1
|
Jibril AH, Dalsgaard A, Okeke IN, Ibrahim AM, Olsen JE. Occurrence of Salmonella enterica in faecal sludge from Nigeria and genetic relatedness with strains associated with human infections in Africa. J Appl Microbiol 2024; 135:lxae293. [PMID: 39577843 DOI: 10.1093/jambio/lxae293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 11/24/2024]
Abstract
AIMS This study investigated occurrence of Salmonella in faecal sludge from public toilets in Nigeria and genetic relatedness of strains that have been reported to cause human infection across Africa. METHODS AND RESULTS The study collected 150 human sludge from public toilets and identified Salmonella through culture and PCR. Isolates were tested for antimicrobial susceptibility and sequenced using Illumina MiSeq. Draft sequences were compared with sequence data from Enterobase and GenBank. Twenty-four (16.0%) of sewage samples were positive for Salmonella [CI95 (10.2-21.8)]. Salmonella serotype Give [sequence type (ST) 516], Salmonella serotype Seftenberg (ST-14), and Salmonella serotype Chester (ST-411) were the most prevalent serovars found in 45.8%, 16.7%, and 16.7% of samples, respectively. Most of the isolates were sensitive to the antimicrobials tested, only one isolate of Salmonella serotype Derby showed resistance to ampicillin and cefazolin. Notably, 91.7% of the strains had the aac (6)-Iaa gene and point mutations in parC, gyrA, and acrB. Salmonella serotype Chester showed genetic relatedness with strains from Benin Republic and South Africa. CONCLUSIONS There is genetic relatedness of present strains and those associated with human infections in Africa.
Collapse
Affiliation(s)
- Abdurrahman Hassan Jibril
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigboejlen 4, Frederiskberg C., 1870, Copenhagen, Denmark
- Department of Veterinary Public Health and Preventive Medicine, Usmanu Danfodiyo University Sokoto, Sultan Abubakar Road 234840212, Sokoto, Nigeria
- Center for Advanced Medical Research and Training, Usmanu Danfodiyo University Sokoto, No 1, Garba Nadama Road 234840323, Sokoto, Nigeria
- One Health Institute, Usmanu Danfodiyo University Sokoto, No 1, Garba Nadama Road, 234840323, Sokoto
| | - Anders Dalsgaard
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigboejlen 4, Frederiskberg C., 1870, Copenhagen, Denmark
| | - Iruka N Okeke
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Agbowo 200005, Ibadan, Nigeria
| | - Aliyu Musawa Ibrahim
- Department of Veterinary Public Health and Preventive Medicine, Usmanu Danfodiyo University Sokoto, Sultan Abubakar Road 234840212, Sokoto, Nigeria
| | - John Elmerdahl Olsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigboejlen 4, Frederiskberg C., 1870, Copenhagen, Denmark
| |
Collapse
|
2
|
de Farias BO, Saggioro EM, Montenegro KS, Magaldi M, Santos HSO, Gonçalves-Brito AS, Pimenta RL, Ferreira RG, Spisso BF, Pereira MU, Bianco K, Clementino MM. Metagenomic insights into plasmid-mediated antimicrobial resistance in poultry slaughterhouse wastewater: antibiotics occurrence and genetic markers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:60880-60894. [PMID: 39395082 DOI: 10.1007/s11356-024-35287-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/08/2024] [Indexed: 10/14/2024]
Abstract
Slaughterhouse wastewater represents important convergence and concentration points for antimicrobial residues, bacteria, and antibiotic resistance genes (ARG), which can promote antimicrobial resistance propagation in different environmental compartments. This study reports the assessment of the metaplasmidome-associated resistome in poultry slaughterhouse wastewater treated by biological processes, employing metagenomic sequencing. Antimicrobial residues from a wastewater treatment plant (WWTP) that treats poultry slaughterhouse influents and effluents were investigated through high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS). Residues from the macrolide, sulfonamide, and fluoroquinolone classes were detected, the latter two persisting after the wastewater treatment. The genetic markers 16S rRNA rrs (bacterial community) and uidA (Escherichia coli) were investigated by RT-qPCR and the sul1 and int1 genes by qPCR. After treatment, the 16S rRNA rrs, uidA, sul1, and int1 markers exhibited reductions of 0.67, 1.07, 1.28, and 0.79 genes copies, respectively, with no statistical significance (p > 0.05). The plasmidome-focused metagenomics sequences (MiSeq platform (Illumina®)) revealed more than 100 ARG in the WWTP influent, which can potentially confer resistance to 14 pharmacological classes relevant in the human and veterinary clinical contexts, in which the qnr gene (resistance to fluoroquinolones) was the most prevalent. Only 7.8% of ARG were reduced after wastewater treatment, and the remaining 92.2% were associated with an increase in the prevalence of ARG linked to multidrug efflux pumps, substrate-specific for certain classes of antibiotics, or broad resistance to multiple medications. These data demonstrate that wastewater from poultry slaughterhouses plays a crucial role as an ARG reservoir and in the spread of AMR into the environment.
Collapse
Affiliation(s)
- Beatriz Oliveira de Farias
- Programa de Pós-Graduação Em Saúde Pública E Meio Ambiente, Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Enrico Mendes Saggioro
- Programa de Pós-Graduação Em Saúde Pública E Meio Ambiente, Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil.
- Laboratório de Avaliação E Promoção da Saúde Ambiental, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil.
| | - Kaylanne S Montenegro
- Programa de Pós-Graduação Em Saúde Pública E Meio Ambiente, Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Mariana Magaldi
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Hugo Sérgio Oliveira Santos
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Andressa Silva Gonçalves-Brito
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Ramon Loureiro Pimenta
- Instituto de Veterinária, Universidade Federal Rural Do Rio de Janeiro, Km 07, Zona Rural, BR-465, Seropédica, RJ, Brazil
| | - Rosana Gomes Ferreira
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Bernardete Ferraz Spisso
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Mararlene Ulberg Pereira
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Kayo Bianco
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Maysa Mandetta Clementino
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
3
|
Corradini C, De Bene AF, Russini V, Carfora V, Alba P, Cordaro G, Senese M, Terracciano G, Fabbri I, Di Sirio A, Di Giamberardino F, Boria P, De Marchis ML, Bossù T. Detection of Salmonella Reservoirs in Birds of Prey Hosted in an Italian Wildlife Centre: Molecular and Antimicrobial Resistance Characterisation. Microorganisms 2024; 12:1169. [PMID: 38930551 PMCID: PMC11205921 DOI: 10.3390/microorganisms12061169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
In the European Union, salmonellosis is one of the most important zoonoses reported. Poultry meat and egg products are the most common food matrices associated with Salmonella presence. Moreover, wild and domestic animals could represent an important reservoir that could favour the direct and indirect transmission of pathogens to humans. Salmonella spp. can infect carnivorous or omnivorous wild birds that regularly ingest food and water exposed to faecal contamination. Birds kept in captivity can act as reservoirs of Salmonella spp. following ingestion of infected prey or feed. In this paper, we describe the isolation of different Salmonella serovars in several species of raptors hosted in aviaries in an Italian wildlife centre and in the raw chicken necks used as their feed but intended for human consumption. Characterisations of strains were carried out by integrating classical methods and whole genome sequencing analysis. The strains of S. bredeney isolated in poultry meat and birds belonged to the same cluster, with some of them being multidrug-resistant (MDR) and carrying the Col(pHAD28) plasmid-borne qnrB19 (fluoro)quinolone resistance gene, thus confirming the source of infection. Differently, the S. infantis found in feed and raptors were all MDR, carried a plasmid of emerging S. infantis (pESI)-like plasmid and belonged to different clusters, possibly suggesting a long-lasting infection or the presence of additional undetected sources. Due to the high risk of fuelling a reservoir of human pathogens, the control and treatment of feed for captive species are crucial.
Collapse
Affiliation(s)
- Carlo Corradini
- Food Microbiology Unit, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, 00178 Rome, Italy; (C.C.); (A.F.D.B.); (A.D.S.); (F.D.G.); (P.B.); (M.L.D.M.); (T.B.)
| | - Andrea Francesco De Bene
- Food Microbiology Unit, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, 00178 Rome, Italy; (C.C.); (A.F.D.B.); (A.D.S.); (F.D.G.); (P.B.); (M.L.D.M.); (T.B.)
| | - Valeria Russini
- Food Microbiology Unit, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, 00178 Rome, Italy; (C.C.); (A.F.D.B.); (A.D.S.); (F.D.G.); (P.B.); (M.L.D.M.); (T.B.)
| | - Virginia Carfora
- National Reference Laboratory for Antimicrobial Resistance, General Diagnostics Department, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, 00178 Rome, Italy; (V.C.); (P.A.); (G.C.)
| | - Patricia Alba
- National Reference Laboratory for Antimicrobial Resistance, General Diagnostics Department, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, 00178 Rome, Italy; (V.C.); (P.A.); (G.C.)
| | - Gessica Cordaro
- National Reference Laboratory for Antimicrobial Resistance, General Diagnostics Department, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, 00178 Rome, Italy; (V.C.); (P.A.); (G.C.)
| | - Matteo Senese
- UOT Toscana Nord, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, 56123 Pisa, Italy; (M.S.); (G.T.); (I.F.)
| | - Giuliana Terracciano
- UOT Toscana Nord, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, 56123 Pisa, Italy; (M.S.); (G.T.); (I.F.)
| | - Ilaria Fabbri
- UOT Toscana Nord, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, 56123 Pisa, Italy; (M.S.); (G.T.); (I.F.)
| | - Alessandro Di Sirio
- Food Microbiology Unit, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, 00178 Rome, Italy; (C.C.); (A.F.D.B.); (A.D.S.); (F.D.G.); (P.B.); (M.L.D.M.); (T.B.)
| | - Fabiola Di Giamberardino
- Food Microbiology Unit, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, 00178 Rome, Italy; (C.C.); (A.F.D.B.); (A.D.S.); (F.D.G.); (P.B.); (M.L.D.M.); (T.B.)
| | - Pierpaolo Boria
- Food Microbiology Unit, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, 00178 Rome, Italy; (C.C.); (A.F.D.B.); (A.D.S.); (F.D.G.); (P.B.); (M.L.D.M.); (T.B.)
| | - Maria Laura De Marchis
- Food Microbiology Unit, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, 00178 Rome, Italy; (C.C.); (A.F.D.B.); (A.D.S.); (F.D.G.); (P.B.); (M.L.D.M.); (T.B.)
