboswitches, particularly thiamin pyrophosphate (TPP) class, have emerged as promising antimicrobial targets. This study presents a comprehensive genome-wide analysis of TPP riboswitches in 156 medically relevant fungi utilizing advanced covariance models (CMs) tailored for fungal sequences. Our investigation identified 378 conserved TPP riboswitch sequences distributed across 140 distinct species, revealing a broader prevalence than that previously recognized. Notably, we provide evidence for a novel putative group of TPP riboswitches, designated TPPswSUGAR, associated with sugar transporters in Mucoromycota and Basidiomycota. This group exhibits distinctive structural features while maintaining key TPP-binding motifs, potentially expanding our understanding of the riboswitch diversity in fungi. Our analysis highlights the impact of P3 stem variability on riboswitch detection and characterization, demonstrating the superiority of fungal-specific CMs over generic models. We observed multiple TPP riboswitches in over 50% of the examined species, including clinically significant pathogens involved in aspergillosis and mucormycosis. Remarkably, Aspergillus latus, a species associated with COVID-19 coinfections, harbors six distinct TPP riboswitch sequences, whereas the extremophilic black fungus Hortaea werneckii possesses nine. These findings not only elucidate the diverse distribution of TPP riboswitches in pathogenic fungi but also emphasize their potential as multifaceted targets for antifungal drug development. By addressing key limitations of previous detection methods and providing insights into riboswitch structural diversity, this study lays a foundation for future investigations into riboswitch-mediated regulation in fungi and the development of novel antifungal strategies.
Collapse
Affiliation(s)
- Valdemir Vargas-Junior
- Laboratory
for Applied Genomics and Bioinnovations, Oswaldo Cruz Institute (IOC - FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Ana Carolina Ramos Guimarães
- Laboratory
for Applied Genomics and Bioinnovations, Oswaldo Cruz Institute (IOC - FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Ernesto Raul Caffarena
- Computational
Biophysics and Molecular Modeling Group, Scientific Computing Program (PROCC - FIOCRUZ), Rio de Janeiro 21040-360, Brazil
| | - Deborah Antunes
- Laboratory
for Applied Genomics and Bioinnovations, Oswaldo Cruz Institute (IOC - FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
2
|
Eschbach SH, Hien EDM, Ghosh T, Lamontagne AM, Lafontaine DA. The Escherichia coli ribB riboswitch senses flavin mononucleotide within a defined transcriptional window. RNA (NEW YORK, N.Y.) 2024; 30:1660-1673. [PMID: 39366707 PMCID: PMC11571811 DOI: 10.1261/rna.080074.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024]
Abstract
Riboswitches are metabolite-binding RNA regulators that modulate gene expression at the levels of transcription and translation. One of the hallmarks of riboswitch regulation is that they undergo structural changes upon metabolite binding. While a lot of effort has been put to characterize how the metabolite is recognized by the riboswitch, there is still relatively little information regarding how ligand sensing is performed within a transcriptional context. Here, we study the ligand-dependent cotranscriptional folding of the FMN-sensing ribB riboswitch of Escherichia coli Using RNase H assays to study nascent ribB riboswitch transcripts, DNA probes targeting the P1 and sequestering stems indicate that FMN binding leads to the protection of these regions from RNase H cleavage, consistent with the riboswitch inhibiting translation initiation when bound to FMN. Our results show that ligand sensing is strongly affected by the position of elongating RNA polymerase, which is defining an FMN-binding transcriptional window that is bordered in its 3' extremity by a transcriptional pause site. Also, using successively overlapping DNA probes targeting a subdomain of the riboswitch, our data suggest the presence of a previously unsuspected helical region involving the 3' strand of the P1 stem. Our results show that this helical region is conserved across bacterial species, thus suggesting that this predicted structure, the anti*-P1 stem, is involved in the FMN-free conformation of the ribB riboswitch. Overall, our study further demonstrates that intricate folding strategies may be used by riboswitches to perform metabolite sensing during the transcriptional process.
Collapse
Affiliation(s)
- Sébastien H Eschbach
- Department of Biology, Faculty of Science, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1K 2R1
| | - Elsa D M Hien
- Department of Biology, Faculty of Science, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1K 2R1
| | - Tithi Ghosh
- Department of Biology, Faculty of Science, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1K 2R1
| | - Anne-Marie Lamontagne
- Department of Biology, Faculty of Science, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1K 2R1
| | - Daniel A Lafontaine
- Department of Biology, Faculty of Science, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1K 2R1
| |
Collapse
|
3
|
Stagno JR, Wang YX. Riboswitch Mechanisms for Regulation of P1 Helix Stability. Int J Mol Sci 2024; 25:10682. [PMID: 39409011 PMCID: PMC11477058 DOI: 10.3390/ijms251910682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 10/20/2024] Open
Abstract
Riboswitches are highly structured RNA regulators of gene expression. Although found in all three domains of life, they are particularly abundant and widespread in bacteria, including many human pathogens, thus making them an attractive target for antimicrobial development. Moreover, the functional versatility of riboswitches to recognize a myriad of ligands, including ions, amino acids, and diverse small-molecule metabolites, has enabled the generation of synthetic aptamers that have been used as molecular probes, sensors, and regulatory RNA devices. Generally speaking, a riboswitch consists of a ligand-sensing aptamer domain and an expression platform, whose genetic control is achieved through the formation of mutually exclusive secondary structures in a ligand-dependent manner. For most riboswitches, this involves formation of the aptamer's P1 helix and the regulation of its stability, whose competing structure turns gene expression ON/OFF at the level of transcription or translation. Structural knowledge of the conformational changes involving the P1 regulatory helix, therefore, is essential in understanding the structural basis for ligand-induced conformational switching. This review provides a summary of riboswitch cases for which ligand-free and ligand-bound structures have been determined. Comparative analyses of these structures illustrate the uniqueness of these riboswitches, not only in ligand sensing but also in the various structural mechanisms used to achieve the same end of regulating switch helix stability. In all cases, the ligand stabilizes the P1 helix primarily through coaxial stacking interactions that promote helical continuity.
Collapse
Affiliation(s)
- Jason R. Stagno
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21701, USA;
| | | |
Collapse
|
4
|
Badilla Lobo A, Soutourina O, Peltier J. The current riboswitch landscape in Clostridioides difficile. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001508. [PMID: 39405103 PMCID: PMC11477304 DOI: 10.1099/mic.0.001508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
Riboswitches are 5' RNA regulatory elements that are capable of binding to various ligands, such as small metabolites, ions and tRNAs, leading to conformational changes and affecting gene transcription or translation. They are widespread in bacteria and frequently control genes that are essential for the survival or virulence of major pathogens. As a result, they represent promising targets for the development of new antimicrobial treatments. Clostridioides difficile, a leading cause of antibiotic-associated nosocomial diarrhoea in adults, possesses numerous riboswitches in its genome. Accumulating knowledge of riboswitch-based regulatory mechanisms provides insights into the potential therapeutic targets for treating C. difficile infections. This review offers an in-depth examination of the current state of knowledge regarding riboswitch-mediated regulation in C. difficile, highlighting their importance in bacterial adaptability and pathogenicity. Particular attention is given to the ligand specificity and function of known riboswitches in this bacterium. The review also discusses the recent progress that has been made in the development of riboswitch-targeting compounds as potential treatments for C. difficile infections. Future research directions are proposed, emphasizing the need for detailed structural and functional analyses of riboswitches to fully harness their regulatory capabilities for developing new antimicrobial strategies.
Collapse
Affiliation(s)
- Adriana Badilla Lobo
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Olga Soutourina
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Johann Peltier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| |
Collapse
|
5
|
Stephen C, Palmer D, Mishanina TV. Opportunities for Riboswitch Inhibition by Targeting Co-Transcriptional RNA Folding Events. Int J Mol Sci 2024; 25:10495. [PMID: 39408823 PMCID: PMC11476745 DOI: 10.3390/ijms251910495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Antibiotic resistance is a critical global health concern, causing millions of prolonged bacterial infections every year and straining our healthcare systems. Novel antibiotic strategies are essential to combating this health crisis and bacterial non-coding RNAs are promising targets for new antibiotics. In particular, a class of bacterial non-coding RNAs called riboswitches has attracted significant interest as antibiotic targets. Riboswitches reside in the 5'-untranslated region of an mRNA transcript and tune gene expression levels in cis by binding to a small-molecule ligand. Riboswitches often control expression of essential genes for bacterial survival, making riboswitch inhibitors an exciting prospect for new antibacterials. Synthetic ligand mimics have predominated the search for new riboswitch inhibitors, which are designed based on static structures of a riboswitch's ligand-sensing aptamer domain or identified by screening a small-molecule library. However, many small-molecule inhibitors that bind an isolated riboswitch aptamer domain with high affinity in vitro lack potency in vivo. Importantly, riboswitches fold and respond to the ligand during active transcription in vivo. This co-transcriptional folding is often not considered during inhibitor design, and may explain the discrepancy between a low Kd in vitro and poor inhibition in vivo. In this review, we cover advances in riboswitch co-transcriptional folding and illustrate how intermediate structures can be targeted by antisense oligonucleotides-an exciting new strategy for riboswitch inhibitor design.
Collapse
Affiliation(s)
| | | | - Tatiana V. Mishanina
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA (D.P.)
| |
Collapse
|
6
|
Walker-Gibbons R, Zhu X, Behjatian A, Bennett TJD, Krishnan M. Sensing the structural and conformational properties of single-stranded nucleic acids using electrometry and molecular simulations. Sci Rep 2024; 14:20582. [PMID: 39232063 PMCID: PMC11375218 DOI: 10.1038/s41598-024-70641-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/20/2024] [Indexed: 09/06/2024] Open
Abstract
Inferring the 3D structure and conformation of disordered biomolecules, e.g., single stranded nucleic acids (ssNAs), remains challenging due to their conformational heterogeneity in solution. Here, we use escape-time electrometry (ETe) to measure with sub elementary-charge precision the effective electrical charge in solution of short to medium chain length ssNAs in the range of 5-60 bases. We compare measurements of molecular effective charge with theoretically calculated values for simulated molecular conformations obtained from Molecular Dynamics simulations using a variety of forcefield descriptions. We demonstrate that the measured effective charge captures subtle differences in molecular structure in various nucleic acid homopolymers of identical length, and also that the experimental measurements can find agreement with computed values derived from coarse-grained molecular structure descriptions such as oxDNA, as well next generation ssNA force fields. We further show that comparing the measured effective charge with calculations for a rigid, charged rod-the simplest model of a nucleic acid-yields estimates of molecular structural dimensions such as linear charge spacings that capture molecular structural trends observed using high resolution structural analysis methods such as X-ray scattering. By sensitively probing the effective charge of a molecule, electrometry provides a powerful dimension supporting inferences of molecular structural and conformational properties, as well as the validation of biomolecular structural models. The overall approach holds promise for a high throughput, microscopy-based biomolecular analytical approach offering rapid screening and inference of molecular 3D conformation, and operating at the single molecule level in solution.
Collapse
Affiliation(s)
- Rowan Walker-Gibbons
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Xin Zhu
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Ali Behjatian
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Timothy J D Bennett
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Madhavi Krishnan
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK.
