1
|
Abdelhafez OH, Elmaidomy AH, Hisham M, Glaeser SP, Kämpfer P, Wu J, Abdelmohsen UR. Hyrtios sp.-associated Cladosporium sp. UR3 as a potential source of antiproliferative metabolites. BMC Microbiol 2024; 24:445. [PMID: 39487417 PMCID: PMC11529160 DOI: 10.1186/s12866-024-03560-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 09/30/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Sponge-associated microorganisms are promising resources for the production of bioactive compounds with cytotoxic potential. The main goal of our study is to isolate the fungal endophytes from the Red Sea sponge Hyrtios sp. followed by investigating their cytotoxicity against number of cell lines. RESULTS The fungal strain UR3 was isolated from the Red Sea sponge using Sabouraud dextrose agar media. It was identified based on partial 18 S rRNA gene and ITS sequence analyses as Cladosporium sp. UR3. The in vitro cytotoxic potential of the ethyl acetate extract of the fungal isolate was evaluated using MTT assay against three cancer cell lines: CACO2, MCF7, and HEPG2. Metabolomics profiling of the obtained ethyl acetate extract using LC-HR-ESI-MS, along with molecular docking and pharmacological network studies for the dereplicated compounds were performed to explore its chemical profile and the possible cytotoxic mechanism of the sponge-associated fungi. CONCLUSION These results highlighted the role of sponge-associated fungi as a fruitful resource for the discovery of cytotoxic metabolites.
Collapse
Affiliation(s)
- Omnia Hesham Abdelhafez
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, New Minia City, Minia, Egypt
| | - Abeer H Elmaidomy
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Mohamed Hisham
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, New-Minia, 61512, Egypt
| | - Stefanie P Glaeser
- Institute of Applied Microbiology, Justus-Liebig University Gießen, Gießen, Germany
| | - Peter Kämpfer
- Institute of Applied Microbiology, Justus-Liebig University Gießen, Gießen, Germany
| | - Jun Wu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, College of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, New Minia City, Minia, Egypt.
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt.
| |
Collapse
|
2
|
Balaha M, Cataldi A, Ammazzalorso A, Cacciatore I, De Filippis B, Di Stefano A, Maccallini C, Rapino M, Korona-Glowniak I, Przekora A, di Giacomo V. CAPE derivatives: Multifaceted agents for chronic wound healing. Arch Pharm (Weinheim) 2024; 357:e2400165. [PMID: 39054610 DOI: 10.1002/ardp.202400165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024]
Abstract
Chronic wounds significantly impact the patients' quality of life, creating an urgent interdisciplinary clinical challenge. The development of novel agents capable of accelerating the healing process is essential. Caffeic acid phenethyl ester (CAPE) has demonstrated positive effects on skin regeneration. However, its susceptibility to degradation limits its pharmaceutical application. Chemical modification of the structure improves the pharmacokinetics of this bioactive phenol. Hence, two novel series of CAPE hybrids were designed, synthesized, and investigated as potential skin regenerative agents. To enhance the stability and therapeutic efficacy, a caffeic acid frame was combined with quinolines or isoquinolines by an ester (1a-f) or an amide linkage (2a-f). The effects on cell viability of human gingival fibroblasts (HGFs) and HaCaT cells were evaluated at different concentrations; they are not cytotoxic, and some proved to stimulate cell proliferation. The most promising compounds underwent a wound-healing assay in HGFs and HaCaT at the lowest concentrations. Antimicrobial antioxidant properties were also explored. The chemical and thermal stabilities of the best compounds were assessed. In silico predictions were employed to anticipate skin penetration capabilities. Our findings highlight the therapeutic potential of caffeic acid phenethyl ester (CAPE) derivatives 1a and 1d as skin regenerative agents, being able to stimulate cell proliferation, control bacterial growth, regulate ROS levels, and being thermally and chemically stable. An interesting structure-activity relationship was discussed to suggest a promising multitargeted approach for enhanced wound healing.