| | - Teresa Bossù
- Food Microbiology Unit, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, 00178 Rome, Italy; (C.C.); (A.F.D.B.); (A.D.S.); (F.D.G.); (P.B.); (M.L.D.M.); (T.B.)
| |
Collapse
|
4
|
Rheman S, Hossain S, Sarker MS, Akter F, Khor L, Gan HM, Powell A, Card RM, Hounmanou YMG, Dalsgaard A, Mohan CV, Bupasha ZB, Samad MA, Verner-Jeffreys DW, Delamare-Deboutteville J. Nanopore sequencing for identification and characterization of antimicrobial-resistant Escherichia coli and Salmonella spp. from tilapia and shrimp sold at wet markets in Dhaka, Bangladesh. Front Microbiol 2024; 15:1329620. [PMID: 38516018 PMCID: PMC10956512 DOI: 10.3389/fmicb.2024.1329620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/09/2024] [Indexed: 03/23/2024] Open
Abstract
Wet markets in low-and middle-income countries are often reported to have inadequate sanitation resulting in fecal contamination of sold produce. Consumption of contaminated wet market-sourced foods has been linked to individual illness and disease outbreaks. This pilot study, conducted in two major wet markets in Dhaka city, Bangladesh during a 4-month period in 2021 aimed to assess the occurrence and characteristics of Escherichia coli and non-typhoidal Salmonella spp. (NTS) from tilapia (Oreochromis niloticus) and shrimp (Penaeus monodon). Fifty-four individuals of each species were collected. The identity of the bacterial isolates was confirmed by PCR and their susceptibility toward 15 antimicrobials was tested by disk diffusion. The whole genome of 15 E. coli and nine Salmonella spp. were sequenced using Oxford Nanopore Technology. E. coli was present in 60-74% of tilapia muscle tissue and 41-44% of shrimp muscle tissue. Salmonella spp. was found in skin (29%) and gills (26%) of tilapia, and occasionally in muscle and intestinal samples of shrimp. The E. coli had several Multilocus sequence typing and serotypes and limited antimicrobial resistance (AMR) determinants, such as point mutations on glpT and pmrB. One E. coli (BD17) from tilapia carried resistance genes for beta-lactams, quinolones, and tetracycline. All the E. coli belonged to commensal phylogroups B1 and A and showed no Shiga-toxin and other virulence genes, confirming their commensal non-pathogenic status. Among the Salmonella isolates, five belonged to Kentucky serovar and had similar AMR genes and phenotypic resistance patterns. Three strains of this serovar were ST198, often associated with human disease, carried the same resistance genes, and were genetically related to strains from the region. The two undetermined sequence types of S. Kentucky were distantly related and positioned in a separate phylogenetic clade. Two Brunei serovar isolates, one Augustenborg isolate, and one Hartford isolate showed different resistance profiles. This study revealed high fecal contamination levels in tilapia and shrimp sold at two main wet markets in Dhaka. Together with the occurrence of Salmonella spp., including S. Kentucky ST198, a well-known human pathogen, these results stress the need to improve hygienic practices and sanitation standards at markets to improve food safety and protect consumer health.
Collapse
Affiliation(s)
- Shafiq Rheman
- Laboratory Department of Sustainable Aquaculture, WorldFish, Dhaka, Bangladesh
| | - Sabrina Hossain
- Laboratory Department of Sustainable Aquaculture, WorldFish, Dhaka, Bangladesh
| | - Md Samun Sarker
- Antimicrobial Resistance Action Center (ARAC), Animal Health Research Division, Bangladesh Livestock Research Institute, Savar, Bangladesh
| | - Farhana Akter
- Laboratory Department of Sustainable Aquaculture, WorldFish, Dhaka, Bangladesh
| | - Laura Khor
- Department of Sustainable Aquaculture, WorldFish, Penang, Malaysia
| | - Han Ming Gan
- Patriot Biotech Sdn Bhd, Bandar Sunway, Malaysia
| | - Andy Powell
- Weymouth Laboratory, Cefas: Centre for Environment Fisheries and Aquaculture Science, Weymouth, United Kingdom
- Veterinary Medicines Directorate FAO Reference Centre for Antimicrobial Resistance, Weybridge, United Kingdom
| | - Roderick M. Card
- Bacteriology Department, Animal Plant Health Agency, Weybridge, United Kingdom
| | - Yaovi Mahuton Gildas Hounmanou
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Anders Dalsgaard
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Zamila Bueaza Bupasha
- Antimicrobial Resistance Action Center (ARAC), Animal Health Research Division, Bangladesh Livestock Research Institute, Savar, Bangladesh
| | - Mohammed A. Samad
- Antimicrobial Resistance Action Center (ARAC), Animal Health Research Division, Bangladesh Livestock Research Institute, Savar, Bangladesh
| | - David W. Verner-Jeffreys
- Weymouth Laboratory, Cefas: Centre for Environment Fisheries and Aquaculture Science, Weymouth, United Kingdom
- Veterinary Medicines Directorate FAO Reference Centre for Antimicrobial Resistance, Weybridge, United Kingdom
| | | |
Collapse
|
5
|
Aworh MK, Nilsson P, Egyir B, Owusu FA, Hendriksen RS. Rare serovars of non-typhoidal Salmonella enterica isolated from humans, beef cattle and abattoir environments in Nigeria. PLoS One 2024; 19:e0296971. [PMID: 38252613 PMCID: PMC10802957 DOI: 10.1371/journal.pone.0296971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
INTRODUCTION Salmonella is considered one of the most significant pathogens in public health since it is a bacterium that is frequently linked to food-borne illnesses in humans. Some Salmonella serovars are responsible for outbreaks that are connected to the consumption of animal products. Cattle are connected to humans through a shared environment and the food chain as a significant source of animal protein. In Nigeria, antimicrobial medications are easily accessible for use in food-producing animals. Abattoir environments are reservoirs of foodborne bacteria like non-typhoidal Salmonella enterica (NTS), that have become resistant to antibiotics used for prophylaxis or treatment in animals. This study investigated the prevalence and resistance patterns of Salmonella enterica serovars in abattoir employees, beef cattle and abattoir environments in Abuja and Lagos, Nigeria. METHODS A total of 448 samples were collected from healthy personnel, slaughtered cattle, and abattoir environments between May and December 2020. Using Kirby-Bauer disk diffusion method, the resistance profile of NTS isolates were determined. Multidrug resistance (MDR) was considered when NTS was resistant to ≥3 antimicrobial drug classes. We performed phenotypic and genotypic characterizations of all Salmonella isolates including serotyping. Descriptive statistics were used to analyze the data. RESULTS Twenty-seven (6%) NTS isolates were obtained. Prevalence of NTS was highest in abattoir environments (15.5%; 9/58), followed by cattle (4.8%;13/272) and abattoir employees (4.2%; 5/118). A high prevalence of resistance was observed for gentamicin (85.2%; 23/27) and tetracycline (77.8%; 21/27). Whole-genome sequencing of 22 NTS showed dissemination of aac(6')-laa (22/22), qnrB19 (1/22), fosA7 (1/22), and tetA (1/22) genes. Serovar diversity of NTS varied with source. S. Anatum, a rare serovar predominated with a prevalence of 18.2% (4/22). Chromosomal point mutations showed ParC T57S substitution in 22 NTS analyzed. Among 22 NTS, 131 mobile genetic elements (MGEs) were detected including insertion sequences (56.5%) and miniature inverted repeats (43.5%). Two integrating MGEs IS6 and IS21 were observed to carry the tetA gene + Incl-1 on the same contig in NTS originating from cattle. Rare serovars namely S. Abony and S. Stormont with MDR phenotypes recovered from cattle and abattoir environments were closely related with a pairwise distance of ≤5 SNPs. CONCLUSIONS First report of rare serovars in Nigeria with MDR phenotypes in humans, cattle, and abattoir environments. This study demonstrates the spread of resistance in the abattoir environment possibly by MGEs and emphasizes the importance of genomic surveillance. Beef cattle may be a risk to public health because they spread a variety of rare Salmonella serovars. Therefore, encouraging hand hygiene among abattoir employees while processing beef cattle will further reduce NTS colonization in this population. This requires a One Health collaborative effort among various stakeholders in human health, animal health, and environmental health.
Collapse
Affiliation(s)
- Mabel Kamweli Aworh
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
- Nigeria Field Epidemiology and Laboratory Training Programme, Abuja, Nigeria
| | - Pernille Nilsson
- Research Group for Global Capacity Building, National Food Institute, WHO Collaborating Centre (WHO CC) for Antimicrobial Resistance in Foodborne Pathogens and Genomics, FAO Reference Laboratory (FAO RL) for Antimicrobial Resistance, European Union Reference Laboratory for Antimicrobial Resistance (EURL-AR), Technical University of Denmark, Kongens Lyngby, Denmark
| | - Beverly Egyir
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Felicia Amoa Owusu
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Rene S. Hendriksen
- Research Group for Global Capacity Building, National Food Institute, WHO Collaborating Centre (WHO CC) for Antimicrobial Resistance in Foodborne Pathogens and Genomics, FAO Reference Laboratory (FAO RL) for Antimicrobial Resistance, European Union Reference Laboratory for Antimicrobial Resistance (EURL-AR), Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
6
|
Baker M, Zhang X, Maciel-Guerra A, Babaarslan K, Dong Y, Wang W, Hu Y, Renney D, Liu L, Li H, Hossain M, Heeb S, Tong Z, Pearcy N, Zhang M, Geng Y, Zhao L, Hao Z, Senin N, Chen J, Peng Z, Li F, Dottorini T. Convergence of resistance and evolutionary responses in Escherichia coli and Salmonella enterica co-inhabiting chicken farms in China. Nat Commun 2024; 15:206. [PMID: 38182559 PMCID: PMC10770378 DOI: 10.1038/s41467-023-44272-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 12/06/2023] [Indexed: 01/07/2024] Open
Abstract
Sharing of genetic elements among different pathogens and commensals inhabiting same hosts and environments has significant implications for antimicrobial resistance (AMR), especially in settings with high antimicrobial exposure. We analysed 661 Escherichia coli and Salmonella enterica isolates collected within and across hosts and environments, in 10 Chinese chicken farms over 2.5 years using data-mining methods. Most isolates within same hosts possessed the same clinically relevant AMR-carrying mobile genetic elements (plasmids: 70.6%, transposons: 78%), which also showed recent common evolution. Supervised machine learning classifiers revealed known and novel AMR-associated mutations and genes underlying resistance to 28 antimicrobials, primarily associated with resistance in E. coli and susceptibility in S. enterica. Many were essential and affected same metabolic processes in both species, albeit with varying degrees of phylogenetic penetration. Multi-modal strategies are crucial to investigate the interplay of mobilome, resistance and metabolism in cohabiting bacteria, especially in ecological settings where community-driven resistance selection occurs.