- The Kavli Institute for Nanoscience Discovery, Sherrington Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
7
|
Biswas R, Jangra B, Ashok G, Ravichandiran V, Mohan U. Current Strategies for Combating Biofilm-Forming Pathogens in Clinical Healthcare-Associated Infections. Indian J Microbiol 2024; 64:781-796. [PMID: 39282194 PMCID: PMC11399387 DOI: 10.1007/s12088-024-01221-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 02/07/2024] [Indexed: 09/18/2024] Open
Abstract
The biofilm formation by various pathogens causes chronic infections and poses severe threats to industry, healthcare, and society. They can form biofilm on surfaces of medical implants, heart valves, pacemakers, contact lenses, vascular grafts, urinary catheters, dialysis catheters, etc. These biofilms play a central role in bacterial persistence and antibiotic tolerance. Biofilm formation occurs in a series of steps, and any interference in these steps can prevent its formation. Therefore, the hunt to explore and develop effective anti-biofilm strategies became necessary to decrease the rate of biofilm-related infections. In this review, we highlighted and discussed the current therapeutic approaches to eradicate biofilm formation and combat drug resistance by anti-biofilm drugs, phytocompounds, antimicrobial peptides (AMPs), antimicrobial lipids (AMLs), matrix-degrading enzymes, nanoparticles, phagebiotics, surface coatings, photodynamic therapy (PDT), riboswitches, vaccines, and antibodies. The clinical validation of these findings will provide novel preventive and therapeutic strategies for biofilm-associated infections to the medical world.
Collapse
Affiliation(s)
- Rashmita Biswas
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal India
| | - Bhawana Jangra
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab India
| | - Ganapathy Ashok
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal India
| | - Velayutham Ravichandiran
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal India
| | - Utpal Mohan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal India
| |
Collapse
|
8
|
Chengalroyen MD, Mehaffy C, Lucas M, Bauer N, Raphela ML, Oketade N, Warner DF, Lewinsohn DA, Lewinsohn DM, Dobos KM, Mizrahi V. Modulation of riboflavin biosynthesis and utilization in mycobacteria. Microbiol Spectr 2024; 12:e0320723. [PMID: 38916330 PMCID: PMC11302143 DOI: 10.1128/spectrum.03207-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 05/17/2024] [Indexed: 06/26/2024] Open
Abstract
Riboflavin (vitamin B2) is the precursor of the flavin coenzymes, FAD and FMN, which play a central role in cellular redox metabolism. While humans must obtain riboflavin from dietary sources, certain microbes, including Mycobacterium tuberculosis (Mtb), can biosynthesize riboflavin de novo. Riboflavin precursors have also been implicated in the activation of mucosal-associated invariant T (MAIT) cells which recognize metabolites derived from the riboflavin biosynthesis pathway complexed to the MHC-I-like molecule, MR1. To investigate the biosynthesis and function of riboflavin and its pathway intermediates in mycobacterial metabolism and physiology, we constructed conditional knockdowns (hypomorphs) in riboflavin biosynthesis and utilization genes in Mycobacterium smegmatis (Msm) and Mtb by inducible CRISPR interference. Using this comprehensive panel of hypomorphs, we analyzed the impact of gene silencing on viability, on the transcription of (other) riboflavin pathway genes, on the levels of the pathway proteins, and on riboflavin itself. Our results revealed that (i) despite lacking a canonical transporter, both Msm and Mtb assimilate exogenous riboflavin when supplied at high concentration; (ii) there is functional redundancy in lumazine synthase activity in Msm; (iii) silencing of ribA2 or ribF is profoundly bactericidal in Mtb; and (iv) in Msm, ribA2 silencing results in concomitant knockdown of other pathway genes coupled with RibA2 and riboflavin depletion and is also bactericidal. In addition to their use in genetic validation of potential drug targets for tuberculosis, this collection of hypomorphs provides a useful resource for future studies investigating the role of pathway intermediates in MAIT cell recognition of mycobacteria. IMPORTANCE The pathway for biosynthesis and utilization of riboflavin, precursor of the essential coenzymes, FMN and FAD, is of particular interest in the flavin-rich pathogen, Mycobacterium tuberculosis (Mtb), for two important reasons: (i) the pathway includes potential tuberculosis (TB) drug targets and (ii) intermediates from the riboflavin biosynthesis pathway provide ligands for mucosal-associated invariant T (MAIT) cells, which have been implicated in TB pathogenesis. However, the riboflavin pathway is poorly understood in mycobacteria, which lack canonical mechanisms to transport this vitamin and to regulate flavin coenzyme homeostasis. By conditionally disrupting each step of the pathway and assessing the impact on mycobacterial viability and on the levels of the pathway proteins as well as riboflavin, our work provides genetic validation of the riboflavin pathway as a target for TB drug discovery and offers a resource for further exploring the association between riboflavin biosynthesis, MAIT cell activation, and TB infection and disease.
Collapse
Affiliation(s)
- Melissa D. Chengalroyen
- Molecular Mycobacteriology Research Unit, Institute of Infectious Disease and Molecular Medicine & Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Carolina Mehaffy
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Megan Lucas
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Niel Bauer
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Mabule L. Raphela
- Molecular Mycobacteriology Research Unit, Institute of Infectious Disease and Molecular Medicine & Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Nurudeen Oketade
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Digby F. Warner
- Molecular Mycobacteriology Research Unit, Institute of Infectious Disease and Molecular Medicine & Department of Pathology, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Disease Research in Africa, University of Cape Town, Cape Town, South Africa
| | | | - David M. Lewinsohn
- Oregon Health and Science University, Portland, Oregon, USA
- Portland VA Medical Center, Portland, Oregon, USA
| | - Karen M. Dobos
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Valerie Mizrahi
- Molecular Mycobacteriology Research Unit, Institute of Infectious Disease and Molecular Medicine & Department of Pathology, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Disease Research in Africa, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
9
|
Singh RN, Sani RK. Genome-Wide Computational Prediction and Analysis of Noncoding RNAs in Oleidesulfovibrio alaskensis G20. Microorganisms 2024; 12:960. [PMID: 38792789 PMCID: PMC11124144 DOI: 10.3390/microorganisms12050960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Noncoding RNAs (ncRNAs) play key roles in the regulation of important pathways, including cellular growth, stress management, signaling, and biofilm formation. Sulfate-reducing bacteria (SRB) contribute to huge economic losses causing microbial-induced corrosion through biofilms on metal surfaces. To effectively combat the challenges posed by SRB, it is essential to understand their molecular mechanisms of biofilm formation. This study aimed to identify ncRNAs in the genome of a model SRB, Oleidesulfovibrio alaskensis G20 (OA G20). Three in silico approaches revealed genome-wide distribution of 37 ncRNAs excluding tRNAs in the OA G20. These ncRNAs belonged to 18 different Rfam families. This study identified riboswitches, sRNAs, RNP, and SRP. The analysis revealed that these ncRNAs could play key roles in the regulation of several pathways of biosynthesis and transport involved in biofilm formation by OA G20. Three sRNAs, Pseudomonas P10, Hammerhead type II, and sX4, which were found in OA G20, are rare and their roles have not been determined in SRB. These results suggest that applying various computational methods could enrich the results and lead to the discovery of additional novel ncRNAs, which could lead to understanding the "rules of life of OA G20" during biofilm formation.
Collapse
Affiliation(s)
- Ram Nageena Singh
- Department of Chemical and Biological Engineering, South Dakota Mines, Rapid City, SD 57701, USA;
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota Mines, Rapid City, SD 57701, USA
| | - Rajesh K. Sani
- Department of Chemical and Biological Engineering, South Dakota Mines, Rapid City, SD 57701, USA;
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota Mines, Rapid City, SD 57701, USA
- Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota Mines, Rapid City, SD 57701, USA
| |
Collapse
|
10
|
Rivera M, Ayon OS, Diaconescu-Grabari S, Pottel J, Moitessier N, Mittermaier A, McKeague M. A sensitive and scalable fluorescence anisotropy single stranded RNA targeting approach for monitoring riboswitch conformational states. Nucleic Acids Res 2024; 52:3164-3179. [PMID: 38375901 PMCID: PMC11014391 DOI: 10.1093/nar/gkae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/21/2024] Open
Abstract
The capacity of riboswitches to undergo conformational changes in response to binding their native ligands is closely tied to their functional roles and is an attractive target for antimicrobial drug design. Here, we established a probe-based fluorescence anisotropy assay to monitor riboswitch conformational switching with high sensitivity and throughput. Using the Bacillus subtillis yitJ S-Box (SAM-I), Fusobacterium nucleatum impX RFN element of (FMN) and class-I cyclic-di-GMP from Vibrio cholerae riboswitches as model systems, we developed short fluorescent DNA probes that specifically recognize either ligand-free or -bound riboswitch conformational states. We showed that increasing concentrations of native ligands cause measurable and reproducible changes in fluorescence anisotropy that correlate with riboswitch conformational changes observed by native gel analysis. Furthermore, we applied our assay to several ligand analogues and confirmed that it can discriminate between ligands that bind, triggering the native conformational change, from those that bind without causing the conformational change. This new platform opens the possibility of high-throughput screening compound libraries to identify potential new antibiotics that specifically target functional conformational changes in riboswitches.
Collapse
Affiliation(s)
- Maira Rivera
- Department of Chemistry, Faculty of Science, McGill University, Montreal, QC H3A 0B8, Canada
| | - Omma S Ayon
- Department of Chemistry, Faculty of Science, McGill University, Montreal, QC H3A 0B8, Canada
| | | | - Joshua Pottel
- Molecular Forecaster Inc. 910-2075 Robert Bourassa, Montreal, QC H3A 2L1, Canada
| | - Nicolas Moitessier
- Department of Chemistry, Faculty of Science, McGill University, Montreal, QC H3A 0B8, Canada
- Molecular Forecaster Inc. 910-2075 Robert Bourassa, Montreal, QC H3A 2L1, Canada
| | - Anthony Mittermaier
- Department of Chemistry, Faculty of Science, McGill University, Montreal, QC H3A 0B8, Canada
| | - Maureen McKeague
- Department of Chemistry, Faculty of Science, McGill University, Montreal, QC H3A 0B8, Canada
- Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
11
|
Singh K, Reddy G. Excited States of apo-Guanidine-III Riboswitch Contribute to Guanidinium Binding through Both Conformational and Induced-Fit Mechanisms. J Chem Theory Comput 2024; 20:421-435. [PMID: 38134376 DOI: 10.1021/acs.jctc.3c00999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Riboswitches are mRNA segments that regulate gene expression through conformational changes driven by their cognate ligand binding. The ykkC motif forms a riboswitch class that selectively senses a guanidinium ion (Gdm+) and regulates the downstream expression of proteins which aid in the efflux of excess Gdm+ from the cells. The aptamer domain (AD) of the guanidine-III riboswitch forms an H-type pseudoknot with a triple helical domain that binds a Gdm+. We studied the binding of Gdm+ to the AD of the guanidine (ykkC)-III riboswitch using computer simulations to probe the specificity of the riboswitch to Gdm+ binding. We show that Gdm+ binding is a fast process occurring on the nanosecond time scale, with minimal conformational changes to the AD. Using machine learning and Markov-state models, we identified the excited conformational states of the AD, which have a high Gdm+ binding propensity, making the Gdm+ binding landscape complex exhibiting both conformational selection and induced-fit mechanisms. The proposed apo-AD excited states and their role in the ligand-sensing mechanism are amenable to experimental verification. Further, targeting these excited-state conformations in discovering new antibiotics can be explored.