Collapse
Affiliation(s)
- Marwa Balaha
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafr el-Sheikh, Egypt
| | - Amelia Cataldi
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | | | - Ivana Cacciatore
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Barbara De Filippis
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Antonio Di Stefano
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Cristina Maccallini
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Monica Rapino
- Genetic Molecular Institute of CNR, Unit of Chieti, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | | | - Agata Przekora
- Department of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Lublin, Poland
| | - Viviana di Giacomo
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- UdA-TechLab, Research Center, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
3
|
Pathak RK, Kim JM. Identification of histidine kinase inhibitors through screening of natural compounds to combat mastitis caused by Streptococcus agalactiae in dairy cattle. J Biol Eng 2023; 17:59. [PMID: 37752501 PMCID: PMC10523694 DOI: 10.1186/s13036-023-00378-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Mastitis poses a major threat to dairy farms globally; it results in reduced milk production, increased treatment costs, untimely compromised genetic potential, animal deaths, and economic losses. Streptococcus agalactiae is a highly virulent bacteria that cause mastitis. The administration of antibiotics for the treatment of this infection is not advised due to concerns about the emergence of antibiotic resistance and potential adverse effects on human health. Thus, there is a critical need to identify new therapeutic approaches to combat mastitis. One promising target for the development of antibacterial therapies is the transmembrane histidine kinase of bacteria, which plays a key role in signal transduction pathways, secretion systems, virulence, and antibiotic resistance. RESULTS In this study, we aimed to identify novel natural compounds that can inhibit transmembrane histidine kinase. To achieve this goal, we conducted a virtual screening of 224,205 natural compounds, selecting the top ten based on their lowest binding energy and favorable protein-ligand interactions. Furthermore, molecular docking of eight selected antibiotics and five histidine kinase inhibitors with transmembrane histidine kinase was performed to evaluate the binding energy with respect to top-screened natural compounds. We also analyzed the ADMET properties of these compounds to assess their drug-likeness. The top two compounds (ZINC000085569031 and ZINC000257435291) and top-screened antibiotics (Tetracycline) that demonstrated a strong binding affinity were subjected to molecular dynamics simulations (100 ns), free energy landscape, and binding free energy calculations using the MM-PBSA method. CONCLUSION Our results suggest that the selected natural compounds have the potential to serve as effective inhibitors of transmembrane histidine kinase and can be utilized for the development of novel antibacterial veterinary medicine for mastitis after further validation through clinical studies.
Collapse
Affiliation(s)
- Rajesh Kumar Pathak
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea.
| |
Collapse
|
4
|
Zhou Y, Liu Z, Wen J, Zhou Y, Lin H. The inhibitory effect of berberine chloride hydrate on Streptococcus mutans biofilm formation at different pH values. Microbiol Spectr 2023; 11:e0217023. [PMID: 37747238 PMCID: PMC10580975 DOI: 10.1128/spectrum.02170-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/01/2023] [Indexed: 09/26/2023] Open
Abstract
Streptococcus mutans (S. mutans) is one of the major cariogenic bacteria of dental caries owing to its ability to adhere to tooth surfaces and biofilm formation. Berberine chloride hydrate (BH), a quaternary ammonium salt alkaloid, has diverse pharmacological efforts against microorganisms. However, the effect of BH on S. mutans biofilm has not been reported. Considering that berberine is a quaternary ammonium salt alkaloid, which needs to adapt to a large variation in pH values and the acid resistance of S. mutans, we employed three groups including pH 5 (acidic), pH 8 (alkaline), and unprocessed group (neutral) to examine the antibiofilm activities of BH against S. mutans during different pH values. In this study, we found BH effectively suppresses S. mutans biofilm formation as well as its cariogenic virulence including acid production and EPS synthesis significantly, and the inhibitory effort was reduced under acidic condition whereas elevated under alkaline condition. In addition, we preliminarily explored the influence of pH values on the structural stability and biosafety of BHas well as the underlying mechanism of inhibition of S. mutans biofilm formation with BH. Our study showed BH could maintain a good structural stability and low toxicity to erythrocytes at different pH values. And BH could downregulate the expression of srtA, spaP, and gbpC, which play critical roles in the adhesion process, promoting bacterial colonization and biofilm formation. Furthermore, comX and ldh expression levels were downregulated in BH-treated group, which might explain its inhibitory effect on acid production.IMPORTANCEDental caries is a common chronic detrimental disease, which could cause a series of oral problem including oral pain, difficulties in eating, and so on. Recently, many natural products have been considered as fundamental sources of therapeutic drugs to prevent caries. Berberine as a plant extract showed good antibiofilm abilities against microorganism. Our study focuses on its antibiofilm abilities against S. mutans, which was defined as major cariogenic bacterium and explored the role of pH values and possible underlying mechanisms in the inhibitory effect of BH on S. mutans biofilm formation. This study demonstrated a promising prospect for BH as an adjuvant drug in the prevention and management of dental caries.