Collapse
Affiliation(s)
- Michelle Baker
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, Loughborough, Leicestershire, LE12 5RD, UK
| | - Xibin Zhang
- Shandong New Hope Liuhe Group Co. Ltd. and Qingdao Key Laboratory of Animal Feed Safety, Qingdao, Shandong, 266000, P.R. China
| | - Alexandre Maciel-Guerra
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, Loughborough, Leicestershire, LE12 5RD, UK
| | - Kubra Babaarslan
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, Loughborough, Leicestershire, LE12 5RD, UK
| | - Yinping Dong
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, 100021, P. R. China
| | - Wei Wang
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, 100021, P. R. China
| | - Yujie Hu
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, 100021, P. R. China
| | - David Renney
- Nimrod Veterinary Products Limited, 2, Wychwood Court, Cotswold Business Village, Moreton-in-Marsh, GL56 0JQ, London, UK
| | - Longhai Liu
- Shandong Kaijia Food Co. Ltd, Weifang, P. R. China
| | - Hui Li
- Luoyang Center for Disease Control and Prevention, No. 9, Zhenghe Road, Luolong District, Luoyang City, Henan Province, Luolong, 471000, P. R. China
| | - Maqsud Hossain
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, Loughborough, Leicestershire, LE12 5RD, UK
| | - Stephan Heeb
- School of Life Sciences, University of Nottingham, East Drive, Nottingham, Nottinghamshire, NG7 2RD, UK
| | - Zhiqin Tong
- Luoyang Center for Disease Control and Prevention, No. 9, Zhenghe Road, Luolong District, Luoyang City, Henan Province, Luolong, 471000, P. R. China
| | - Nicole Pearcy
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, Loughborough, Leicestershire, LE12 5RD, UK
- School of Life Sciences, University of Nottingham, East Drive, Nottingham, Nottinghamshire, NG7 2RD, UK
| | - Meimei Zhang
- Liaoning Provincial Center for Disease Control and Prevention, No. 168, Jinfeng Street, Hunnan District, Shenyang City, Liaoning Province, 110072, P. R. China
| | - Yingzhi Geng
- Liaoning Provincial Center for Disease Control and Prevention, No. 168, Jinfeng Street, Hunnan District, Shenyang City, Liaoning Province, 110072, P. R. China
| | - Li Zhao
- Agricultural Biopharmaceutical Laboratory, College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao City, Shandong Province, 266109, P. R. China
| | - Zhihui Hao
- Chinese Veterinary Medicine Innovation Center, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing City, 100193, P. R. China
| | - Nicola Senin
- Department of Engineering, University of Perugia, Perugia, I06125, Italy
| | - Junshi Chen
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, 100021, P. R. China
| | - Zixin Peng
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, 100021, P. R. China.
| | - Fengqin Li
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, 100021, P. R. China.
| | - Tania Dottorini
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, Loughborough, Leicestershire, LE12 5RD, UK.
- Centre for Smart Food Research, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, 315100, P. R. China.
| |
Collapse
|
7
|
Niharika J, Thakur P, Sengar GS, Deb R, Parihar R, Sonowal J, Chaudhary P, Pegu SR, Das PJ, Rajkhowa S, Gupta VK. Whole genome sequencing-based cataloguing of antibiotic resistant genes in piggery waste borne samples. Gene 2023; 887:147786. [PMID: 37689220 DOI: 10.1016/j.gene.2023.147786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/25/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
The growing use of antibiotics in livestock is one of the main causes of the rapid global spread of antimicrobial resistance (AMR). However, extensive research on AMR in animals is currently absent. In this article, we provide the bacterial antibiotic resistance genes (ARGs) from piggery waste samples in West Bengal, India, based on whole genome sequencing (WGS). According to the study, there are alarmingly high levels of Enterobacteriaceae in piggery waste, especially slaughterhouse waste, that are resistant to beta-lactam, aminoglycoside, sulphonamide, and tetracycline. We found several plasmids carrying multidrug-resistant Enterobacteriaceae including resistant to last-resort medications like colistin and carbapenems. Our findings will serve as a guide for developing AMR management policies for livestock in India and aid in understanding the current AMR profiles of pigs. To grasp the actual situation with AMR in the pig sector, large scale sample screening must be done.
Collapse
Affiliation(s)
- Jagana Niharika
- ICAR-National Research Centre on Pig, Guwahati 781131, Assam, India; All India Institute of Hygiene and Public Health, Government of India, Kolkata, West Bengal, India
| | - Priyanka Thakur
- ICAR-National Research Centre on Pig, Guwahati 781131, Assam, India; All India Institute of Hygiene and Public Health, Government of India, Kolkata, West Bengal, India
| | | | - Rajib Deb
- ICAR-National Research Centre on Pig, Guwahati 781131, Assam, India.
| | - Ranjeet Parihar
- ICAR-National Research Centre on Pig, Guwahati 781131, Assam, India
| | - Joyshikh Sonowal
- ICAR-National Research Centre on Pig, Guwahati 781131, Assam, India
| | - Parul Chaudhary
- School of Agriculture, Graphic Era Hill University, Dehradun 248002, Uttarakhand, India
| | - Seema Rani Pegu
- ICAR-National Research Centre on Pig, Guwahati 781131, Assam, India
| | - Pranab Jyoti Das
- ICAR-National Research Centre on Pig, Guwahati 781131, Assam, India
| | - Swaraj Rajkhowa
- ICAR-National Research Centre on Pig, Guwahati 781131, Assam, India
| | - Vivek Kumar Gupta
- ICAR-National Research Centre on Pig, Guwahati 781131, Assam, India.
| |
Collapse
|
8
|
Barrera S, Vázquez-Flores S, Needle D, Rodríguez-Medina N, Iglesias D, Sevigny JL, Gordon LM, Simpson S, Thomas WK, Rodulfo H, De Donato M. Serovars, Virulence and Antimicrobial Resistance Genes of Non-Typhoidal Salmonella Strains from Dairy Systems in Mexico. Antibiotics (Basel) 2023; 12:1662. [PMID: 38136696 PMCID: PMC10740734 DOI: 10.3390/antibiotics12121662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 12/24/2023] Open
Abstract
Salmonella isolated from dairy farms has a significant effect on animal health and productivity. Different serogroups of Salmonella affect both human and bovine cattle causing illness in both reservoirs. Dairy cows and calves can be silent Salmonella shedders, increasing the possibility of dispensing Salmonella within the farm. The aim of this study was to determine the genomic characteristics of Salmonella isolates from dairy farms and to detect the presence of virulence and antimicrobial resistance genes. A total of 377 samples were collected in a cross-sectional study from calves, periparturient cow feces, and maternity beds in 55 dairy farms from the states of Aguascalientes, Baja California, Chihuahua, Coahuila, Durango, Mexico, Guanajuato, Hidalgo, Jalisco, Queretaro, San Luis Potosi, Tlaxcala, and Zacatecas. Twenty Salmonella isolates were selected as representative strains for whole genome sequencing. The serological classification of the strains was able to assign groups to only 12 isolates, but with only 5 of those being consistent with the genomic serotyping. The most prevalent serovar was Salmonella Montevideo followed by Salmonella Meleagridis. All isolates presented the chromosomal aac(6')-Iaa gene that confers resistance to aminoglycosides. The antibiotic resistance genes qnrB19, qnrA1, sul2, aph(6)-Id, aph(3)-ld, dfrA1, tetA, tetC, flor2, sul1_15, mph(A), aadA2, blaCARB, and qacE were identified. Ten pathogenicity islands were identified, and the most prevalent plasmid was Col(pHAD28). The main source of Salmonella enterica is the maternity areas, where periparturient shedders are contaminants and perpetuate the pathogen within the dairy in manure, sand, and concrete surfaces. This study demonstrated the necessity of implementing One Health control actions to diminish the prevalence of antimicrobial resistant and virulent pathogens including Salmonella.
Collapse
Affiliation(s)
- Stephany Barrera
- Tecnologico de Monterrey, School of Engineering and Sciences, Querétaro 76130, CP, Mexico; (S.B.); (D.I.); (H.R.)
| | - Sonia Vázquez-Flores
- Tecnologico de Monterrey, School of Engineering and Sciences, Querétaro 76130, CP, Mexico; (S.B.); (D.I.); (H.R.)
| | - David Needle
- Veterinary Diagnostic Lab, University of New Hampshire, Durham, NH 03824, USA;
| | - Nadia Rodríguez-Medina
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Cuernavaca 62100, MR, Mexico;
| | - Dianella Iglesias
- Tecnologico de Monterrey, School of Engineering and Sciences, Querétaro 76130, CP, Mexico; (S.B.); (D.I.); (H.R.)
| | - Joseph L. Sevigny
- Department Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA; (J.L.S.); (L.M.G.); (S.S.); (W.K.T.)
| | - Lawrence M. Gordon
- Department Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA; (J.L.S.); (L.M.G.); (S.S.); (W.K.T.)
| | - Stephen Simpson
- Department Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA; (J.L.S.); (L.M.G.); (S.S.); (W.K.T.)
| | - W. Kelley Thomas
- Department Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA; (J.L.S.); (L.M.G.); (S.S.); (W.K.T.)
| | - Hectorina Rodulfo
- Tecnologico de Monterrey, School of Engineering and Sciences, Querétaro 76130, CP, Mexico; (S.B.); (D.I.); (H.R.)
| | - Marcos De Donato
- Tecnologico de Monterrey, School of Engineering and Sciences, Querétaro 76130, CP, Mexico; (S.B.); (D.I.); (H.R.)