Collapse
Affiliation(s)
- Kushal Singh
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012 Karnataka, India
| | - Govardhan Reddy
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012 Karnataka, India
| |
Collapse
|
12
|
Tidwell ED, Kilde IR, Leskaj S, Koutmos M. Fluorescent Ligand Equilibrium Displacement: A High-Throughput Method for Identification of FMN Riboswitch-Binding Small Molecules. Int J Mol Sci 2024; 25:735. [PMID: 38255809 PMCID: PMC11154562 DOI: 10.3390/ijms25020735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Antibiotic resistance remains a pressing global concern, with most antibiotics targeting the bacterial ribosome or a limited range of proteins. One class of underexplored antibiotic targets is bacterial riboswitches, structured RNA elements that regulate key biosynthetic pathways by binding a specific ligand. We developed a methodology termed Fluorescent Ligand Equilibrium Displacement (FLED) to rapidly discover small molecules that bind the flavin mononucleotide (FMN) riboswitch. FLED leverages intrinsically fluorescent FMN and the quenching effect on RNA binding to create a label-free, in vitro method to identify compounds that can bind the apo population of riboswitch in a system at equilibrium. The response difference between known riboswitch ligands and controls demonstrates the robustness of the method for high-throughput screening. An existing drug discovery library that was screened using FLED resulted in a final hit rate of 0.67%. The concentration response of each hit was determined and revealed a variety of approximate effective concentration values. Our preliminary screening data support the use of FLED to identify small molecules for medicinal chemistry development as FMN riboswitch-targeted antibiotic compounds. This robust, label-free, and cell-free method offers a strong alternative to other riboswitch screening methods and can be adapted to a variety of laboratory setups.
Collapse
Affiliation(s)
| | - Ingrid R. Kilde
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Suada Leskaj
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Markos Koutmos
- Program in Biophysics, University of Michigan, Ann Arbor, MI 48109, USA;
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA;
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA;
| |
Collapse
|
13
|
Bu F, Lin X, Liao W, Lu Z, He Y, Luo Y, Peng X, Li M, Huang Y, Chen X, Xiao B, Jiang J, Deng J, Huang J, Lin T, Miao Z, Huang L. Ribocentre-switch: a database of riboswitches. Nucleic Acids Res 2024; 52:D265-D272. [PMID: 37855663 PMCID: PMC10767811 DOI: 10.1093/nar/gkad891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/19/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023] Open
Abstract
Riboswitches are regulatory elements found in the untranslated regions (UTRs) of certain mRNA molecules. They typically comprise two distinct domains: an aptamer domain that can bind to specific small molecules, and an expression platform that controls gene expression. Riboswitches work by undergoing a conformational change upon binding to their specific ligand, thus activating or repressing the genes downstream. This mechanism allows gene expression regulation in response to metabolites or small molecules. To systematically summarise riboswitch structures and their related ligand binding functions, we present Ribocentre-switch, a comprehensive database of riboswitches, including the information as follows: sequences, structures, functions, ligand binding pockets and biological applications. It encompasses 56 riboswitches and 26 orphan riboswitches from over 430 references, with a total of 89 591 sequences. It serves as a good resource for comparing different riboswitches and facilitating the identification of potential riboswitch candidates. Therefore, it may facilitate the understanding of RNA structural conformational changes in response to ligand signaling. The database is publicly available at https://riboswitch.ribocentre.org.
Collapse
Affiliation(s)
- Fan Bu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases,Guangzhou National Laboratory, Medical University, Guangzhou 510180, China
| | - Xiaowei Lin
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Wenjian Liao
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Zhizhong Lu
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yuanlin He
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yuhang Luo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Xuemei Peng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Mengxiao Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yuanyin Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Xiaoxue Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Bowen Xiao
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases,Guangzhou National Laboratory, Medical University, Guangzhou 510180, China
| | - Jiuhong Jiang
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases,Guangzhou National Laboratory, Medical University, Guangzhou 510180, China
| | - Jie Deng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jian Huang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Tianxin Lin
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Zhichao Miao
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases,Guangzhou National Laboratory, Medical University, Guangzhou 510180, China
| | - Lin Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| |
Collapse
|
14
|
Wu Y, Zhu L, Zhang Y, Xu W. Multidimensional Applications and Challenges of Riboswitches in Biosensing and Biotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304852. [PMID: 37658499 DOI: 10.1002/smll.202304852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/15/2023] [Indexed: 09/03/2023]
Abstract
Riboswitches have received significant attention over the last two decades for their multiple functionalities and great potential for applications in various fields. This article highlights and reviews the recent advances in biosensing and biotherapy. These fields involve a wide range of applications, such as food safety detection, environmental monitoring, metabolic engineering, live cell imaging, wearable biosensors, antibacterial drug targets, and gene therapy. The discovery, origin, and optimization of riboswitches are summarized to help readers better understand their multidimensional applications. Finally, this review discusses the multidimensional challenges and development of riboswitches in order to further expand their potential for novel applications.
Collapse
Affiliation(s)
- Yifan Wu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Yangzi Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| |
Collapse
|
15
|
Theuretzbacher U, Blasco B, Duffey M, Piddock LJV. Unrealized targets in the discovery of antibiotics for Gram-negative bacterial infections. Nat Rev Drug Discov 2023; 22:957-975. [PMID: 37833553 DOI: 10.1038/s41573-023-00791-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 10/15/2023]
Abstract
Advances in areas that include genomics, systems biology, protein structure determination and artificial intelligence provide new opportunities for target-based antibacterial drug discovery. The selection of a 'good' new target for direct-acting antibacterial compounds is the first decision, for which multiple criteria must be explored, integrated and re-evaluated as drug discovery programmes progress. Criteria include essentiality of the target for bacterial survival, its conservation across different strains of the same species, bacterial species and growth conditions (which determines the spectrum of activity of a potential antibiotic) and the level of homology with human genes (which influences the potential for selective inhibition). Additionally, a bacterial target should have the potential to bind to drug-like molecules, and its subcellular location will govern the need for inhibitors to penetrate one or two bacterial membranes, which is a key challenge in targeting Gram-negative bacteria. The risk of the emergence of target-based drug resistance for drugs with single targets also requires consideration. This Review describes promising but as-yet-unrealized targets for antibacterial drugs against Gram-negative bacteria and examples of cognate inhibitors, and highlights lessons learned from past drug discovery programmes.
Collapse
Affiliation(s)
| | - Benjamin Blasco
- Global Antibiotic Research and Development Partnership (GARDP), Geneva, Switzerland
| | - Maëlle Duffey
- Global Antibiotic Research and Development Partnership (GARDP), Geneva, Switzerland
| | - Laura J V Piddock
- Global Antibiotic Research and Development Partnership (GARDP), Geneva, Switzerland.
| |
Collapse
|
16
|
Pavlova N, Traykovska M, Penchovsky R. Targeting FMN, TPP, SAM-I, and glmS Riboswitches with Chimeric Antisense Oligonucleotides for Completely Rational Antibacterial Drug Development. Antibiotics (Basel) 2023; 12:1607. [PMID: 37998809 PMCID: PMC10668854 DOI: 10.3390/antibiotics12111607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Antimicrobial drug resistance has emerged as a significant challenge in contemporary medicine due to the proliferation of numerous bacterial strains resistant to all existing antibiotics. Meanwhile, riboswitches have emerged as promising targets for discovering antibacterial drugs. Riboswitches are regulatory elements in certain bacterial mRNAs that can bind to specific molecules and control gene expression via transcriptional termination, prevention of translation, or mRNA destabilization. By targeting riboswitches, we aim to develop innovative strategies to combat antibiotic-resistant bacteria and enhance the efficacy of antibacterial treatments. This convergence of challenges and opportunities underscores the ongoing quest to revolutionize medical approaches against evolving bacterial threats. For the first time, this innovative review describes the rational design and applications of chimeric antisense oligonucleotides as antibacterial agents targeting four riboswitches selected based on genome-wide bioinformatic analyses. The antisense oligonucleotides are coupled with the cell-penetrating oligopeptide pVEC, which penetrates Gram-positive and Gram-negative bacteria and specifically targets glmS, FMN, TPP, and SAM-I riboswitches in Staphylococcus aureus, Listeria monocytogenes, and Escherichia coli. The average antibiotic dosage of antisense oligonucleotides that inhibits 80% of bacterial growth is around 700 nM (4.5 μg/mL). Antisense oligonucleotides do not exhibit toxicity in human cell lines at this concentration. The results demonstrate that these riboswitches are suitable targets for antibacterial drug development using antisense oligonucleotide technology. The approach is fully rational because selecting suitable riboswitch targets and designing ASOs that target them are based on predefined criteria. The approach can be used to develop narrow or broad-spectrum antibiotics against multidrug-resistant bacterial strains for a short time. The approach is easily adaptive to new resistance using targeting NGS technology.
Collapse
Affiliation(s)
| | | | - Robert Penchovsky
- Laboratory of Synthetic Biology and Bioinformatics, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| |
Collapse
|
17
|
Silkenath B, Kläge D, Altwein H, Schmidhäuser N, Mayer G, Hartig JS, Wittmann V. Phosphonate and Thiasugar Analogues of Glucosamine-6-phosphate: Activation of the glmS Riboswitch and Antibiotic Activity. ACS Chem Biol 2023; 18:2324-2334. [PMID: 37793187 PMCID: PMC10594590 DOI: 10.1021/acschembio.3c00452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/19/2023] [Indexed: 10/06/2023]
Abstract
The glmS riboswitch is a motif found in 5'-untranslated regions of bacterial mRNA that controls the synthesis of glucosamine-6-phosphate (GlcN6P), an essential building block for the bacterial cell wall, by a feedback mechanism. Activation of the glmS riboswitch by GlcN6P mimics interferes with the ability of bacteria to synthesize its cell wall. Accordingly, GlcN6P mimics acting as glmS activators are promising candidates for future antibiotic drugs that may overcome emerging bacterial resistance against established antibiotics. We describe the synthesis of a series of phosphonate mimics of GlcN6P as well as the thiasugar analogue of GlcN6P. The phosphonate mimics differ in their pKa value to answer the question of whether derivatives with a pKa matching that of GlcN6P would be efficient glmS activators. We found that all derivatives activate the riboswitch, however, less efficiently than GlcN6P. This observation can be explained by the missing hydrogen bonds in the case of phosphonates and is valuable information for the design of future GlcN6P mimics. The thiasugar analogue of GlcN6P on the other hand turned out to be a glmS riboswitch activator with the same activity as the natural metabolite GlcN6P. The nonphosphorylated thiasugar displayed antimicrobial activity against certain bacilli. Therefore, the compound is a promising lead structure for the development of future antibiotics with a potentially novel mode of action.