Collapse
Affiliation(s)
- Yang Zhou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Zhuoying Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Jie Wen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Yan Zhou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Huancai Lin
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
5
|
Inversion Theory Leveling as a New Methodological Approach to Antioxidant Thermodynamics: A Case Study on Phenol. Antioxidants (Basel) 2023; 12:antiox12020282. [PMID: 36829841 PMCID: PMC9952401 DOI: 10.3390/antiox12020282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
Antioxidants are various types of compounds that represent a link between biology and chemistry. With the development of theoretical and computational methods, antioxidants are now being studied theoretically. Here, a novel method is presented that aims to reduce the estimated wall times for DFT calculations that result in the same or higher degree of accuracy in the second derivatives over energy than is the case with the regular computational route (i.e., optimizing the reaction system at a lower model and then recalculating the energies at a higher level of theory) by applying the inversion of theory level to the universal chemical scavenger model, i.e., phenol. The resulting accuracy and wall time obtained with such a methodological setup strongly suggest that this methodology could be generally applied to antioxidant thermodynamics for some costly DFT methods with relative absolute deviation.
Collapse
|
6
|
Maleki Dizaj S, Sharifi S, Tavakoli F, Hussain Y, Forouhandeh H, Hosseiniyan Khatibi SM, Memar MY, Yekani M, Khan H, Goh KW, Ming LC. Curcumin-Loaded Silica Nanoparticles: Applications in Infectious Disease and Food Industry. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12162848. [PMID: 36014710 PMCID: PMC9414236 DOI: 10.3390/nano12162848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 05/12/2023]
Abstract
Curcumin has multiple properties that are used to cure different diseases such as cancer, infections, inflammatory, arthritic disease, etc. Despite having many effects, the inherent physicochemical properties-such as poor water solubility, chemical instability, low bioavailability, photodegradation, fast metabolism, and short half-life-of curcumin's derivatives have limited its medical importance. Recently, unprecedented advances in biomedical nanotechnology have led to the development of nanomaterial-based drug delivery systems in the treatment of diseases and diagnostic goals that simultaneously enhance therapeutic outcomes and avoid side effects. Mesoporous silica nanoparticles (MSNs) are promising drug delivery systems for more effective and safer treatment of several diseases, such as infections, cancers, and osteoporosis. Achieving a high drug loading in MSNs is critical to the success of this type of treatment. Their notable inherent properties-such as adjustable size and porosity, high pore volume, large surface area, functionality of versatile surfaces, as well as biocompatibility-have prompted extraordinary research on MSNs as multi-purpose delivery platforms. In this review, we focused on curcumin-loaded silica nanoparticles and their effects on the diagnosis and treatment of infections as well as their use in food packaging.
Collapse
Affiliation(s)
- Solmaz Maleki Dizaj
- Department of Dental Biomaterials, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz 5165665931, Iran
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz 5165665931, Iran
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz 5165665931, Iran
- Correspondence: (S.S.); (H.K.)
| | - Fatemeh Tavakoli
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz 5165665931, Iran
| | - Yaseen Hussain
- Lab of Controlled Release and Drug Delivery System, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Haleh Forouhandeh
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz 5165665931, Iran
| | | | - Mohammad Yousef Memar
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz 5165665931, Iran
| | - Mina Yekani
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz 5165665931, Iran
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan 8715988141, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan 8715988141, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
- Correspondence: (S.S.); (H.K.)
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 78100, Malaysia
| | - Long Chiau Ming
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Bandar Seri Begawan BE 1410, Brunei
| |
Collapse
|
7
|
Folliero V, Dell’Annunziata F, Roscetto E, Amato A, Gasparro R, Zannella C, Casolaro V, De Filippis A, Catania MR, Franci G, Galdiero M. Rhein: A Novel Antibacterial Compound Against Streptococcus mutans Infection. Microbiol Res 2022; 261:127062. [DOI: 10.1016/j.micres.2022.127062] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 12/15/2022]
|
8
|
Ha MW, Kim J, Paek SM. Recent Achievements in Total Synthesis for Integral Structural Revisions of Marine Natural Products. Mar Drugs 2022; 20:md20030171. [PMID: 35323470 PMCID: PMC8951824 DOI: 10.3390/md20030171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
A great effort to discover new therapeutic ingredients is often initiated through the discovery of the existence of novel marine natural products. Since substances produced by the marine environment might be structurally more complex and unique than terrestrial natural products, there have been cases of misassignments of their structures despite the availability of modern spectroscopic and computational chemistry techniques. When it comes to refutation to erroneously or tentatively proposed structures empirical preparations through organic chemical synthesis has the greatest contribution along with close and sophiscated inspection of spectroscopic data. Herein, we analyzed the total synthetic studies that have decisively achieved in revelation of errors, ambiguities, or incompleteness of the isolated structures of marine natural products covering the period from 2018 to 2021.