- The Center for Aquaculture Technologies, San Diego, CA 92121, USA
| |
Collapse
|
9
|
Ghoshal M, Bechtel TD, Gibbons JG, McLandsborough L. Adaptive laboratory evolution of Salmonella enterica in acid stress. Front Microbiol 2023; 14:1285421. [PMID: 38033570 PMCID: PMC10687551 DOI: 10.3389/fmicb.2023.1285421] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction Adaptive laboratory evolution (ALE) studies play a crucial role in understanding the adaptation and evolution of different bacterial species. In this study, we have investigated the adaptation and evolution of Salmonella enterica serovar Enteritidis to acetic acid using ALE. Materials and methods Acetic acid concentrations below the minimum inhibitory concentration (sub-MIC) were used. Four evolutionary lineages (EL), namely, EL1, EL2, EL3, and EL4, of S. Enteritidis were developed, each demonstrating varying levels of resistance to acetic acid. Results The acetic acid MIC of EL1 remained constant at 27 mM throughout 70 days, while the MIC of EL2, EL3, and EL4 increased throughout the 70 days. EL4 was adapted to the highest concentration of acetic acid (30 mM) and demonstrated the highest increase in its MIC against acetic acid throughout the study, reaching an MIC of 35 mM on day 70. The growth rates of the evolved lineages increased over time and were dependent on the concentration of acetic acid used during the evolutionary process. EL4 had the greatest increase in growth rate, reaching 0.33 (h-1) after 70 days in the presence of 30 mM acetic acid as compared to EL1, which had a growth rate of 0.2 (h-1) after 70 days with no exposure to acetic acid. Long-term exposure to acetic acid led to an increased MIC of human antibiotics such as ciprofloxacin and meropenem against the S. enterica evolutionary lineages. The MIC of ciprofloxacin for EL1 stayed constant at 0.016 throughout the 70 days while that of EL4 increased to 0.047. Bacterial whole genome sequencing revealed single-nucleotide polymorphisms in the ELs in various genes known to be involved in S. enterica virulence, pathogenesis, and stress response including phoP, phoQ, and fhuA. We also observed genome deletions in some of the ELs as compared to the wild-type S. Enteritidis which may have contributed to the bacterial acid adaptation. Discussion This study highlights the potential for bacterial adaptation and evolution under environmental stress and underscores the importance of understanding the development of cross resistance to antibiotics in S. enterica populations. This study serves to enhance our understanding of the pathogenicity and survival strategies of S. enterica under acetic acid stress.
Collapse
Affiliation(s)
- Mrinalini Ghoshal
- Department of Microbiology, University of Massachusetts, Amherst, MA, United States
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Tyler D. Bechtel
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - John G. Gibbons
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Lynne McLandsborough
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
10
|
Petrin S, Orsini M, Massaro A, Olsen JE, Barco L, Losasso C. Phenotypic and genotypic antimicrobial resistance correlation and plasmid characterization in Salmonella spp. isolates from Italy reveal high heterogeneity among serovars. Front Public Health 2023; 11:1221351. [PMID: 37744490 PMCID: PMC10513437 DOI: 10.3389/fpubh.2023.1221351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/15/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction The spread of antimicrobial resistance among zoonotic pathogens such as Salmonella is a serious health threat, and mobile genetic elements (MGEs) carrying antimicrobial resistance genes favor this phenomenon. In this work, phenotypic antimicrobial resistance to commonly used antimicrobials was studied, and the antimicrobial resistance genes (ARGs) and plasmid replicons associated with the resistances were determined. Methods Eighty-eight Italian Salmonella enterica strains (n = 88), from human, animal and food sources, isolated between 2009 and 2019, were selected to represent serovars with different frequency of isolation in human cases of salmonellosis. The presence of plasmid replicons was also investigated. Results and discussion Resistances to sulphonamides (23.9%), ciprofloxacin (27.3%), ampicillin (29.5%), and tetracycline (32.9%) were the most found phenotypes. ARGs identified in the genomes correlated with the phenotypical results, with blaTEM-1B, sul1, sul2, tetA and tetB genes being frequently identified. Point mutations in gyrA and parC genes were also detected, in addition to many different aminoglycoside-modifying genes, which, however, did not cause phenotypic resistance to aminoglycosides. Many genomes presented plasmid replicons, however, only a limited number of ARGs were predicted to be located on the contigs carrying these replicons. As an expectation of this, multiple ARGs were identified on contigs with IncQ1 plasmid replicon in strains belonging to the monophasic variant of Salmonella Typhimurium. In general, high variability in ARGs and plasmid replicons content was observed among isolates, highlighting a high level of heterogeneity in Salmonella enterica. Irrespective of the serovar., many of the ARGs, especially those associated with critically and highly important antimicrobials for human medicine were located together with plasmid replicons, thus favoring their successful dissemination.
Collapse
Affiliation(s)
- Sara Petrin
- Microbial Ecology and Microrganisms Genomics Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università, Legnaro, Italy
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Massimiliano Orsini
- Microbial Ecology and Microrganisms Genomics Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università, Legnaro, Italy
| | - Andrea Massaro
- Applied Chemistry Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Vicenza, Italy
| | - John E. Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Lisa Barco
- OIE and National Reference Laboratory for Salmonellosis, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università, Legnaro, Italy
| | - Carmen Losasso
- Microbial Ecology and Microrganisms Genomics Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università, Legnaro, Italy
| |
Collapse
|
11
|
dos Santos AMP, Panzenhagen P, Ferrari RG, de Jesus ACS, Portes AB, Ochioni AC, Rodrigues DDP, Conte-Junior CA. Genomic Characterization of Salmonella Isangi: A Global Perspective of a Rare Serovar. Antibiotics (Basel) 2023; 12:1309. [PMID: 37627729 PMCID: PMC10451742 DOI: 10.3390/antibiotics12081309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Salmonella Isangi is an infrequent serovar that has recently been reported in several countries due to nosocomial infections. A considerable number of reports indicate Salmonella Isangi multidrug resistance, especially to cephalosporins, which could potentially pose a risk to public health worldwide. Genomic analysis is an excellent tool for monitoring the emergence of microorganisms and related factors. In this context, the aim of this study was to carry out a genomic analysis of Salmonella Isangi isolated from poultry in Brazil, and to compare it with the available genomes from the Pathogen Detection database and Sequence Read Archive. A total of 142 genomes isolated from 11 different countries were investigated. A broad distribution of extended-spectrum beta-lactamase (ESBL) genes was identified in the Salmonella Isangi genomes examined (blaCTX-M-15, blaCTX-M-2, blaDHA-1, blaNDM-1, blaOXA-10, blaOXA-1, blaOXA-48, blaSCO-1, blaSHV-5, blaTEM-131, blaTEM-1B), primarily in South Africa. Resistome analysis revealed predicted resistance to aminoglycoside, sulfonamide, macrolide, tetracycline, trimethoprim, phenicol, chloramphenicol, and quaternary ammonium. Additionally, PMQR (plasmid-mediated quinolone resistance) genes qnr19, qnrB1, and qnrS1 were identified, along with point mutations in the genes gyrAD87N, gyrAS83F, and gyrBS464F, which confer resistance to ciprofloxacin and nalidixic acid. With regard to plasmids, we identified 17 different incompatibility groups, including IncC, Col(pHAD28), IncHI2, IncHI2A, IncM2, ColpVC, Col(Ye4449), Col156, IncR, IncI1(Alpha), IncFIB (pTU3), Col(B5512), IncQ1, IncL, IncN, IncFIB(pHCM2), and IncFIB (pN55391). Phylogenetic analysis revealed five clusters grouped by sequence type and antimicrobial gene distribution. The study highlights the need for monitoring rare serovars that may become emergent due to multidrug resistance.
Collapse
Affiliation(s)
- Anamaria Mota Pereira dos Santos
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-598, RJ, Brazil; (A.M.P.d.S.); (R.G.F.); (A.C.S.d.J.); (A.B.P.); (A.C.O.); (C.A.C.-J.)
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, RJ, Brazil
- Graduate Program in Veterinary Hygiene (PGHIGVET), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Niterói 24230-340, RJ, Brazil
| | - Pedro Panzenhagen
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-598, RJ, Brazil; (A.M.P.d.S.); (R.G.F.); (A.C.S.d.J.); (A.B.P.); (A.C.O.); (C.A.C.-J.)
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, RJ, Brazil
| | - Rafaela G. Ferrari
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-598, RJ, Brazil; (A.M.P.d.S.); (R.G.F.); (A.C.S.d.J.); (A.B.P.); (A.C.O.); (C.A.C.-J.)
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, RJ, Brazil
| | - Ana Carolina S. de Jesus
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-598, RJ, Brazil; (A.M.P.d.S.); (R.G.F.); (A.C.S.d.J.); (A.B.P.); (A.C.O.); (C.A.C.-J.)
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, RJ, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, RJ, Brazil
| | - Ana Beatriz Portes
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-598, RJ, Brazil; (A.M.P.d.S.); (R.G.F.); (A.C.S.d.J.); (A.B.P.); (A.C.O.); (C.A.C.-J.)
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, RJ, Brazil
- Graduate Program in Veterinary Hygiene (PGHIGVET), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Niterói 24230-340, RJ, Brazil
| | - Alan Clavelland Ochioni
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-598, RJ, Brazil; (A.M.P.d.S.); (R.G.F.); (A.C.S.d.J.); (A.B.P.); (A.C.O.); (C.A.C.-J.)
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, RJ, Brazil
| | | | - Carlos Adam Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-598, RJ, Brazil; (A.M.P.d.S.); (R.G.F.); (A.C.S.d.J.); (A.B.P.); (A.C.O.); (C.A.C.-J.)
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, RJ, Brazil
- Graduate Program in Veterinary Hygiene (PGHIGVET), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Niterói 24230-340, RJ, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, RJ, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
| |
Collapse
|
12
|
Adedokun FL, Ajayi A, Essiet UU, Oduyebo O, Adeleye AI, Smith SI. Antibiotic Resistance and Plasmid Replicon Types of Non-Typhoidal Salmonella Serovars Isolated From Food Animals and Humans in Lagos, Nigeria. Microbiol Insights 2023; 16:11786361231181909. [PMID: 37377945 PMCID: PMC10291401 DOI: 10.1177/11786361231181909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Multidrug resistance and invasiveness of non-typhoidal Salmonella (NTS) serovars have in recent times brought to the fore the public health risk associated with salmonellosis. This study was aimed at profiling NTS serovars isolated from food animals and humans for their susceptibility to antibiotics and plasmid replicon types. Forty seven NTS serovars were profiled for their susceptibility to antibiotics using the disk diffusion method. Polymerase chain reaction based replicon typing assay was used for profiling plasmid replicon types detected in Salmonella isolates. High rate of resistance were found for amoxicillin/clavulanic acid (40/47; 85.1%), cefuroxime (38/47; 80.9%) and ceftazidime (30/47; 63.8%). Thirty one (65.9%) and 33 (70.2%) showed intermediate resistance to ofloxacin and ciprofloxacin respectively. Plasmids of sizes ranging from 14.3 to 16.7 kb were detected in 24 (51.1%) of Salmonella isolates with some serovars harbouring multiple plasmids. FIA, FIB, Frep and W plasmid replicon types were detected in 11, 4, 2 and 1 of the Salmonella isolates respectively. Three of the isolates harboured both FIA and FIB replicon types. The high rate of resistance to β-lactams observed in Salmonella serovars harbouring different plasmid replicon types in this study highlight potential public health threat and the need for prudent use of antibiotics in human and veterinary medicine.