Collapse
Affiliation(s)
- Bjarne Silkenath
- Department
of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Dennis Kläge
- Department
of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Hanna Altwein
- Department
of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Nina Schmidhäuser
- Department
of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Günter Mayer
- LIMES
Institute, Center for Aptamer Research & Development, University of Bonn, 53121 Bonn, Germany
| | - Jörg S. Hartig
- Department
of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Valentin Wittmann
- Department
of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
18
|
Jaroensuk J, Chuaboon L, Kesornpun C, Chaiyen P. Enzymes in riboflavin biosynthesis: Potential antibiotic drug targets. Arch Biochem Biophys 2023; 748:109762. [PMID: 37739114 DOI: 10.1016/j.abb.2023.109762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
The rapid resistance of pathogens to antibiotics has emerged as a major threat to global health. Identification of new antibiotic targets is thus needed for developing alternative drugs. Genes encoding enzymes involved in the biosynthesis of riboflavin and flavin cofactors (FMN/FAD) are attractive targets because these enzymatic reactions are necessary for most bacteria to synthesize flavin cofactors for use in their central metabolic reactions. Moreover, humans lack most of these enzymes because we uptake riboflavin from our diet. This review discusses the current knowledge of enzymes involved in bacterial biosynthesis of riboflavin and other flavin cofactors, as well as the functions of the FMN riboswitch. Here, we highlight recent progress in the structural and mechanistic characterization, and inhibition of GTP cyclohydrolase II (GCH II), lumazine synthase (LS), riboflavin synthase (RFS), FAD synthetase (FADS), and FMN riboswitch, which have been identified as plausible antibiotic targets. As the structures and functions of these enzymes and regulatory systems are not completely understood, they are attractive as subjects for future in-depth biochemical and biophysical analysis.
Collapse
Affiliation(s)
- Juthamas Jaroensuk
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Wangchan, Rayong, 21210, Thailand
| | - Litavadee Chuaboon
- School of Pharmacy and Biomass and Oil Palm Center of Excellence, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Chatchai Kesornpun
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Wangchan, Rayong, 21210, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Wangchan, Rayong, 21210, Thailand.
| |
Collapse
|
19
|
Liao TW, Huang L, Wilson TJ, Ganser LR, Lilley DMJ, Ha T. Linking folding dynamics and function of SAM/SAH riboswitches at the single molecule level. Nucleic Acids Res 2023; 51:8957-8969. [PMID: 37522343 PMCID: PMC10516623 DOI: 10.1093/nar/gkad633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/27/2023] [Accepted: 07/18/2023] [Indexed: 08/01/2023] Open
Abstract
Riboswitches are regulatory elements found in bacterial mRNAs that control downstream gene expression through ligand-induced conformational changes. Here, we used single-molecule FRET to map the conformational landscape of the translational SAM/SAH riboswitch and probe how co-transcriptional ligand-induced conformational changes affect its translation regulation function. Riboswitch folding is highly heterogeneous, suggesting a rugged conformational landscape that allows for sampling of the ligand-bound conformation even in the absence of ligand. The addition of ligand shifts the landscape, favoring the ligand-bound conformation. Mutation studies identified a key structural element, the pseudoknot helix, that is crucial for determining ligand-free conformations and their ligand responsiveness. We also investigated ribosomal binding site accessibility under two scenarios: pre-folding and co-transcriptional folding. The regulatory function of the SAM/SAH riboswitch involves kinetically favoring ligand binding, but co-transcriptional folding reduces this preference with a less compact initial conformation that exposes the Shine-Dalgarno sequence and takes min to redistribute to more compact conformations of the pre-folded riboswitch. Such slow equilibration decreases the effective ligand affinity. Overall, our study provides a deeper understanding of the complex folding process and how the riboswitch adapts its folding pattern in response to ligand, modulates ribosome accessibility and the role of co-transcriptional folding in these processes.
Collapse
Affiliation(s)
- Ting-Wei Liao
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Lin Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Timothy J Wilson
- Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Laura R Ganser
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - David M J Lilley
- Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Taekjip Ha
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, Baltimore, MD, USA
| |
Collapse
|
20
|
Chengalroyen MD, Mehaffy C, Lucas M, Bauer N, Raphela ML, Oketade N, Warner DF, Lewinsohn DA, Lewinsohn DM, Dobos KM, Mizrahi V. Modulation of riboflavin biosynthesis and utilization in mycobacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555301. [PMID: 37693561 PMCID: PMC10491194 DOI: 10.1101/2023.08.30.555301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Riboflavin (vitamin B2) is the precursor of the flavin coenzymes, FAD and FMN, which play a central role in cellular redox metabolism. While humans must obtain riboflavin from dietary sources, certain microbes, including Mycobacterium tuberculosis (Mtb), can biosynthesize riboflavin de novo. Riboflavin precursors have also been implicated in the activation of mucosal-associated invariant T (MAIT) cells which recognize metabolites derived from the riboflavin biosynthesis pathway complexed to the MHC-I-like molecule, MR1. To investigate the biosynthesis and function of riboflavin and its pathway intermediates in mycobacterial metabolism, physiology and MAIT cell recognition, we constructed conditional knockdowns (hypomorphs) in riboflavin biosynthesis and utilization genes in Mycobacterium smegmatis (Msm) and Mtb by inducible CRISPR interference. Using this comprehensive panel of hypomorphs, we analyzed the impact of gene silencing on viability, on the transcription of (other) riboflavin pathway genes, on the levels of the pathway proteins and on riboflavin itself. Our results revealed that (i) despite lacking a canonical transporter, both Msm and Mtb assimilate exogenous riboflavin when supplied at high concentration; (ii) there is functional redundancy in lumazine synthase activity in Msm; (iii) silencing of ribA2 or ribF is profoundly bactericidal in Mtb; and (iv) in Msm, ribA2 silencing results in concomitant knockdown of other pathway genes coupled with RibA2 and riboflavin depletion and is also bactericidal. In addition to their use in genetic validation of potential drug targets for tuberculosis, this collection of hypomorphs provides a useful resource for investigating the role of pathway intermediates in MAIT cell recognition of mycobacteria.
Collapse
Affiliation(s)
- Melissa D. Chengalroyen
- Molecular Mycobacteriology Research Unit, Institute of Infectious Disease and Molecular Medicine & Department of Pathology, University of Cape Town, South Africa
| | - Carolina Mehaffy
- Department of Microbiology, Immunology and Pathology, Colorado State University, Colorado, USA
| | - Megan Lucas
- Department of Microbiology, Immunology and Pathology, Colorado State University, Colorado, USA
| | - Niel Bauer
- Department of Microbiology, Immunology and Pathology, Colorado State University, Colorado, USA
| | - Mabule L. Raphela
- Molecular Mycobacteriology Research Unit, Institute of Infectious Disease and Molecular Medicine & Department of Pathology, University of Cape Town, South Africa
| | - Nurudeen Oketade
- Department of Microbiology, Immunology and Pathology, Colorado State University, Colorado, USA
| | - Digby F. Warner
- Molecular Mycobacteriology Research Unit, Institute of Infectious Disease and Molecular Medicine & Department of Pathology, University of Cape Town, South Africa
- Wellcome Centre for Infectious Disease Research in Africa, University of Cape Town, South Africa
| | | | - David M. Lewinsohn
- Oregon Health and Science University, Oregon, USA
- Portland VA Medical Center, Oregon, USA
| | - Karen M. Dobos
- Department of Microbiology, Immunology and Pathology, Colorado State University, Colorado, USA
| | - Valerie Mizrahi
- Molecular Mycobacteriology Research Unit, Institute of Infectious Disease and Molecular Medicine & Department of Pathology, University of Cape Town, South Africa
- Wellcome Centre for Infectious Disease Research in Africa, University of Cape Town, South Africa
| |
Collapse
|
21
|
Sato K, Hamada M. Recent trends in RNA informatics: a review of machine learning and deep learning for RNA secondary structure prediction and RNA drug discovery. Brief Bioinform 2023; 24:bbad186. [PMID: 37232359 PMCID: PMC10359090 DOI: 10.1093/bib/bbad186] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Computational analysis of RNA sequences constitutes a crucial step in the field of RNA biology. As in other domains of the life sciences, the incorporation of artificial intelligence and machine learning techniques into RNA sequence analysis has gained significant traction in recent years. Historically, thermodynamics-based methods were widely employed for the prediction of RNA secondary structures; however, machine learning-based approaches have demonstrated remarkable advancements in recent years, enabling more accurate predictions. Consequently, the precision of sequence analysis pertaining to RNA secondary structures, such as RNA-protein interactions, has also been enhanced, making a substantial contribution to the field of RNA biology. Additionally, artificial intelligence and machine learning are also introducing technical innovations in the analysis of RNA-small molecule interactions for RNA-targeted drug discovery and in the design of RNA aptamers, where RNA serves as its own ligand. This review will highlight recent trends in the prediction of RNA secondary structure, RNA aptamers and RNA drug discovery using machine learning, deep learning and related technologies, and will also discuss potential future avenues in the field of RNA informatics.
Collapse
Affiliation(s)
- Kengo Sato
- School of System Design and Technology, Tokyo Denki University, 5 Senju Asahi-cho, Adachi-ku, Tokyo 120-8551, Japan
| | - Michiaki Hamada
- Department of Electrical Engineering and Bioscience, Faculty of Science and Engineering, Waseda University, 55N-06-10, 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL) , National Institute of Advanced Industrial Science and Technology (AIST), 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Graduate School of Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| |
Collapse
|
22
|
Lee HK, Lee YT, Fan L, Wilt HM, Conrad CE, Yu P, Zhang J, Shi G, Ji X, Wang YX, Stagno JR. Crystal structure of Escherichia coli thiamine pyrophosphate-sensing riboswitch in the apo state. Structure 2023; 31:848-859.e3. [PMID: 37253356 PMCID: PMC10335363 DOI: 10.1016/j.str.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/16/2023] [Accepted: 05/03/2023] [Indexed: 06/01/2023]
Abstract
The thiamine pyrophosphate (TPP)-sensing riboswitch is one of the earliest discovered and most widespread riboswitches. Numerous structural studies have been reported for this riboswitch bound with various ligands. However, the ligand-free (apo) structure remains unknown. Here, we report a 3.1 Å resolution crystal structure of Escherichia coli TPP riboswitch in the apo state, which exhibits an extended, Y-shaped conformation further supported by small-angle X-ray scattering data and driven molecular dynamics simulations. The loss of ligand interactions results in helical uncoiling of P5 and disruption of the key tertiary interaction between the sensory domains. Opening of the aptamer propagates to the gene-regulatory P1 helix and generates the key conformational flexibility needed for the switching behavior. Much of the ligand-binding site at the three-way junction is unaltered, thereby maintaining a partially preformed pocket. Together, these results paint a dynamic picture of the ligand-induced conformational changes in TPP riboswitches that confer conditional gene regulation.
Collapse
Affiliation(s)
- Hyun Kyung Lee
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Yun-Tzai Lee
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Lixin Fan
- Basic Science Program, Frederick National Laboratory for Cancer Research, Small-Angle X-Ray Scattering Core Facility of National Cancer Institute, Frederick, MD 21702, USA
| | - Haley M Wilt
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Chelsie E Conrad
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Ping Yu
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Genbin Shi
- Biomolecular Structure Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Xinhua Ji
- Biomolecular Structure Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Yun-Xing Wang
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Jason R Stagno
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
23
|
Velema WA. Exploring antibiotic resistance with chemical tools. Chem Commun (Camb) 2023; 59:6148-6158. [PMID: 37039397 PMCID: PMC10194278 DOI: 10.1039/d3cc00759f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/05/2023] [Indexed: 04/08/2023]
Abstract
Antibiotic resistance is an enormous problem that is accountable for over a million deaths annually, with numbers expected to significantly increase over the coming decades. Although some of the underlying causes leading up to antibiotic resistance are well understood, many of the molecular processes involved remain elusive. To better appreciate at a molecular level how resistance emerges, customized chemical biology tools can offer a solution. This Feature Article attempts to provide an overview of the wide variety of tools that have been developed over the last decade, by highlighting some of the more illustrative examples. These include the use of fluorescent, photoaffinity and activatable antibiotics and bacterial components to start to unravel the molecular mechanisms involved in resistance. The antibiotic crisis is an eminent global threat and requires the continuous development of creative chemical tools to dissect and ultimately counteract resistance.