Collapse
Affiliation(s)
- Min Woo Ha
- Jeju Research Institute of Pharmaceutical Sciences, College of Pharmacy, Jeju National University, 102 Jejudaehak-ro, Jeju 63243, Jeju-do, Korea;
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, 102 Jejudaehak-ro, Jeju 63243, Jeju-do, Korea
| | - Jonghoon Kim
- Department of Chemistry, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Korea;
| | - Seung-Mann Paek
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Gyeongnam-do, Korea
- Correspondence: ; Tel.: +82-55-772-2424
| |
Collapse
|
9
|
Vladkova T, Georgieva N, Staneva A, Gospodinova D. Recent Progress in Antioxidant Active Substances from Marine Biota. Antioxidants (Basel) 2022; 11:439. [PMID: 35326090 PMCID: PMC8944465 DOI: 10.3390/antiox11030439] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The well-recognized but not fully explored antioxidant activity of marine-biota-derived, biologically active substances has led to interest in their study as substitutes of antibiotics, antiaging agents, anticancer and antiviral drugs, and others. The aim of this review is to present the current state of the art of marine-biota-derived antioxidants to give some ideas for potential industrial applications. METHODS This review is an update for the last 5 years on the marine sources of natural antioxidants, different classes antioxidant compounds, and current derivation biotechnologies. RESULTS New marine sources of antioxidants, including byproducts and wastes, are presented, along with new antioxidant substances and derivation approaches. CONCLUSIONS The interest in high-value antioxidants from marine biota continues. Natural substances combining antioxidant and antimicrobial action are of particular interest because of the increasing microbial resistance to antibiotic treatments. New antioxidant substances are discovered, along with those extracted from marine biota collected in other locations. Byproducts and wastes provide a valuable source of antioxidant substances. The application of optimized non-conventional derivation approaches is expected to allow the intensification of the production and improvement in the quality of the derived substances. The ability to obtain safe, high-value products is of key importance for potential industrialization.
Collapse
Affiliation(s)
- Todorka Vladkova
- Laboratory for Advanced Materials Research, University of Chemical Technology and Metallurgy (UCTM), 8 “St. Kl. Ohridski” Blvd, 1756 Sofia, Bulgaria;
| | - Nelly Georgieva
- Department of Biotechnology, University of Chemical Technology and Metallurgy (UCTM), 1756 Sofia, Bulgaria;
| | - Anna Staneva
- Laboratory for Advanced Materials Research, University of Chemical Technology and Metallurgy (UCTM), 8 “St. Kl. Ohridski” Blvd, 1756 Sofia, Bulgaria;
| | - Dilyana Gospodinova
- Department of Electrical Apparatus, Technical University of Sofia, 1756 Sofia, Bulgaria;
| |
Collapse
|
10
|
Barathan M, Vellasamy KM, Ibrahim ZA, Mariappan V, Hoong SM, Vadivelu J. Zerumbone mediates apoptosis and induces secretion of proinflammatory cytokines in breast carcinoma cell culture. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1538-1545. [PMID: 35317109 PMCID: PMC8917841 DOI: 10.22038/ijbms.2021.58573.13012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/10/2021] [Indexed: 11/06/2022]
Abstract
Objectives To investigate the potential anti-breast cancer activity of zerumbone in regulating apoptotic mediators and cytokines in comparison with paclitaxel (positive control). Materials and Methods In this study, assays such as viability, apoptosis, reactive oxygen species, cell cycle, DNA fragmentation, and cytokines were carried out on MCF-7 cells after treatment with zerumbone and paclitaxel. Results The results showed that zerumbone demonstrated a higher (18-fold) IC50 value (126.7 µg/ml) than paclitaxel (7.29 µg/ml) in order to suppress proliferation and induce cell death of MCF-7. The cell cycle arrest at the G0/G1 phase and excessive intracellular ROS production during the in vitro zerumbone treatment indicated occurrence of apoptotic cell death although nuclear DNA fragmentation was not observed. The flow cytometer analysis of treated cells revealed secretion of proinflammatory cytokines suggesting the potential immunomodulatory activity of zerumbone. Conclusion Although, zerumbone exhibited a higher IC50 value compared with paclitaxel yet its anticancer activity against MCF-7 cells is still parallel to paclitaxel hence zerumbone has the potential to be an antineoplastic agent in the treatment of breast cancer especially the luminal type A.
Collapse
Affiliation(s)
- Muttiah Barathan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur 50603, Malaysia
| | - Kumutha Malar Vellasamy
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur 50603, Malaysia
| | - Zaridatul Aini Ibrahim
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur 50603, Malaysia
| | - Vanitha Mariappan
- Center of Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, National University of Malaysia, Jalan Raja Muda Aziz, Kuala Lumpur 50300, Malaysia
| | - See Mee Hoong
- Department of Surgery, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur 50603, Malaysia
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur 50603, Malaysia,Corresponding author: Jamuna Vadivelu. Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|