Collapse
Affiliation(s)
| | - Abraham Ajayi
- Molecular Biology and Biotechnology Department, Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria
| | - Utibeima Udo Essiet
- Molecular Biology and Biotechnology Department, Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria
| | - Oyin Oduyebo
- Department of Medical Microbiology, College Medicine University of Lagos, Idi-Araba, Lagos, Nigeria
| | | | - Stella Ifeanyi Smith
- Molecular Biology and Biotechnology Department, Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria
- Department of Biological Sciences, Mountain Top University, Ogun State, Nigeria
| |
Collapse
|
13
|
Akinyemi KO, Fakorede CO, Linde J, Methner U, Wareth G, Tomaso H, Neubauer H. Whole genome sequencing of Salmonella enterica serovars isolated from humans, animals, and the environment in Lagos, Nigeria. BMC Microbiol 2023; 23:164. [PMID: 37312043 DOI: 10.1186/s12866-023-02901-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/17/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Salmonella infections remain an important public health issue worldwide. Some serovars of non-typhoidal Salmonella (NTS) have been associated with bloodstream infections and gastroenteritis, especially in children in Sub-Saharan Africa with circulating S. enterica serovars with drug resistance and virulence genes. This study identified and verified the clonal relationship of Nigerian NTS strains isolated from humans, animals, and the environment. METHODS In total, 2,522 samples were collected from patients, animals (cattle and poultry), and environmental sources between December 2017 and May 2019. The samples were subjected to a standard microbiological investigation. All the isolates were identified using Microbact 24E, and MALDI-TOF MS. The isolates were serotyped using the Kauffmann-White scheme. Antibiotic susceptibility testing was conducted using the disc diffusion method and the Vitek 2 compact system. Virulence and antimicrobial resistance genes, sequence type, and cluster analysis were investigated using WGS data. RESULTS Forty-eight (48) NTS isolates (1.9%) were obtained. The prevalence of NTS from clinical sources was 0.9%, while 4% was recorded for animal sources. The serovars identified were S. Cotham (n = 17), S. Give (n = 16), S. Mokola (n = 6), S. Abony (n = 4), S. Typhimurium (n = 4), and S. Senftenberg (n = 1). All 48 Salmonella isolates carried intrinsic and acquired resistant genes such as aac.6…Iaa, mdf(A), qnrB, qnrB19 genes and golT, golS, pcoA, and silP, mediated by plasmid Col440I_1, incFIB.B and incFII. Between 100 and 118 virulence gene markers distributed across several Salmonella pathogenicity islands (SPIs), clusters, prophages, and plasmid operons were found in each isolate. WGS revealed that strains of each Salmonella serovar could be assigned to a single 7-gene MLST cluster, and strains within the clusters were identical strains and closely related as defined by the 0 and 10 cgSNPs and likely shared a common ancestor. The dominant sequence types were S. Give ST516 and S. Cotham ST617. CONCLUSION We found identical Salmonella sequence types in human, animal, and environmental samples in the same locality, which demonstrates the great potential of the applied tools to trace back outbreak strains. Strategies to control and prevent the spread of NTS in the context of one's health are essential to prevent possible outbreaks.
Collapse
Affiliation(s)
| | | | - Jörg Linde
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institute, Jena, Germany
| | - Ulrich Methner
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institute, Jena, Germany
| | - Gamal Wareth
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institute, Jena, Germany
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Benha University, PO Box 13736, Toukh, Moshtohor, Egypt
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Herbert Tomaso
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institute, Jena, Germany
| | - Heinrich Neubauer
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institute, Jena, Germany
| |
Collapse
|
14
|
De Koster S, Ringenier M, Xavier BB, Lammens C, De Coninck D, De Bruyne K, Mensaert K, Kluytmans-van den Bergh M, Kluytmans J, Dewulf J, Goossens H. Genetic characterization of ESBL-producing and ciprofloxacin-resistant Escherichia coli from Belgian broilers and pigs. Front Microbiol 2023; 14:1150470. [PMID: 37089550 PMCID: PMC10116946 DOI: 10.3389/fmicb.2023.1150470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/15/2023] [Indexed: 04/08/2023] Open
Abstract
BackgroundThe increasing number of infections caused by Escherichia coli resistant to clinically important antibiotics is a global concern for human and animal health. High overall levels of extended-spectrum beta-lactamase (ESBL)-producing and ciprofloxacin-resistant (ciproR) Escherichia coli in livestock are reported in Belgium. This cross-sectional study aimed to genotypically characterize and trace ESBL-and ciproR-E. coli of Belgian food-producing animals.MethodsA total of 798 fecal samples were collected in a stratified-random sampling design from Belgian broilers and sows. Consequently, 77 ESBL-E. coli and 84 ciproR-E. coli were sequenced using Illumina MiSeq. Minimum inhibitory concentration (MIC) for fluoroquinolones and cephalosporins were determined. Molecular in silico typing, resistance and virulence gene determination, and plasmid identification was performed. Scaffolds harboring ESBL or plasmid-mediated quinolone resistance (PMQR) genes were analyzed to detect mobile genetic elements (MGEs) and plasmid origins. Core genome allelic distances were used to determine genetic relationships among isolates.ResultsA variety of E. coli sequence types (ST) (n = 63), resistance genes and virulence profiles was detected. ST10 was the most frequently encountered ST (8.1%, n = 13). The pandemic multidrug-resistant clone ST131 was not detected. Most farms harbored more than one ESBL type, with blaCTX-M-1 (41.6% of ESBL-E. coli) being the most prevalent and blaCTX M-15 (n = 3) being the least prevalent. PMQR genes (15.5%, n = 13) played a limited role in the occurrence of ciproR-E. coli. More importantly, sequential acquisition of mutations in quinolone resistance-determining regions (QRDR) of gyrA and parC led to increasing MICs for fluoroquinolones. GyrA S83L, D87N and ParC S80I mutations were strongly associated with high-level fluoroquinolone resistance. Genetically related isolates identified within the farms or among different farms highlight transmission of resistant E. coli or the presence of a common reservoir. IncI1-I(alpha) replicon type plasmids carried different ESBL genes (blaCTX-M-1, blaCTX-M-32 and blaTEM-52C). In addition, the detection of plasmid replicons with associated insertion sequence (IS) elements and ESBL/PMQR genes in different farms and among several STs (e.g., IncI1-I(alpha)/IncX3) underline that plasmid transmission could be another important contributor to transmission of resistance in these farms.ConclusionOur findings reveal a multifaceted narrative of transmission pathways. These findings could be relevant in understanding and battling the problem of antibiotic resistance in farms.
Collapse
Affiliation(s)
- Sien De Koster
- Laboratory of Medical Microbiology, Vaccine and Infectious Diseases Institute, University of Antwerp, Antwerp, Belgium
| | - Moniek Ringenier
- Veterinary Epidemiology Unit, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Basil Britto Xavier
- Laboratory of Medical Microbiology, Vaccine and Infectious Diseases Institute, University of Antwerp, Antwerp, Belgium
- HIV/STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Hospital Outbreak Support Team-HOST, ZNA Middelheim, Antwerp, Belgium
- Hospital Outbreak Support Team-HOST, GZA Ziekenhuizen, Wilrijk, Belgium
| | - Christine Lammens
- Laboratory of Medical Microbiology, Vaccine and Infectious Diseases Institute, University of Antwerp, Antwerp, Belgium
| | | | | | | | - Marjolein Kluytmans-van den Bergh
- Department of Infection Control, Amphia Hospital, Breda, Netherlands
- Julius Center for Health Sciences and Primary Care, UMC Utrecht, University of Utrecht, CG Utrecht, Netherlands
- Amphia Academy Infectious Disease Foundation, Amphia Hospital, CK Breda, Netherlands
| | - Jan Kluytmans
- Julius Center for Health Sciences and Primary Care, UMC Utrecht, University of Utrecht, CG Utrecht, Netherlands
- Microvida Laboratory for Microbiology, Amphia Hospital, Breda, Netherlands
| | - Jeroen Dewulf
- Veterinary Epidemiology Unit, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Herman Goossens
- Laboratory of Medical Microbiology, Vaccine and Infectious Diseases Institute, University of Antwerp, Antwerp, Belgium
- *Correspondence: Herman Goossens,
| | | |
Collapse
|
15
|
Comparison of Phenotype and Genotype Virulence and Antimicrobial Factors of Salmonella Typhimurium Isolated from Human Milk. Int J Mol Sci 2023; 24:ijms24065135. [PMID: 36982209 PMCID: PMC10048834 DOI: 10.3390/ijms24065135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023] Open
Abstract
Salmonella is a common foodborne infection. Many serovars belonging to Salmonella enterica subsp. enterica are present in the gut of various animal species. They can cause infection in human infants via breast milk or cross-contamination with powdered milk. In the present study, Salmonella BO was isolated from human milk in accordance with ISO 6579-1:2017 standards and sequenced using whole-genome sequencing (WGS), followed by serosequencing and genotyping. The results also allowed its pathogenicity to be predicted. The WGS results were compared with the bacterial phenotype. The isolated strain was found to be Salmonella enterica subsp. enterica serovar Typhimurium 4:i:1,2_69M (S. Typhimurium 69M); it showed a very close similarity to S. enterica subsp. enterica serovar Typhimurium LT2. Bioinformatics sequence analysis detected eleven SPIs (SPI-1, SPI-2, SPI-3, SPI-4, SPI-5, SPI-9, SPI-12, SPI-13, SPI-14, C63PI, CS54_island). Significant changes in gene sequences were noted, causing frameshift mutations in yeiG, rfbP, fumA, yeaL, ybeU (insertion) and lpfD, avrA, ratB, yacH (deletion). The sequences of several proteins were significantly different from those coded in the reference genome; their three-dimensional structure was predicted and compared with reference proteins. Our findings indicate the presence of a number of antimicrobial resistance genes that do not directly imply an antibiotic resistance phenotype.