Collapse
Affiliation(s)
- Willem A Velema
- Institute for Molecules and Materials, Radboud University Nijmegen, The Netherlands, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| |
Collapse
|
24
|
Yarra SS, Ashok G, Mohan U. "Toehold Switches; a foothold for Synthetic Biology". Biotechnol Bioeng 2023; 120:932-952. [PMID: 36527224 DOI: 10.1002/bit.28309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/24/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Toehold switches are de novo designed riboregulators that contain two RNA components interacting through linear-linear RNA interactions, regulating the gene expression. These are highly versatile, exhibit excellent orthogonality, wide dynamic range, and are highly programmable, so can be used for various applications in synthetic biology. In this review, we summarized and discussed the design characteristics and benefits of toehold switch riboregulators over conventional riboregulators. We also discussed applications and recent advancements of toehold switch riboregulators in various fields like gene editing, DNA nanotechnology, translational repression, and diagnostics (detection of microRNAs and some pathogens). Toehold switches, therefore, furnished advancement in synthetic biology applications in various fields with their prominent features.
Collapse
Affiliation(s)
- Sai Sumanjali Yarra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education & Research (NIPER) Kolkata, Kolkata, West Bengal, India
| | - Ganapathy Ashok
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education & Research (NIPER) Kolkata, Kolkata, West Bengal, India
| | - Utpal Mohan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education & Research (NIPER) Kolkata, Kolkata, West Bengal, India
| |
Collapse
|
25
|
Hossain MI, Myers M, Herath D, Aldhumani AH, Boesger H, Hines JV. 4-Aminoquinolines modulate RNA structure and function: Pharmacophore implications of a conformationally restricted polyamine. Biochem Biophys Res Commun 2023; 644:55-61. [PMID: 36630735 PMCID: PMC10473465 DOI: 10.1016/j.bbrc.2022.12.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022]
Abstract
RNA structure plays an important role in regulating cellular function and there is a significant emerging interest in targeting RNA for drug discovery. Here we report the identification of 4-aminoquinolines as modulators of RNA structure and function. Aminoquinolines have a broad range of pharmacological activities, but their specific mechanism of action is often not fully understood. Using electrophoretic mobility shift assays and enzymatic probing we identified 4-aminoquinolines that bind the stem-loop II motif (s2m) of SARS-CoV-2 RNA site-specifically and induce dimerization. Using fluorescence-based RNA binding and T-box riboswitch functional assays we identified that hydroxychloroquine binds the T-box riboswitch antiterminator RNA element and inhibits riboswitch function. Based on its structure and riboswitch dose-response activity we identified that the antagonist activity of hydroxychloroquine is consistent with it being a conformationally restricted analog of the polyamine spermidine. Given the known role that polyamines play in RNA function, the identification of an RNA binding ligand with the pharmacophore of a conformationally restricted polyamine has significant implications for further elucidation of RNA structure-function relationships and RNA-targeted drug discovery.
Collapse
Affiliation(s)
- Md Ismail Hossain
- Department of Chemistry & Biochemistry, Ohio University, Athens, OH, 45701, USA
| | - Mason Myers
- Department of Chemistry & Biochemistry, Ohio University, Athens, OH, 45701, USA; Honors Tutorial College, Ohio University, Athens, OH, 45701, USA
| | - Danushika Herath
- Department of Chemistry & Biochemistry, Ohio University, Athens, OH, 45701, USA; Molecular & Cellular Biology Program, Ohio University, Athens, OH, 45701, USA
| | - Ali H Aldhumani
- Department of Chemistry & Biochemistry, Ohio University, Athens, OH, 45701, USA
| | - Hannah Boesger
- Department of Biological Sciences, Ohio University, Athens, OH, 45701, USA; Honors Tutorial College, Ohio University, Athens, OH, 45701, USA
| | - Jennifer V Hines
- Department of Chemistry & Biochemistry, Ohio University, Athens, OH, 45701, USA; Molecular & Cellular Biology Program, Ohio University, Athens, OH, 45701, USA.
| |
Collapse
|
26
|
Kavita K, Breaker RR. Discovering riboswitches: the past and the future. Trends Biochem Sci 2023; 48:119-141. [PMID: 36150954 PMCID: PMC10043782 DOI: 10.1016/j.tibs.2022.08.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/18/2022] [Accepted: 08/26/2022] [Indexed: 01/25/2023]
Abstract
Riboswitches are structured noncoding RNA domains used by many bacteria to monitor the concentrations of target ligands and regulate gene expression accordingly. In the past 20 years over 55 distinct classes of natural riboswitches have been discovered that selectively sense small molecules or elemental ions, and thousands more are predicted to exist. Evidence suggests that some riboswitches might be direct descendants of the RNA-based sensors and switches that were likely present in ancient organisms before the evolutionary emergence of proteins. We provide an overview of the current state of riboswitch research, focusing primarily on the discovery of riboswitches, and speculate on the major challenges facing researchers in the field.
Collapse
Affiliation(s)
- Kumari Kavita
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA
| | - Ronald R Breaker
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520-8103, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8103, USA.
| |
Collapse
|
27
|
Alkatheri AH, Yap PSX, Abushelaibi A, Lai KS, Cheng WH, Erin Lim SH. Microbial Genomics: Innovative Targets and Mechanisms. Antibiotics (Basel) 2023; 12:190. [PMID: 36830101 PMCID: PMC9951906 DOI: 10.3390/antibiotics12020190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Multidrug resistance (MDR) has become an increasing threat to global health because bacteria can develop resistance to antibiotics over time. Scientists worldwide are searching for new approaches that go beyond traditional antibiotic discovery and development pipelines. Advances in genomics, however, opened up an unexplored therapeutic opportunity for the discovery of new antibacterial agents. Genomic approaches have been used to discover several novel antibiotics that target critical processes for bacterial growth and survival, including histidine kinases (HKs), LpxC, FabI, peptide deformylase (PDF), and aminoacyl-tRNA synthetases (AaRS). In this review, we will discuss the use of microbial genomics in the search for innovative and promising drug targets as well as the mechanisms of action for novel antimicrobial agents. We will also discuss future directions on how the utilization of the microbial genomics approach could improve the odds of antibiotic development having a more successful outcome.
Collapse
Affiliation(s)
- Asma Hussain Alkatheri
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| | - Polly Soo-Xi Yap
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor 47500, Malaysia
| | - Aisha Abushelaibi
- Office of Campus Director, Abu Dhabi Colleges, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| | - Wan-Hee Cheng
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Nilai 71800, Malaysia
| | - Swee-Hua Erin Lim
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| |
Collapse
|
28
|
Stängle D, Silkenath B, Gehle P, Esser A, Mayer G, Wittmann V. Carba-Sugar Analogs of Glucosamine-6-Phosphate: New Activators for the glmS Riboswitch. Chemistry 2023; 29:e202202378. [PMID: 36326082 PMCID: PMC10099210 DOI: 10.1002/chem.202202378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 11/06/2022]
Abstract
Riboswitches are 5'-untranslated mRNA regions mostly found in bacteria. They are promising drug targets to overcome emerging bacterial resistance against commonly used antibiotics. The glmS riboswitch is unique among the family of riboswitches as it is a ribozyme that undergoes self-cleavage upon binding to glucosamine-6-phosphate (GlcN6P). Previously, we showed that carba glucosamine-6-phosphate (carba-GlcN6P) induces self-cleavage of the riboswitch with a potency similar to that of GlcN6P. Here, we report a synthetic approach to a new class of carba-GlcN6P derivatives with an alkoxy substituent in the carba position. Key features of the synthesis are a ring closing metathesis followed by a hydroboration. The strategy gives access to libraries of carba-GlcN6P derivatives. Ribozyme cleavage assays unraveled new activators for the glmS riboswitch from Listeria monocytogenes and Clostridium difficile.
Collapse
Affiliation(s)
- David Stängle
- Department of ChemistryUniversity of KonstanzUniversitätsstraße 1078464KonstanzGermany
| | - Bjarne Silkenath
- Department of ChemistryUniversity of KonstanzUniversitätsstraße 1078464KonstanzGermany
| | - Paul Gehle
- LIMES InstituteCenter for Aptamer Research & DevelopmentUniversity of BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Anna Esser
- LIMES InstituteCenter for Aptamer Research & DevelopmentUniversity of BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Günter Mayer
- LIMES InstituteCenter for Aptamer Research & DevelopmentUniversity of BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Valentin Wittmann
- Department of ChemistryUniversity of KonstanzUniversitätsstraße 1078464KonstanzGermany
| |
Collapse
|
29
|
Lightfoot HL, Smith GF. Targeting RNA with small molecules-A safety perspective. Br J Pharmacol 2023. [PMID: 36631428 DOI: 10.1111/bph.16027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/30/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023] Open
Abstract
RNA is a major player in cellular function, and consequently can drive a number of disease pathologies. Over the past several years, small molecule-RNA targeting (smRNA targeting) has developed into a promising drug discovery approach. Numerous techniques, tools, and assays have been developed to support this field, and significant investments have been made by pharmaceutical and biotechnology companies. To date, the focus has been on identifying disease validated primary targets for smRNA drug development, yet RNA as a secondary (off) target for all small molecule drug programs largely has been unexplored. In this perspective, we discuss structure, target, and mechanism-driven safety aspects of smRNAs and highlight how these parameters can be evaluated in drug discovery programs to produce potentially safer drugs.
Collapse
Affiliation(s)
- Helen L Lightfoot
- Safety and Mechanistic Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Graham F Smith
- Data Science and AI, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| |
Collapse
|
30
|
Ellinger E, Chauvier A, Romero RA, Liu Y, Ray S, Walter NG. Riboswitches as therapeutic targets: promise of a new era of antibiotics. Expert Opin Ther Targets 2023; 27:433-445. [PMID: 37364239 PMCID: PMC10527229 DOI: 10.1080/14728222.2023.2230363] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/13/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
INTRODUCTION The growth of antibiotic resistance among bacterial pathogens is an impending global threat that can only be averted through the development of novel antibacterial drugs. A promising answer could be the targeting of riboswitches, structured RNA elements found almost exclusively in bacteria. AREAS COVERED This review examines the potential of riboswitches as novel antibacterial drug targets. The limited mechanisms of action of currently available antibiotics are summarized, followed by a delineation of the functional mechanisms of riboswitches. We then discuss the potential for developing novel approaches that target paradigmatic riboswitches in the context of their bacterial gene expression machinery. EXPERT OPINION We highlight potential advantages of targeting riboswitches in their functional form, embedded within gene expression complexes critical for bacterial survival. We emphasize the benefits of this approach, including potentially higher species specificity and lower side effects.
Collapse
Affiliation(s)
- Emily Ellinger
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Adrien Chauvier
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Rosa A. Romero
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Yichen Liu
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Sujay Ray
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Nils G. Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
31
|
Traykovska M, Penchovsky R. Targeting SAM-I Riboswitch Using Antisense Oligonucleotide Technology for Inhibiting the Growth of Staphylococcus aureus and Listeria monocytogenes. Antibiotics (Basel) 2022; 11:1662. [PMID: 36421306 PMCID: PMC9686682 DOI: 10.3390/antibiotics11111662] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 08/05/2023] Open
Abstract
With the discovery of antibiotics, a productive period of antibacterial drug innovation and application in healthcare systems and agriculture resulted in saving millions of lives. Unfortunately, the misusage of antibiotics led to the emergence of many resistant pathogenic strains. Some riboswitches have risen as promising targets for developing antibacterial drugs. Here, we describe the design and applications of the chimeric antisense oligonucleotide (ASO) as a novel antibacterial agent. The pVEC-ASO-1 consists of a cell-penetrating oligopeptide known as pVEC attached to an oligonucleotide part with modifications of the first and the second generations. This combination of modifications enables specific mRNA degradation under multiple turnover conditions via RNase H. The pVEC-ASO targets the S-adenosyl methionine (SAM)-I riboswitch found in the genome of many Gram-positive bacteria. The SAM-I riboswitch controls not only the biosynthesis but also the transport of SAM. We have established an antibiotic dosage of 700 nM (4.5 µg/mL) of pVEC-ASO that inhibits 80% of the growth of Staphylococcus aureus and Listeria monocytogenes. The pVEC-ASO-1 does not show any toxicity in the human cell line at MIC80's concentration. We have proven that the SAM-I riboswitch is a suitable target for antibacterial drug development based on ASO. The approach is rational and easily adapted to other bacterial RNA targets.
Collapse
|
32
|
Cobalamin Riboswitches Are Broadly Sensitive to Corrinoid Cofactors to Enable an Efficient Gene Regulatory Strategy. mBio 2022; 13:e0112122. [PMID: 35993747 PMCID: PMC9600662 DOI: 10.1128/mbio.01121-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In bacteria, many essential metabolic processes are controlled by riboswitches, gene regulatory RNAs that directly bind and detect metabolites. Highly specific effector binding enables riboswitches to respond to a single biologically relevant metabolite. Cobalamin riboswitches are a potential exception because over a dozen chemically similar but functionally distinct cobalamin variants (corrinoid cofactors) exist in nature. Here, we measured cobalamin riboswitch activity in vivo using a Bacillus subtilis fluorescent reporter system and found, among 38 tested riboswitches, a subset responded to corrinoids promiscuously, while others were semiselective. Analyses of chimeric riboswitches and structural models indicate, unlike other riboswitch classes, cobalamin riboswitches indirectly differentiate among corrinoids by sensing differences in their structural conformation. This regulatory strategy aligns riboswitch-corrinoid specificity with cellular corrinoid requirements in a B. subtilis model. Thus, bacteria can employ broadly sensitive riboswitches to cope with the chemical diversity of essential metabolites. IMPORTANCE Some bacterial mRNAs contain a region called a riboswitch which controls gene expression by binding to a metabolite in the cell. Typically, riboswitches sense and respond to a limited range of cellular metabolites, often just one type. In this work, we found the cobalamin (vitamin B12) riboswitch class is an exception, capable of sensing and responding to multiple variants of B12-collectively called corrinoids. We found cobalamin riboswitches vary in corrinoid specificity with some riboswitches responding to each of the corrinoids we tested, while others responding only to a subset of corrinoids. Our results suggest the latter class of riboswitches sense intrinsic conformational differences among corrinoids in order to support the corrinoid-specific needs of the cell. These findings provide insight into how bacteria sense and respond to an exceptionally diverse, often essential set of enzyme cofactors.
Collapse
|
33
|
Rütten A, Kirchner T, Musiol-Kroll EM. Overview on Strategies and Assays for Antibiotic Discovery. Pharmaceuticals (Basel) 2022; 15:1302. [PMID: 36297414 PMCID: PMC9607151 DOI: 10.3390/ph15101302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/23/2022] Open
Abstract
The increase in antibiotic resistance poses a major threat to global health. Actinomycetes, the Gram-positive bacteria of the order Actinomycetales, are fertile producers of bioactive secondary metabolites, including antibiotics. Nearly two-thirds of antibiotics that are used for the treatment of bacterial infections were originally isolated from actinomycetes strains belonging to the genus Streptomyces. This emphasizes the importance of actinomycetes in antibiotic discovery. However, the identification of a new antimicrobial compound and the exploration of its mode of action are very challenging tasks. Therefore, different approaches that enable the "detection" of an antibiotic and the characterization of the mechanisms leading to the biological activity are indispensable. Beyond bioinformatics tools facilitating the identification of biosynthetic gene clusters (BGCs), whole cell-screenings-in which cells are exposed to actinomycete-derived compounds-are a common strategy applied at the very early stage in antibiotic drug development. More recently, target-based approaches have been established. In this case, the drug candidates were tested for interactions with usually validated targets. This review focuses on the bioactivity-based screening methods and provides the readers with an overview on the most relevant assays for the identification of antibiotic activity and investigation of mechanisms of action. Moreover, the article includes examples of the successful application of these methods and suggestions for improvement.
Collapse
Affiliation(s)
- Anika Rütten
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Microbiology/Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’ (CMFI), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Teresa Kirchner
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Microbiology/Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’ (CMFI), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Ewa Maria Musiol-Kroll
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Microbiology/Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’ (CMFI), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| |
Collapse
|
34
|
Vikram, Mishra V, Rana A, Ahire JJ. Riboswitch-mediated regulation of riboflavin biosynthesis genes in prokaryotes. 3 Biotech 2022; 12:278. [PMID: 36275359 PMCID: PMC9474784 DOI: 10.1007/s13205-022-03348-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/02/2022] [Indexed: 11/01/2022] Open
Abstract
Prokaryotic organisms frequently use riboswitches to quantify intracellular metabolite concentration via high-affinity metabolite receptors. Riboswitches possess a metabolite-sensing system that controls gene regulation in a cis-acting fashion at the initiation of transcriptional/translational level by binding with a specific metabolite and controlling various biochemical pathways. Riboswitch binds with flavin mononucleotide (FMN), a phosphorylated form of riboflavin and controls gene expression involved in riboflavin biosynthesis and transport pathway. The first step of the riboflavin biosynthesis pathway is initiated by the conversion of guanine nucleotide triphosphate (GTP), which is an intermediate of the purine biosynthesis pathway. An alternative pentose phosphate pathway of riboflavin biosynthesis includes the enzymatic conversion of ribulose-5-phosphate into 3, 4 dihydroxy-2-butanone-4-phosphates by DHBP synthase. The product of ribAB interferes with both GTP cyclohydrolase II as well as DHBP synthase activities, which catalyze the cleavage of GTP and converts DHBP Ribu5P in the initial steps of both riboflavin biosynthesis branches. Riboswitches are located in the 5' untranslated region (5' UTR) of messenger RNAs and contain an aptamer domain (highly conserved in sequence) where metabolite binding leads to a conformational change in an aptamer domain, which modulate the regulation of gene expression located on bacterial mRNA. In this review, we focus on how riboswitch regulates the riboflavin biosynthesis pathway in Bacillus subtilis and Lactobacillus plantarum.
Collapse
Affiliation(s)
- Vikram
- Department of Basic and Applied Sciences, National Institute of Food Technology, Entrepreneurship and Management (NIFTEM), Sonipat, Haryana India
| | - Vijendra Mishra
- Department of Basic and Applied Sciences, National Institute of Food Technology, Entrepreneurship and Management (NIFTEM), Sonipat, Haryana India
| | - Ananya Rana
- Department of Basic and Applied Sciences, National Institute of Food Technology, Entrepreneurship and Management (NIFTEM), Sonipat, Haryana India
| | - Jayesh J. Ahire
- Centre for Research and Development, Unique Biotech Ltd., Plot No. 2, Phase II, MN Park, Hyderabad, Telangana India
| |
Collapse
|
35
|
Giarimoglou N, Kouvela A, Maniatis A, Papakyriakou A, Zhang J, Stamatopoulou V, Stathopoulos C. A Riboswitch-Driven Era of New Antibacterials. Antibiotics (Basel) 2022; 11:antibiotics11091243. [PMID: 36140022 PMCID: PMC9495366 DOI: 10.3390/antibiotics11091243] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/01/2022] [Accepted: 09/08/2022] [Indexed: 11/26/2022] Open
Abstract
Riboswitches are structured non-coding RNAs found in the 5′ UTR of important genes for bacterial metabolism, virulence and survival. Upon the binding of specific ligands that can vary from simple ions to complex molecules such as nucleotides and tRNAs, riboswitches change their local and global mRNA conformations to affect downstream transcription or translation. Due to their dynamic nature and central regulatory role in bacterial metabolism, riboswitches have been exploited as novel RNA-based targets for the development of new generation antibacterials that can overcome drug-resistance problems. During recent years, several important riboswitch structures from many bacterial representatives, including several prominent human pathogens, have shown that riboswitches are ideal RNA targets for new compounds that can interfere with their structure and function, exhibiting much reduced resistance over time. Most interestingly, mainstream antibiotics that target the ribosome have been shown to effectively modulate the regulatory behavior and capacity of several riboswitches, both in vivo and in vitro, emphasizing the need for more in-depth studies and biological evaluation of new antibiotics. Herein, we summarize the currently known compounds that target several main riboswitches and discuss the role of mainstream antibiotics as modulators of T-box riboswitches, in the dawn of an era of novel inhibitors that target important bacterial regulatory RNAs.
Collapse
Affiliation(s)
- Nikoleta Giarimoglou
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Adamantia Kouvela
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Alexandros Maniatis
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Athanasios Papakyriakou
- Institute of Biosciences & Applications, National Centre for Scientific Research “Demokritos”, Ag. Paraskevi, 15341 Athens, Greece
| | - Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | | | - Constantinos Stathopoulos
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
- Correspondence: ; Tel.: +30-2610-997932
| |
Collapse
|
36
|
Miotto P, Sorrentino R, De Giorgi S, Provvedi R, Cirillo DM, Manganelli R. Transcriptional regulation and drug resistance in Mycobacterium tuberculosis. Front Cell Infect Microbiol 2022; 12:990312. [PMID: 36118045 PMCID: PMC9480834 DOI: 10.3389/fcimb.2022.990312] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Bacterial drug resistance is one of the major challenges to present and future human health, as the continuous selection of multidrug resistant bacteria poses at serious risk the possibility to treat infectious diseases in the near future. One of the infection at higher risk to become incurable is tuberculosis, due to the few drugs available in the market against Mycobacterium tuberculosis. Drug resistance in this species is usually due to point mutations in the drug target or in proteins required to activate prodrugs. However, another interesting and underexplored aspect of bacterial physiology with important impact on drug susceptibility is represented by the changes in transcriptional regulation following drug exposure. The main regulators involved in this phenomenon in M. tuberculosis are the sigma factors, and regulators belonging to the WhiB, GntR, XRE, Mar and TetR families. Better understanding the impact of these regulators in survival to drug treatment might contribute to identify new drug targets and/or to design new strategies of intervention.