Collapse
|
16
|
Jibril AH, Okeke IN, Dalsgaard A, Olsen JE. Prevalence and whole genome phylogenetic analysis reveal genetic relatedness between antibiotic resistance Salmonella in hatchlings and older chickens from farms in Nigeria. Poult Sci 2023; 102:102427. [PMID: 36584420 PMCID: PMC9827064 DOI: 10.1016/j.psj.2022.102427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/07/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
The presence of Salmonella in hatchlings is the single most important risk factor for the introduction of Salmonella into poultry farms, and resistant strains are particularly worrisome, as they could affect treatment outcomes in humans infected through consumption of contaminated poultry products. This study estimated Salmonella prevalence, determined resistance profiles of strains recovered from hatchlings in Nigeria, and determined genetic relatedness between hatchling strains and strains from poultry farms. In this study, 300 fecal samples were collected. Salmonella was isolated by culture and confirmed by PCR, and isolates were tested for susceptibility to antimicrobials by the disk diffusion method. Strains were pair-end sequenced, and genomes were used to obtain serotypes and antibiotic resistance genes. Whole-genome based phylogenetic analysis was used to determine genetic relatedness between these isolates and strains from previously characterized older chicken within the same geographical area. A prevalence of 10.7% was obtained belonging to 13 Salmonella serovars. Resistance to kanamycin (30/32), ciprofloxacin (22/32), nalidixic acid (22/32), and sulfonamides (22/32) were the most commonly observed phenotypic resistances. Twenty-two (68.8%) isolates showed multidrug resistance. In silico predictions identified 36 antimicrobial resistance genes. Four (12.5%) and 22 (68.8%) strains showed point mutations in gyrA and parC. Commonly observed acquired resistance genes included sul1, sul2, sul3, and tet(A) as well as a variety of aminoglycoside-modifying genes. Eleven (34.4%) isolates were predicted to have genes that confer resistance to fosfomycin (fosA7, fosB). A strain of S. Stanleyville was predicted to have optrA, which confers resistance to furazolidone. Strains of S. Kentucky, S. Muenster, and S. Menston obtained from hatchlings showed close genetic relatedness by having less than 30 SNPs difference to strains recovered from chickens at farms previously receiving hatchlings from the same sources.
Collapse
Affiliation(s)
- Abdurrahman Hassan Jibril
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Iruka N Okeke
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| | - Anders Dalsgaard
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, Usmanu Danfodiyo University Sokoto, Sokoto, Nigeria
| | - John Elmerdahl Olsen
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, Usmanu Danfodiyo University Sokoto, Sokoto, Nigeria
| |
Collapse
|
17
|
Tanmoy AM, Hooda Y, Sajib MSI, da Silva KE, Iqbal J, Qamar FN, Luby SP, Dougan G, Dyson ZA, Baker S, Garrett DO, Andrews JR, Saha SK, Saha S. Paratype: a genotyping tool for Salmonella Paratyphi A reveals its global genomic diversity. Nat Commun 2022; 13:7912. [PMID: 36564386 PMCID: PMC9782287 DOI: 10.1038/s41467-022-35587-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Salmonella Paratyphi A, the primary etiology of paratyphoid, is estimated to cause 3.4 million infections annually, worldwide. With rising antimicrobial resistance and no licensed vaccines, genomic surveillance is key to track and monitor transmission, but there is currently no reliable genotyping framework for this pathogen. Here, we sequence 817 isolates from South Asia and add 562 publicly available genomes to build a global database representing 37 countries, covering 1917-2019. We develop a single nucleotide polymorphism-based genotyping scheme, Paratype, that segregates Salmonella Paratyphi A population into three primary and nine secondary clades, and 18 genotypes. Each genotype is assigned a unique allele definition located on an essential gene. Using Paratype, we identify spatiotemporal genomic variation and antimicrobial resistance markers. We release Paratype as an open-access tool that can use raw read files from both Illumina and Nanopore platforms, and thus can assist surveillance studies tracking Salmonella Paratyphi A across the globe.
Collapse
Affiliation(s)
- Arif M Tanmoy
- Child Health Research Foundation, Dhaka, Bangladesh
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Yogesh Hooda
- Child Health Research Foundation, Dhaka, Bangladesh
- MRC-Laboratory Molecular Biology, Cambridge, UK
| | - Mohammad S I Sajib
- Child Health Research Foundation, Dhaka, Bangladesh
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Kesia E da Silva
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Junaid Iqbal
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Farah N Qamar
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Stephen P Luby
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Gordon Dougan
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Zoe A Dyson
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, UK
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Stephen Baker
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Denise O Garrett
- Applied Epidemiology Team, Sabin Vaccine Institute, Washington, DC, USA
| | - Jason R Andrews
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Samir K Saha
- Child Health Research Foundation, Dhaka, Bangladesh
- Department of Microbiology, Bangladesh Shishu Hospital and Institute, Dhaka, Bangladesh
| | - Senjuti Saha
- Child Health Research Foundation, Dhaka, Bangladesh.
| |
Collapse
|
18
|
A Familiar Outbreak of Monophasic Salmonella serovar Typhimurium (ST34) Involving Three Dogs and Their Owner's Children. Pathogens 2022; 11:pathogens11121500. [PMID: 36558834 PMCID: PMC9788015 DOI: 10.3390/pathogens11121500] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/23/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Salmonella is a Gram-negative enteric bacterium responsible for the foodborne and waterborne disease salmonellosis, which is the second most reported bacterial zoonosis in humans. Many animals are potential sources of salmonellosis, including dogs, cats, and other pets. We report the case of an outbreak of salmonellosis in a family in central Italy, affecting two children and involving their three dogs as carriers. One of the children needed medical care and hospitalisation. Isolation and analysis of stool samples from the sibling and the animals present in the house were carried out. Serotyping allowed the identification of S. enterica subsp. enterica serovar Typhimurium in its monophasic variant for all the isolates. The results of whole-genome sequencing confirmed that the strains were tightly related. The minimum inhibitory concentration (MIC) test documented the resistance to ampicillin, sulfamethoxazole, and tetracycline. The origin of the zoonotic outbreak could not be assessed; however, the case study showed a clear passage of the pathogen between the human and non-human members of the family. The possibility of a transmission from a dog to a human suggests the need for further studies on the potential ways of transmission of salmonellosis through standard and alternative feed.
Collapse
|
19
|
Major N, Jechalke S, Nesme J, Goreta Ban S, Černe M, Sørensen SJ, Ban D, Grosch R, Schikora A, Schierstaedt J. Influence of sewage sludge stabilization method on microbial community and the abundance of antibiotic resistance genes. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 154:126-135. [PMID: 36242814 DOI: 10.1016/j.wasman.2022.09.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Municipal sewage sludge (MSS) and other biosolids are of high interest for agriculture. These nutrient-rich organic materials can potentially serve as organic fertilizers. Besides an increase of organic matter in soil, other positive effects were shown after their application. Especially the positive influence on circular economy increased the attention paid to management of MSS in recent years. Unfortunately, the use of sewage sludge has some drawbacks. Biosolids are frequently polluted with heavy metals, xenobiotic organic compounds and industrial chemicals, which may be hazardous for the environment and humans. Here, we investigated the influence of stabilization method and the size of wastewater treatment plant on the structure of microbial communities as well as the abundance of antibiotic resistance genes (ARG) and mobile genetic elements (MGE). All tested ARG and MGE were detectable in almost all of the samples. Interestingly, the presence of MGE as well as particular heavy metals correlated positively with the presence of several ARG. We conclude that the distribution of ARG and MGE in biosolids originated from municipal wastewater treatment plants, cannot be explained by the size of the facility or the applied stabilization method. Moreover, we postulate that the presence of pollutants and long-term impacts should be assessed prior to a possible use of sewage sludge as fertilizer.
Collapse
Affiliation(s)
- Nikola Major
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Sven Jechalke
- Institute for Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
| | - Joseph Nesme
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | | | - Marko Černe
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Søren J Sørensen
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Dean Ban
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Rita Grosch
- Leibniz Institute of Vegetable and Ornamental Crops, Department Plant-Microbe Systems, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany
| | - Adam Schikora
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104 Braunschweig, Germany.
| | - Jasper Schierstaedt
- Leibniz Institute of Vegetable and Ornamental Crops, Department Plant-Microbe Systems, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany
| |
Collapse
|
20
|
Ramtahal MA, Amoako DG, Ismail A, Bester L, Abia ALK, Essack SY. Salmonella Yoruba: a rare serotype revealed through genomic sequencing along the farm-to-fork continuum of an intensive poultry farm in KwaZulu-Natal, South Africa. Acta Trop 2022; 234:106620. [PMID: 35907503 DOI: 10.1016/j.actatropica.2022.106620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/08/2022] [Accepted: 07/26/2022] [Indexed: 11/01/2022]
Abstract
Salmonella enterica is a zoonotic pathogen of worldwide public health importance. We characterised Salmonella isolates from poultry along the farm-to-fork continuum using whole genome sequencing (WGS) and bioinformatics analysis. Three multilocus sequence types (MLSTs), i.e., ST15 (1.9%), ST152 (5.9%) and ST1316 (92.2%) and three serotypes, i.e., S. Heidelberg (1.9%), Kentucky (5.9%) and Yoruba (92.2%) were detected. The rare serotype, S. Yoruba, was detected among the farm and abattoir isolates and contained resistance and virulence determinants. Resistome analysis revealed the presence of the aac(6')-Iaa gene associated with aminoglycoside resistance, a single point mutation in the parC gene associated with fluoroquinolone and quinolone resistance, and a single isolate contained the fosA7 gene responsible for fosfomycin resistance. No antibiotic resistance genes (ARGs) were identified for isolates phenotypically non-susceptible to azithromycin, cephalosporins, chloramphenicol and nitrofurantoin and resistance was thought to be attributable to other resistance mechanisms. The fully susceptible profiles observed for the wastewater isolates suggest that the poultry environment may receive antibiotic-resistant strains and resistance determinants from poultry with the potential of becoming a pathway of Salmonella transmission along the continuum. Six plasmids were identified and were only carried by 92.2% of the S. Yoruba isolates in varying combinations. Four plasmids were common to all S. Yoruba isolates along the continuum; isolates from the litter and faeces on the farm contained two additional plasmids. Ten Salmonella pathogenicity islands (SPIs) and 177 virulence genes were identified; some were serotype-specific. Phylogenetic analysis of S. Heidelberg and Kentucky showed that isolates were related to animal and human isolates from other countries. Phylogenetic analysis among the S. Yoruba isolates revealed four clades based on the isolate sources along the farm-to-fork continuum. Although the transmission of Salmonella strains along the farm-to-fork continuum was not evident, pathogenic, resistant Salmonella present in the poultry production chain poses a food safety risk. WGS analysis can provide important information on the spread, resistance, pathogenicity, and epidemiology of isolates and new, rare or emerging Salmonella strains to develop intervention strategies to improve food safety.
Collapse
Affiliation(s)
- Melissa A Ramtahal
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa.
| | - Daniel G Amoako
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, Johannesburg 2131, South Africa
| | - Arshad Ismail
- Core Sequencing Facility, National Institute for Communicable Diseases, Johannesburg 2131, South Africa
| | - Linda Bester
- Biomedical Research Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Akebe L K Abia
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; Environmental Research Foundation, Westville 3630, KwaZulu-Natal
| | - Sabiha Y Essack
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| |
Collapse
|
21
|
Alikhan NF, Moreno LZ, Castellanos LR, Chattaway MA, McLauchlin J, Lodge M, O’Grady J, Zamudio R, Doughty E, Petrovska L, Cunha MPV, Knöbl T, Moreno AM, Mather AE. Dynamics of Salmonella enterica and antimicrobial resistance in the Brazilian poultry industry and global impacts on public health. PLoS Genet 2022; 18:e1010174. [PMID: 35653335 PMCID: PMC9162342 DOI: 10.1371/journal.pgen.1010174] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/29/2022] [Indexed: 11/19/2022] Open
Abstract
Non-typhoidal Salmonella enterica is a common cause of diarrhoeal disease; in humans, consumption of contaminated poultry meat is believed to be a major source. Brazil is the world's largest exporter of chicken meat globally, and previous studies have indicated the introduction of Salmonella serovars through imported food products from Brazil. Here we provide an in-depth genomic characterisation and evolutionary analysis to investigate the most prevalent serovars and antimicrobial resistance (AMR) in Brazilian chickens and assess the impact to public health of products contaminated with S. enterica imported into the United Kingdom from Brazil. To do so, we examine 183 Salmonella genomes from chickens in Brazil and 357 genomes from humans, domestic poultry and imported Brazilian poultry products isolated in the United Kingdom. S. enterica serovars Heidelberg and Minnesota were the most prevalent serovars in Brazil and in meat products imported from Brazil into the UK. We extended our analysis to include 1,259 publicly available Salmonella Heidelberg and Salmonella Minnesota genomes for context. The Brazil genomes form clades distinct from global isolates, with temporal analysis suggesting emergence of these Salmonella Heidelberg and Salmonella Minnesota clades in the early 2000s, around the time of the 2003 introduction of the Enteritidis vaccine in Brazilian poultry. Analysis showed genomes within the Salmonella Heidelberg and Salmonella Minnesota clades shared resistance to sulphonamides, tetracyclines and beta-lactams conferred by sul2, tetA and blaCMY-2 genes, not widely observed in other co-circulating serovars despite similar selection pressures. The sul2 and tetA genes were concomitantly carried on IncC plasmids, whereas blaCMY-2 was either co-located with the sul2 and tetA genes on IncC plasmids or independently on IncI1 plasmids. Long-term surveillance data collected in the UK showed no increase in the incidence of Salmonella Heidelberg or Salmonella Minnesota in human cases of clinical disease in the UK following the increase of these two serovars in Brazilian poultry. In addition, almost all of the small number of UK-derived genomes which cluster with the Brazilian poultry-derived sequences could either be attributed to human cases with a recent history of foreign travel or were from imported Brazilian food products. These findings indicate that even should Salmonella from imported Brazilian poultry products reach UK consumers, they are very unlikely to be causing disease. No evidence of the Brazilian strains of Salmonella Heidelberg or Salmonella Minnesota were observed in UK domestic chickens. These findings suggest that introduction of the Salmonella Enteritidis vaccine, in addition to increasing antimicrobial use, could have resulted in replacement of salmonellae in Brazilian poultry flocks with serovars that are more drug resistant, but less associated with disease in humans in the UK. The plasmids conferring resistance to beta-lactams, sulphonamides and tetracyclines likely conferred a competitive advantage to the Salmonella Minnesota and Salmonella Heidelberg serovars in this setting of high antimicrobial use, but the apparent lack of transfer to other serovars present in the same setting suggests barriers to horizontal gene transfer that could be exploited in intervention strategies to reduce AMR. The insights obtained reinforce the importance of One Health genomic surveillance.
Collapse
Affiliation(s)
| | - Luisa Zanolli Moreno
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
- Centro Universitário Max Planck (UniMax), Indaiatuba, São Paulo, Brazil
| | | | | | - Jim McLauchlin
- UK Health Security Agency National Infection Service, London, United Kingdom
| | - Martin Lodge
- UK Health Security Agency National Infection Service, London, United Kingdom
| | - Justin O’Grady
- Quadram Institute Bioscience, Norwich, United Kingdom
- University of East Anglia, Norwich, United Kingdom
| | | | - Emma Doughty
- Quadram Institute Bioscience, Norwich, United Kingdom
| | - Liljana Petrovska
- Department of Bacteriology and Food Safety, Animal and Plant Health Agency (APHA—Weybridge), Addlestone, United Kingdom
| | - Marcos Paulo Vieira Cunha
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Terezinha Knöbl
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Andrea Micke Moreno
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Alison E. Mather
- Quadram Institute Bioscience, Norwich, United Kingdom
- University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
22
|
Ramtahal MA, Amoako DG, Akebe ALK, Somboro AM, Bester LA, Essack SY. A Public Health Insight into Salmonella in Poultry in Africa: A Review of the Past Decade: 2010-2020. Microb Drug Resist 2022; 28:710-733. [PMID: 35696336 DOI: 10.1089/mdr.2021.0384] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Poultry is a cheap source of animal protein and constituent of diets in Africa. Poultry can serve as a reservoir for Salmonella and cause food-borne infections in humans. This review describes Salmonella contamination of food, poultry, and the farming environment, antimicrobial resistance profiles, and serotypes of Salmonella, as well as the farming systems, antimicrobial use (AMU), hygiene, and husbandry conditions used to rear poultry in Africa. Using the PRISMA (preferred reporting items for systematic reviews and meta-analysis) guidelines, PubMed, Science Direct, and Web of Science databases were searched using a set of predefined keywords. Full-length research articles in English were examined for the period 2010-2020 and relevant information extracted for the narrative synthesis. Of the articles that met the inclusion criteria, 63.1% were conducted on farms and among households, while 36.9% were undertaken at government-controlled laboratories, which quarantine imported birds, processing plants, and retail outlets. The farming systems were intensive, semi-intensive, and extensive. AMU was described in 11.5% of the studies and varied within and across countries. Multidrug-resistant (MDR) Salmonella isolates were detected in 30 studies and the prevalence ranged from 12.1% in Zimbabwe to 100% in Egypt, Ethiopia, Nigeria, Senegal, and South Africa. A total of 226 different Salmonella serotypes were reported. Twenty-four (19.7%) of the studies reported food-borne Salmonella contamination in eggs, poultry, and poultry products at retail outlets and processing plants. The apparent extensive use of antimicrobials and circulation of MDR Salmonella isolates of various serotypes in Africa is a concern. It is important to implement stricter biosecurity measures on farms, regulate the use of antimicrobials and implement surveillance systems, in addition to food safety measures to monitor the quality of poultry and poultry products for human consumption.
Collapse
Affiliation(s)
- Melissa A Ramtahal
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Daniel G Amoako
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.,Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Abia L K Akebe
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Anou M Somboro
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.,Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Linda A Bester
- Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Sabiha Y Essack
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
23
|
Detection of Antimicrobial Resistance, Pathogenicity, and Virulence Potentials of Non-Typhoidal Salmonella Isolates at the Yaounde Abattoir Using Whole-Genome Sequencing Technique. Pathogens 2022; 11:pathogens11050502. [PMID: 35631023 PMCID: PMC9148033 DOI: 10.3390/pathogens11050502] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 01/27/2023] Open
Abstract
One of the crucial public health problems today is the emerging and re-emerging of multidrug-resistant (MDR) bacteria coupled with a decline in the development of new antimicrobials. Non-typhoidal Salmonella (NTS) is classified among the MDR pathogens of international concern. To predict their MDR potentials, 23 assembled genomes of NTS from live cattle (n = 1), beef carcass (n = 19), butchers’ hands (n = 1) and beef processing environments (n = 2) isolated from 830 wet swabs at the Yaounde abattoir between December 2014 and November 2015 were explored using whole-genome sequencing. Phenotypically, while 22% (n = 5) of Salmonella isolates were streptomycin-resistant, 13% (n = 3) were MDR. Genotypically, all the Salmonella isolates possessed high MDR potentials against several classes of antibiotics including critically important drugs (carbapenems, third-generation cephalosporin and fluoroquinolone). Moreover, >31% of NTS exhibited resistance potentials to polymyxin, considered as the last resort drug. Additionally, ≤80% of isolates harbored “silent resistant genes” as a potential reservoir of drug resistance. Our isolates showed a high degree of pathogenicity and possessed key virulence factors to establish infection even in humans. Whole-genome sequencing unveiled both broader antimicrobial resistance (AMR) profiles and inference of pathogen characteristics. This study calls for the prudent use of antibiotics and constant monitoring of AMR of NTS.
Collapse
|
24
|
Akinduti P, Obafemi YD, Isibor PO, Ishola R, Ahuekwe FE, Ayodele OA, Oduleye OS, Oziegbe O, Onagbesan OM. Antibacterial kinetics and phylogenetic analysis of Aloe vera plants. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Uncontrolled use of antibiotics has resulted in the emergence of resistant bacteria. It has necessitated the evaluation of antibacterial activities and phylo-diversity of Aloe vera (also called Aloe barbadensis) plants as antimicrobial agent in Nigeria. Biotyped enteric bacilli of 251 strains obtained from fecal samples of patients with various gastro-intestinal complications are profiled for antibiogram. Resistant biotypes were assayed for susceptibility to Aloe vera latex and further evaluated for time-kill kinetics and phylo-diversity. More than 30% of enteric bacilli, including Citrobacter freundii, Escherichia coli and Proteus mirabilis were resistant to cotrimoxazole, ciprofloxacin, and tetracycline respectively at MIC >16 µg/ml (p=0.004). Aloe vera latex significantly inhibited 39.5% resistant enteric biotypes with a significant average reduction of the viable count at 1xMIC and 2xMIC to less than 3.0 Log10CFU/mL after 24 hours. Flavonoids, alkaloids, terpenoids and anthraquinine in anti-enteric sap significantly correlated and regressed with antibacterial activity (p<0.05), while two of the antimicrobial Aloe vera plants showed phylogenetic relatedness with other homologous. Anti-bacteria efficacy of some Nigerian Aloe vera latex could provide alternative therapy, while its phylo-diversity and genomic profiling would offer a promising avenue for identification and development of antimicrobial agents as drug candidates for natural antibiotics.