Collapse
Affiliation(s)
- Paolo Miotto
- Emerging Bacterial Pathogens Unit, Div. of Immunology, Transplantation and Infectious Diseases IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Rita Sorrentino
- Emerging Bacterial Pathogens Unit, Div. of Immunology, Transplantation and Infectious Diseases IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Stefano De Giorgi
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | - Daniela Maria Cirillo
- Emerging Bacterial Pathogens Unit, Div. of Immunology, Transplantation and Infectious Diseases IRCCS San Raffaele Scientific Institute, Milano, Italy
| | | |
Collapse
|
37
|
Pavlova N, Penchovsky R. Bioinformatics and Genomic Analyses of the Suitability of Eight Riboswitches for Antibacterial Drug Targets. Antibiotics (Basel) 2022; 11:antibiotics11091177. [PMID: 36139956 PMCID: PMC9495176 DOI: 10.3390/antibiotics11091177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/23/2022] Open
Abstract
Antibiotic resistance (AR) is an acute problem that results in prolonged and debilitating illnesses. AR mortality worldwide is growing and causes a pressing need to research novel mechanisms of action and untested target molecules. This article presents in silico analyses of eight bacterial riboswitches for their suitability for antibacterial drug targets. Most bacterial riboswitches are located in the 5′-untranslated region of messenger RNAs, act as allosteric cis-acting gene control elements, and have not been found in humans before. Sensing metabolites, the riboswitches regulate the synthesis of vital cellular metabolites in various pathogenic bacteria. The analyses performed in this article represent a complete and informative genome-wide bioinformatics analysis of the adequacy of eight riboswitches as antibacterial drug targets in different pathogenic bacteria based on four criteria. Due to the ability of the riboswitch to control biosynthetic pathways and transport proteins of essential metabolites and the presence/absence of alternative biosynthetic pathways, we classified them into four groups based on their suitability for use as antibacterial drug targets guided by our in silico analyses. We concluded that some of them are promising targets for antibacterial drug discovery, such as the PreQ1, MoCo RNA, cyclic-di-GMP I, and cyclic-di-GMP II riboswitches.
Collapse
|
38
|
Kallert E, Fischer TR, Schneider S, Grimm M, Helm M, Kersten C. Protein-Based Virtual Screening Tools Applied for RNA-Ligand Docking Identify New Binders of the preQ 1-Riboswitch. J Chem Inf Model 2022; 62:4134-4148. [PMID: 35994617 DOI: 10.1021/acs.jcim.2c00751] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Targeting RNA with small molecules is an emerging field. While several ligands for different RNA targets are reported, structure-based virtual screenings (VSs) against RNAs are still rare. Here, we elucidated the general capabilities of protein-based docking programs to reproduce native binding modes of small-molecule RNA ligands and to discriminate known binders from decoys by the scoring function. The programs were found to perform similar compared to the RNA-based docking tool rDOCK, and the challenges faced during docking, namely, protomer and tautomer selection, target dynamics, and explicit solvent, do not largely differ from challenges in conventional protein-ligand docking. A prospective VS with the Bacillus subtilis preQ1-riboswitch aptamer domain performed with FRED, HYBRID, and FlexX followed by microscale thermophoresis assays identified six active compounds out of 23 tested VS hits with potencies between 29.5 nM and 11.0 μM. The hits were selected not solely based on their docking score but for resembling key interactions of the native ligand. Therefore, this study demonstrates the general feasibility to perform structure-based VSs against RNA targets, while at the same time it highlights pitfalls and their potential solutions when executing RNA-ligand docking.
Collapse
Affiliation(s)
- Elisabeth Kallert
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, Mainz 55128, Germany
| | - Tim R Fischer
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, Mainz 55128, Germany
| | - Simon Schneider
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, Mainz 55128, Germany
| | - Maike Grimm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, Mainz 55128, Germany
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, Mainz 55128, Germany
| | - Christian Kersten
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, Mainz 55128, Germany
| |
Collapse
|
39
|
Focht CM, Strobel SA. Efficient quantitative monitoring of translational initiation by RelE cleavage. Nucleic Acids Res 2022; 50:e105. [PMID: 35871288 PMCID: PMC9561414 DOI: 10.1093/nar/gkac614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/23/2022] [Accepted: 07/19/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
The sequences of the 5′ untranslated regions (5′-UTRs) of mRNA alter gene expression across domains of life. Transcriptional modulators can be easily assayed through transcription termination, but translational regulators often require indirect, laborious methods. We have leveraged RelE’s ribosome-dependent endonuclease activity to develop a quantitative assay to monitor translation initiation of cis-regulatory mRNAs. RelE cleavage accurately reports ligand-dependent changes in ribosome association for two translational riboswitches and provides quantitative information about each switch's sensitivity and range of response. RelE accurately reads out sequence-driven changes in riboswitch specificity and function and is quantitatively dependent upon ligand concentration. RelE cleavage similarly captures differences in translation initiation between yeast 5′-UTR isoforms. RelE cleavage can thus reveal a plethora of information about translation initiation in different domains of life.
Collapse
Affiliation(s)
- Caroline M Focht
- Department of Molecular Biophysics and Biochemistry, Yale University , New Haven , CT 06510 , USA
- Institute of Biomolecular Design and Discovery , West Haven , CT 06516 , USA
| | - Scott A Strobel
- Department of Molecular Biophysics and Biochemistry, Yale University , New Haven , CT 06510 , USA
- Institute of Biomolecular Design and Discovery , West Haven , CT 06516 , USA
- Department of Chemistry, Yale University , New Haven , CT 06511 , USA
| |
Collapse
|
40
|
Crielaard S, Maassen R, Vosman T, Rempkens I, Velema WA. Affinity-Based Profiling of the Flavin Mononucleotide Riboswitch. J Am Chem Soc 2022; 144:10462-10470. [PMID: 35666649 PMCID: PMC9204756 DOI: 10.1021/jacs.2c02685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Riboswitches are
structural RNA elements that control gene expression.
These naturally occurring RNA sensors are of continued interest as
antibiotic targets, molecular sensors, and functional elements of
synthetic circuits. Here, we describe affinity-based profiling of
the flavin mononucleotide (FMN) riboswitch to characterize ligand
binding and structural folding. We designed and synthesized photoreactive
ligands and used them for photoaffinity labeling. We showed selective
labeling of the FMN riboswitch and used this covalent interaction
to quantitatively measure ligand binding, which we demonstrate with
the naturally occurring antibiotic roseoflavin. We measured conditional
riboswitch folding as a function of temperature and cation concentration.
Furthermore, combining photoaffinity labeling with reverse transcription
revealed ligand binding sites within the aptamer domain with single-nucleotide
resolution. The photoaffinity probe was applied to cellular extracts
of Bacillus subtilis to demonstrate conditional folding
of the endogenous low-abundant ribD FMN riboswitch
in biologically derived samples using quantitative PCR. Lastly, binding
of the riboswitch-targeting antibiotic roseoflavin to the FMN riboswitch
was measured in live bacteria using the photoaffinity probe.
Collapse
Affiliation(s)
- Stefan Crielaard
- Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Rick Maassen
- Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Tess Vosman
- Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Ivy Rempkens
- Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Willem A Velema
- Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
41
|
The emerging role of bacterial regulatory RNAs in disease. Trends Microbiol 2022; 30:959-972. [DOI: 10.1016/j.tim.2022.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 02/02/2023]
|
42
|
Kumar S, Reddy G. TPP Riboswitch Populates Holo-Form-like Structure Even in the Absence of Cognate Ligand at High Mg 2+ Concentration. J Phys Chem B 2022; 126:2369-2381. [PMID: 35298161 DOI: 10.1021/acs.jpcb.1c10794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Riboswitches are noncoding RNA that regulate gene expression by folding into specific three-dimensional structures (holo-form) upon binding by their cognate ligand in the presence of Mg2+. Riboswitch functioning is also hypothesized to be under kinetic control requiring large cognate ligand concentrations. We ask the question under thermodynamic conditions, can the riboswitches populate structures similar to the holo-form only in the presence of Mg2+ and absence of cognate ligand binding. We addressed this question using thiamine pyrophosphate (TPP) riboswitch as a model system and computer simulations using a coarse-grained model for RNA. The folding free energy surface (FES) shows that with the initial increase in Mg2+ concentration ([Mg2+]), the aptamer domain (AD) of TPP riboswitch undergoes a barrierless collapse in its dimensions. On further increase in [Mg2+], intermediates separated by barriers appear on the FES, and one of the intermediates has a TPP ligand-binding competent structure. We show that site-specific binding of the Mg2+ aids in the formation of tertiary contacts. For [Mg2+] greater than physiological concentration, AD folds into a structure similar to the crystal structure of the TPP holo-form even in the absence of the TPP ligand. The folding kinetics shows that TPP AD populates an intermediate due to the misalignment of two arms present in the structure, which acts as a kinetic trap, leading to larger folding timescales. The predictions of the intermediate structures from the simulations are amenable for experimental verification.
Collapse
Affiliation(s)
- Sunil Kumar
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Govardhan Reddy
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| |
Collapse
|
43
|
Vargas-Junior V, Antunes D, Guimarães AC, Caffarena E. In silico investigation of riboswitches in fungi: structural and dynamical insights into TPP riboswitches in Aspergillus oryzae. RNA Biol 2022; 19:90-103. [PMID: 34989318 PMCID: PMC8786325 DOI: 10.1080/15476286.2021.2015174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Riboswitches are RNA sensors affecting post-transcriptional processes through their ability to bind to small molecules. Thiamine pyrophosphate (TPP) riboswitch plays a crucial role in regulating genes involved in synthesizing or transporting thiamine and phosphorylated derivatives in bacteria, archaea, plants, and fungi. Although TPP riboswitch is reasonably well known in bacteria, there is a gap in the knowledge of the fungal TPP riboswitches structure and dynamics, involving mainly sequence variation and TPP interaction with the aptamers. On the other hand, the increase of fungal infections and antifungal resistance raises the need for new antifungal therapies. In this work, we used computational approaches to build three-dimensional models for the three TPP riboswitches identified in Aspergillus oryzae, in which we studied their structure, dynamics, and binding free energy change (ΔGbind) with TPP. Interaction patterns between the TPP and the surrounding nucleotides were conserved among the three models, evidencing high structural conservation. Furthermore, we show that the TPP riboswitch from the A. oryzae NMT1 gene behaves similarly to the E. coli thiA gene concerning the ΔGbind. In contrast, mutations in the fungal TPP riboswitches from THI4 and the nucleoside transporter genes led to structural differences, affecting the binding-site volume, hydrogen bond occupancy, and ΔGbind. Besides, the number of water molecules surrounding TPP influenced the ΔGbind considerably. Notably, our ΔGbind estimation agreed with previous experimental data, reinforcing the relationship between sequence conservation and TPP interaction.