Collapse
|
25
|
Richter L, du Plessis EM, Duvenage S, Allam M, Ismail A, Korsten L. Whole Genome Sequencing of Extended-Spectrum- and AmpC- β-Lactamase-Positive Enterobacterales Isolated From Spinach Production in Gauteng Province, South Africa. Front Microbiol 2021; 12:734649. [PMID: 34659162 PMCID: PMC8517129 DOI: 10.3389/fmicb.2021.734649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/01/2021] [Indexed: 02/06/2023] Open
Abstract
The increasing occurrence of multidrug-resistant (MDR) extended-spectrum β-lactamase- (ESBL) and/or AmpC β-lactamase- (AmpC) producing Enterobacterales in irrigation water and associated irrigated fresh produce represents risks related to the environment, food safety, and public health. In South Africa, information about the presence of ESBL/AmpC-producing Enterobacterales from non-clinical sources is limited, particularly in the water-plant-food interface. This study aimed to characterize 19 selected MDR ESBL/AmpC-producing Escherichia coli (n=3), Klebsiella pneumoniae (n=5), Serratia fonticola (n=10), and Salmonella enterica (n=1) isolates from spinach and associated irrigation water samples from two commercial spinach production systems within South Africa, using whole genome sequencing (WGS). Antibiotic resistance genes potentially encoding resistance to eight different classes were present, with bla CTX-M-15 being the dominant ESBL encoding gene and bla ACT-types being the dominant AmpC encoding gene detected. A greater number of resistance genes across more antibiotic classes were seen in all the K. pneumoniae strains, compared to the other genera tested. From one farm, bla CTX-M-15-positive K. pneumoniae strains of the same sequence type 985 (ST 985) were present in spinach at harvest and retail samples after processing, suggesting successful persistence of these MDR strains. In addition, ESBL-producing K. pneumoniae ST15, an emerging high-risk clone causing nosocomical outbreaks worldwide, was isolated from irrigation water. Known resistance plasmid replicon types of Enterobacterales including IncFIB, IncFIA, IncFII, IncB/O, and IncHI1B were observed in all strains following analysis with PlasmidFinder. However, bla CTX-M-15 was the only β-lactamase resistance gene associated with plasmids (IncFII and IncFIB) in K. pneumoniae (n=4) strains. In one E. coli and five K. pneumoniae strains, integron In191 was observed. Relevant similarities to human pathogens were predicted with PathogenFinder for all 19 strains, with a confidence of 0.635-0.721 in S. fonticola, 0.852-0.931 in E. coli, 0.796-0.899 in K. pneumoniae, and 0.939 in the S. enterica strain. The presence of MDR ESBL/AmpC-producing E. coli, K. pneumoniae, S. fonticola, and S. enterica with similarities to human pathogens in the agricultural production systems reflects environmental and food contamination mediated by anthropogenic activities, contributing to the spread of antibiotic resistance genes.
Collapse
Affiliation(s)
- Loandi Richter
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
- Department of Science and Innovation, National Research Foundation Centre of Excellence in Food Security, Pretoria, South Africa
| | - Erika M. du Plessis
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
- Department of Science and Innovation, National Research Foundation Centre of Excellence in Food Security, Pretoria, South Africa
| | - Stacey Duvenage
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
- Department of Science and Innovation, National Research Foundation Centre of Excellence in Food Security, Pretoria, South Africa
| | - Mushal Allam
- Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Arshad Ismail
- Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Lise Korsten
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
- Department of Science and Innovation, National Research Foundation Centre of Excellence in Food Security, Pretoria, South Africa
| |
Collapse
|
26
|
Antimicrobial Resistance Profiles and Genetic Typing of Salmonella Serovars from Chicken Embryos in China. Antibiotics (Basel) 2021; 10:antibiotics10101156. [PMID: 34680737 PMCID: PMC8532839 DOI: 10.3390/antibiotics10101156] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/18/2021] [Accepted: 09/19/2021] [Indexed: 11/17/2022] Open
Abstract
Salmonella continues to be a major food and public health burden worldwide that can threaten human health via eating contaminated meats, particularly those originating from chicken. In this study, the antimicrobial resistance profiles, epidemiological characteristics of resistance genes, and pulsed field gel electrophoresis (PFGE-XbaI) typing of 120 non-Pullorum/Gallinarum Salmonella isolates recovered from chicken embryos in Henan province were determined. The antimicrobial resistant phenotypes and evaluation of the extended-spectrum beta-lactamases (ESBLs) producing strains of Salmonella were investigated by the Kirby-Bauer test and the double-disk synergy test. Additionally, 37 antimicrobial resistance genes encoding resistance to five different categories, including aminoglycosides, cephalosporins, sulphonamides, tetracyclines, and β-lactams, were examined by conventional PCR. However, genotyping analysis was conducted by macro-restriction using enzyme XbaI followed by the separation of the restricted DNA fragments by PFGE. The results of this study showed that the studied Salmonella strains were highly resistant to ampicillin (66.67%) and sulfisoxazole (66.67%), while they were all susceptible to meropenem, imipenem, colistin, and chloramphenicol. Additionally, 67.5% (81/120) of the studied strains were multidrug resistant, and 21.67% (26/120) were phenotypically confirmed as ESBLs positive. The statistical analysis showed that resistance depends on the serovars, and ESBLs positive strains showed more multi-resistance than ESBLs negative strains (p < 0.05). The genotypic antimicrobial resistance showed the detection of 14 among the 37 tested genes, and the concordance between genotypic and phenotypic antimicrobial resistance ranged from 0% to 100% depending on the serovars. However, the PFGE-XbaI typing results showed that the examined Salmonella strains were divided into 22 individual subtypes and were grouped in nine clusters, with similarity values ranging from 64.7% to 100%. From this study, we can conclude that the antimicrobial resistance of Salmonella serovars isolated from chicken embryos in Henan province was alarming, with rigorous multidrug resistance, which requires the urgent mitigation of the use of antimicrobial drugs in chicken hatcheries. Additionally, our results showed evidence of the presence of different PFGE patterns among the studied Salmonella serovars, suggesting the presence of different sources of contamination.
Collapse
|
27
|
Jibril AH, Okeke IN, Dalsgaard A, Olsen JE. Association between antimicrobial usage and resistance in Salmonella from poultry farms in Nigeria. BMC Vet Res 2021; 17:234. [PMID: 34215271 PMCID: PMC8254292 DOI: 10.1186/s12917-021-02938-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 06/17/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) is a global health threat affecting treatment outcome in animals and humans. A pre-requisite for development of AMR reduction strategies is knowledge of antimicrobial use patterns, and how these affect resistance development. The aim of this study was to determine antimicrobial usage (AMU) and whether such usage was associated with AMR in Salmonella from poultry farms in Northwest Nigeria. RESULTS Fifteen (37%) of antimicrobial products observed contained compounds that are of highest priority and critically important for human medicine. Broilers chicken consumed higher (28 ± 14 mg/kg active ingredients) amounts of antimicrobials compared to layers (13 ± 8 mg/kg) per week (p = 0.0009). Surprisingly, chickens raised under backyard system consumed higher amounts of antimicrobials (34 ± 7 mg/kg) than poultry in other systems (p = 0.02). High levels of resistance to tetracycline (58%), sulphonamides (65%), ciprofloxacin (46%) and gentamicin (42%) correlated with high farm level usage of these antimicrobials, and there was a strong correlation (r = 0.9) between farm usage and resistance of isolates to the same antimicrobials (p = 0.03). CONCLUSION High AMU, including use of highest priority critically important antimicrobials was observed at poultry farms in Northwest Nigeria. AMU correlated with high levels of resistance. Communication of prudent use of antimicrobials to farmers and regulation to obtain reduction in AMU should be a priority.
Collapse
Affiliation(s)
- Abdurrahman Hassan Jibril
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, Usmanu Danfodiyo University Sokoto, Sokoto, Nigeria
| | - Iruka N. Okeke
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| | - Anders Dalsgaard
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - John Elmerdahl Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
28
|
Occurrence, antimicrobial resistance and whole genome sequence analysis of Salmonella serovars from pig farms in Ilorin, North-central Nigeria. Int J Food Microbiol 2021; 350:109245. [PMID: 34023679 DOI: 10.1016/j.ijfoodmicro.2021.109245] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/15/2021] [Accepted: 05/10/2021] [Indexed: 02/02/2023]
Abstract
Salmonella enterica is a foodborne pathogen of global public health importance with developing countries mostly affected. Foodborne outbreaks are often attributed to pork consumption and Salmonella contamination of retail pork is directly linked to the Salmonella prevalence on farm. The widespread use of antimicrobials at different steps of swine production can favor resistant strains of Salmonella. The objectives of this study are to characterize the distribution, multilocus sequence typing (MLST), plasmid, virulence profiles and antimicrobial resistance of Salmonella serovars circulating in selected pig farms. Six hundred fecal samples were randomly collected from nine selected farms in Ilorin, Nigeria. Isolates were analyzed by cultural isolation using selective media, conventional biochemical characterization, serotyping, MLST and whole genome sequencing (WGS). Sixteen samples were positive for Salmonella sub-species, comprising of nine serovars. The antimicrobial susceptibility results revealed low-level resistance against 13 antimicrobial agents. Five strains exhibited resistance to nalidixic acid and intermediate resistance to ciprofloxacin with chromosomal (double) mutation at gyrA and parC while four strains possessed single mutation in parC. Salmonella Kentucky showed double mutation each at gyrA and parC. WGS analysis, revealed eight diverse sequence types (STs), the most common STs were ST-321 and ST-19 (n = 4) exhibited by S. Muenster and S. Typhimurium, respectively. Single Nucleotide Polymorphism (SNP)-based phylogeny analysis showed the 16 isolates to be highly related and fell into 8 existing clusters at NCBI Pathogen Detection. Curtailing the spread of resistant strains will require the establishment of continuous surveillance program at the state and national levels in Nigeria. This study provides useful information for further studies on antimicrobial resistance mechanisms in foodborne Salmonella species.
Collapse
|