Collapse
Affiliation(s)
- Valdemir Vargas-Junior
- Computational Biophysics and Molecular Modeling Group, Scientific Computing Programme (Procc - Fiocruz), Rio de Janeiro, Brazil
| | - Deborah Antunes
- Laboratory of Functional Genomics and Bioinformatics, Oswaldo Cruz Institute (Ioc - Fiocruz), Rio de Janeiro, Brazil
| | - Ana Carolina Guimarães
- Laboratory of Functional Genomics and Bioinformatics, Oswaldo Cruz Institute (Ioc - Fiocruz), Rio de Janeiro, Brazil
| | - Ernesto Caffarena
- Computational Biophysics and Molecular Modeling Group, Scientific Computing Programme (Procc - Fiocruz), Rio de Janeiro, Brazil
| |
Collapse
|
44
|
De Rop AS, Rombaut J, Willems T, De Graeve M, Vanhaecke L, Hulpiau P, De Maeseneire SL, De Mol ML, Soetaert WK. Novel Alkaloids from Marine Actinobacteria: Discovery and Characterization. Mar Drugs 2021; 20:md20010006. [PMID: 35049861 PMCID: PMC8777666 DOI: 10.3390/md20010006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/14/2021] [Accepted: 12/18/2021] [Indexed: 01/03/2023] Open
Abstract
The marine environment is an excellent resource for natural products with therapeutic potential. Its microbial inhabitants, often associated with other marine organisms, are specialized in the synthesis of bioactive secondary metabolites. Similar to their terrestrial counterparts, marine Actinobacteria are a prevalent source of these natural products. Here, we discuss 77 newly discovered alkaloids produced by such marine Actinobacteria between 2017 and mid-2021, as well as the strategies employed in their elucidation. While 12 different classes of alkaloids were unraveled, indoles, diketopiperazines, glutarimides, indolizidines, and pyrroles were most dominant. Discoveries were mainly based on experimental approaches where microbial extracts were analyzed in relation to novel compounds. Although such experimental procedures have proven useful in the past, the methodologies need adaptations to limit the chance of compound rediscovery. On the other hand, genome mining provides a different angle for natural product discovery. While the technology is still relatively young compared to experimental screening, significant improvement has been made in recent years. Together with synthetic biology tools, both genome mining and extract screening provide excellent opportunities for continued drug discovery from marine Actinobacteria.
Collapse
Affiliation(s)
- Anne-Sofie De Rop
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (A.-S.D.R.); (J.R.); (T.W.); (M.L.D.M.); (W.K.S.)
| | - Jeltien Rombaut
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (A.-S.D.R.); (J.R.); (T.W.); (M.L.D.M.); (W.K.S.)
| | - Thomas Willems
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (A.-S.D.R.); (J.R.); (T.W.); (M.L.D.M.); (W.K.S.)
| | - Marilyn De Graeve
- Laboratory of Chemical Analysis (LCA), Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (M.D.G.); (L.V.)
| | - Lynn Vanhaecke
- Laboratory of Chemical Analysis (LCA), Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (M.D.G.); (L.V.)
| | - Paco Hulpiau
- BioInformatics Knowledge Center (BiKC), Campus Station Brugge, Howest University of Applied Sciences, Rijselstraat 5, 8200 Bruges, Belgium;
| | - Sofie L. De Maeseneire
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (A.-S.D.R.); (J.R.); (T.W.); (M.L.D.M.); (W.K.S.)
- Correspondence:
| | - Maarten L. De Mol
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (A.-S.D.R.); (J.R.); (T.W.); (M.L.D.M.); (W.K.S.)
| | - Wim K. Soetaert
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (A.-S.D.R.); (J.R.); (T.W.); (M.L.D.M.); (W.K.S.)
| |
Collapse
|
45
|
Kozlovskii I, Popov P. Structure-based deep learning for binding site detection in nucleic acid macromolecules. NAR Genom Bioinform 2021; 3:lqab111. [PMID: 34859211 PMCID: PMC8633674 DOI: 10.1093/nargab/lqab111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/14/2021] [Accepted: 11/09/2021] [Indexed: 12/30/2022] Open
Abstract
Structure-based drug design (SBDD) targeting nucleic acid macromolecules, particularly RNA, is a gaining momentum research direction that already resulted in several FDA-approved compounds. Similar to proteins, one of the critical components in SBDD for RNA is the correct identification of the binding sites for putative drug candidates. RNAs share a common structural organization that, together with the dynamic nature of these molecules, makes it challenging to recognize binding sites for small molecules. Moreover, there is a need for structure-based approaches, as sequence information only does not consider conformation plasticity of nucleic acid macromolecules. Deep learning holds a great promise to resolve binding site detection problem, but requires a large amount of structural data, which is very limited for nucleic acids, compared to proteins. In this study we composed a set of ∼2000 nucleic acid-small molecule structures comprising ∼2500 binding sites, which is ∼40-times larger than previously used one, and demonstrated the first structure-based deep learning approach, BiteNetN, to detect binding sites in nucleic acid structures. BiteNetN operates with arbitrary nucleic acid complexes, shows the state-of-the-art performance, and can be helpful in the analysis of different conformations and mutant variants, as we demonstrated for HIV-1 TAR RNA and ATP-aptamer case studies.
Collapse
Affiliation(s)
- Igor Kozlovskii
- iMolecule, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | - Petr Popov
- iMolecule, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| |
Collapse
|
46
|
Abstract
To resolve the growing problem of drug resistance in the treatment of bacterial and fungal pathogens, specific cellular targets and pathways can be used as targets for new antimicrobial agents. Endogenous riboflavin biosynthesis is a conserved pathway that exists in most bacteria and fungi. In this review, the roles of endogenous and exogenous riboflavin in infectious disease as well as several antibacterial agents, which act as analogues of the riboflavin biosynthesis pathway, are summarized. In addition, the effects of exogenous riboflavin on immune cells, cytokines, and heat shock proteins are described. Moreover, the immune response of endogenous riboflavin metabolites in infectious diseases, recognized by MHC-related protein-1, and then presented to mucosal associated invariant T cells, is highlighted. This information will provide a strategy to identify novel drug targets as well as highlight the possible clinical use of riboflavin.
Collapse
Affiliation(s)
- Junwen Lei
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou People's Republic of China
| | - Caiyan Xin
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou People's Republic of China
| | - Wei Xiao
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou People's Republic of China
| | - Wenbi Chen
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou People's Republic of China
| | - Zhangyong Song
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou People's Republic of China
| |
Collapse
|
47
|
Lundquist KP, Panchal V, Gotfredsen CH, Brenk R, Clausen MH. Fragment-Based Drug Discovery for RNA Targets. ChemMedChem 2021; 16:2588-2603. [PMID: 34101375 DOI: 10.1002/cmdc.202100324] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Indexed: 12/26/2022]
Abstract
Rapid development within the fields of both fragment-based drug discovery (FBDD) and medicinal targeting of RNA provides possibilities for combining technologies and methods in novel ways. This review provides an overview of fragment-based screening (FBS) against RNA targets, including a discussion of the most recently used screening and hit validation methods such as NMR spectroscopy, X-ray crystallography, and virtual screening methods. A discussion of fragment library design based on research from small-molecule RNA binders provides an overview on both the currently limited guidelines within RNA-targeting fragment library design, and future possibilities. Finally, future perspectives are provided on screening and hit validation methods not yet used in combination with both fragment screening and RNA targets.
Collapse
Affiliation(s)
- Kasper P Lundquist
- Center for Nanomedicine and Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800, Kgs. Lyngby, Denmark
| | - Vipul Panchal
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5020, Bergen, Norway
| | - Charlotte H Gotfredsen
- NMR Center ⋅ DTU, Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800, Kgs. Lyngby, Denmark
| | - Ruth Brenk
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5020, Bergen, Norway
| | - Mads H Clausen
- Center for Nanomedicine and Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
48
|
Rekand IH, Brenk R. DrugPred_RNA-A Tool for Structure-Based Druggability Predictions for RNA Binding Sites. J Chem Inf Model 2021; 61:4068-4081. [PMID: 34286972 PMCID: PMC8389535 DOI: 10.1021/acs.jcim.1c00155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
![]()
RNA is an emerging
target for drug discovery. However, like for
proteins, not all RNA binding sites are equally suited to be addressed
with conventional drug-like ligands. To this end, we have developed
the structure-based druggability predictor DrugPred_RNA to identify
druggable RNA binding sites. Due to the paucity of annotated RNA binding
sites, the predictor was trained on protein pockets, albeit using
only descriptors that can be calculated for both RNA and protein binding
sites. DrugPred_RNA performed well in discriminating druggable from
less druggable binding sites for the protein set and delivered predictions
for selected RNA binding sites that agreed with manual assignment.
In addition, most drug-like ligands contained in an RNA test set were
found in pockets predicted to be druggable, further adding confidence
to the performance of DrugPred_RNA. The method is robust against conformational
and sequence changes in the binding sites and can contribute to direct
drug discovery efforts for RNA targets.
Collapse
Affiliation(s)
- Illimar Hugo Rekand
- Department of Biomedicine, University of Bergen, Jonas Lies Vei, 5020 Bergen, Norway
| | - Ruth Brenk
- Department of Biomedicine, University of Bergen, Jonas Lies Vei, 5020 Bergen, Norway
| |
Collapse
|
49
|
Singh N, Villoutreix BO. Resources and computational strategies to advance small molecule SARS-CoV-2 discovery: Lessons from the pandemic and preparing for future health crises. Comput Struct Biotechnol J 2021; 19:2537-2548. [PMID: 33936562 PMCID: PMC8074526 DOI: 10.1016/j.csbj.2021.04.059] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 12/11/2022] Open
Abstract
There is an urgent need to identify new therapies that prevent SARS-CoV-2 infection and improve the outcome of COVID-19 patients. This pandemic has thus spurred intensive research in most scientific areas and in a short period of time, several vaccines have been developed. But, while the race to find vaccines for COVID-19 has dominated the headlines, other types of therapeutic agents are being developed. In this mini-review, we report several databases and online tools that could assist the discovery of anti-SARS-CoV-2 small chemical compounds and peptides. We then give examples of studies that combined in silico and in vitro screening, either for drug repositioning purposes or to search for novel bioactive compounds. Finally, we question the overall lack of discussion and plan observed in academic research in many countries during this crisis and suggest that there is room for improvement.
Collapse
Affiliation(s)
- Natesh Singh
- Université de Paris, Inserm UMR 1141 NeuroDiderot, Robert-Debré Hospital, 75019 Paris, France
| | - Bruno O. Villoutreix
- Université de Paris, Inserm UMR 1141 NeuroDiderot, Robert-Debré Hospital, 75019 Paris, France
| |
Collapse
|
50
|
Zafferani M, Hargrove AE. Small molecule targeting of biologically relevant RNA tertiary and quaternary structures. Cell Chem Biol 2021; 28:594-609. [PMID: 33823146 DOI: 10.1016/j.chembiol.2021.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/03/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023]
Abstract
Initial successes in developing small molecule ligands for non-coding RNAs have underscored their potential as therapeutic targets. More recently, these successes have been aided by advances in biophysical and structural techniques for identification and characterization of more complex RNA structures; these higher-level folds present protein-like binding pockets that offer opportunities to design small molecules that could achieve a degree of selectivity often hard to obtain at the primary and secondary structure level. More specifically, identification and small molecule targeting of RNA tertiary and quaternary structures have allowed researchers to probe several human diseases and have resulted in promising clinical candidates. In this review we highlight a selection of diverse and exciting successes and the experimental approaches that led to their discovery. These studies include examples of recent developments in RNA-centric assays and ligands that provide insight into the features responsible for the affinity and biological outcome of RNA-targeted chemical probes. This report highlights the potential and emerging opportunities to selectively target RNA tertiary and quaternary structures as a route to better understand and, ultimately, treat many diseases.
Collapse
|