1
|
Akkari H, Heleili N, Ozgumus OB, Merradi M, Reis A, Ayachi A, Akarsu N, Tufekci EF, Kiliç AO. Prevalence and molecular characterization of ESBL/pAmpC producing faecal Escherichia coli strains with widespread detection of CTX-M-15 isolated from healthy poultry flocks in Eastern Algeria. Microb Pathog 2024; 196:106973. [PMID: 39313136 DOI: 10.1016/j.micpath.2024.106973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/25/2024]
Abstract
The intensification of livestock farming has led to the widespread use of massive amounts of antibiotics worldwide. Poultry production, including white meat, eggs and the use of their manure as fertiliser, has been identified as one of the most crucial reservoirs for the emergence and spread of resistant bacteria, including E. coli in poultry as an important opportunistic pathogen representing the greatest biological hazard to human and wildlife health. Thus, this study aimed to analyse E. coli in the faecal carriage of healthy poultry flocks and to investigate the phenotypic and genotypic characteristics of antimicrobial resistance, including integrons genes and phylogenetic groups. A total of 431 cloacal swabs from apparently healthy poultry from four regions in Eastern Algeria from December 2021 to October 2022. 360 E. coli were isolated; from broilers (n = 151), broiler breeders (n = 91), laying hens (n = 72), and breeding hens (n = 46). Among this, 281 isolates exhibited multidrug resistance (MDR) phenotype, 17 of the 360 E. coli isolates exhibited ESBL, and one isolate exhibited both ESBL/pAmpC. A representative collection of 183 among 281 MDR E. coli was selected for further analysis by PCR to detect genes encoding resistance to different antibiotics, and sequencing was performed on all positive PCR products of blaCTX-M and blaCMY-2 genes. Phylogenetic groups were determined in 80 E. coli isolates (20 from each of the four kinds of poultry). The blaCTX-M gene was found in 16 (94.11 %) ESBL-producing E. coli isolates within 11 strains co-expressing the blaSHV gene and 8 strains co-expressing the blaTEM gene. Sequence analysis showed frequent diversity in CTX-M-group-1, with blaCTX-M-15 being the most predominant (n = 11), followed by blaCTX-M-1 (n = 5). The blaCMY-2 gene was detected only in one ESBL/pAmpC isolate. Among the 183 tested isolates, various antimicrobial resistance genes were found (number of strains) blaTEM (n = 121), blaSHV (n = 12), tetA (n = 100), tetB (n = 29), sul1(n = 67), sul2 (n = 32), qnrS (n = 45), qnrB (n = 10), qnrA (n = 1), catA1(n = 13), aac-(6')-Ib (n = 3). Furthermore, class 1 and class 2 integrons were found in 113 and 2 E. coli, respectively. The isolates were classified into multiple phylogroups, including A (35 %), B1 (27.5 %), B2 and D each (18.75 %). The detection of integrons and different classes of resistance genes in the faecal carriage of healthy poultry production indicates that commensal E. coli could potentially act as a reservoir for antimicrobial resistance, posing a significant One Health challenge encompassing the interconnected domains of human, animal health and the environment. Here, we present the first investigation to describe the diversity of blaCTX-M producing E. coli isolates with widespread detection of CTX-M-15 and CTX-M-1 in healthy breeders (Broiler and breeding hens) in Eastern Algeria.
Collapse
Affiliation(s)
- Hafsa Akkari
- ESPA Laboratory, Department of Veterinary Sciences, Institute of Veterinary Sciences and Agronomic Sciences, University of Batna 1, 05000, Batna, Algeria
| | - Nouzha Heleili
- ESPA Laboratory, Department of Veterinary Sciences, Institute of Veterinary Sciences and Agronomic Sciences, University of Batna 1, 05000, Batna, Algeria.
| | - Osman Birol Ozgumus
- Department of Medical Microbiology, Faculty of Medicine, Recep Tayyip Erdogan University, 53100, Rize, Turkey
| | - Manel Merradi
- Department of Microbiology and Biochemistry, Faculty of Natural and Life Sciences, University of Batna 2, 05078, Batna, Algeria
| | - Ahu Reis
- Department of Medical Microbiology, Faculty of Medicine, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Ammar Ayachi
- ESPA Laboratory, Department of Veterinary Sciences, Institute of Veterinary Sciences and Agronomic Sciences, University of Batna 1, 05000, Batna, Algeria
| | - Neslihan Akarsu
- Department of Biotechnology, Faculty of Science, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Enis Fuat Tufekci
- Department of Medical Microbiology, Faculty of Medicine, Kastamonu University, 37200, Kastamonu, Turkey
| | - Ali Osman Kiliç
- Department of Medical Microbiology, Faculty of Medicine, Karadeniz Technical University, 61080, Trabzon, Turkey
| |
Collapse
|
2
|
Moffo F, Ndebé MMF, Dah I, Nkolo ENN, Ngom RV, Madjeue FN, Wade A, Tiomo H, Ngwa VN, Mouiche MMM. Antimicrobial Resistance Profiles of Escherichia coli and Staphylococcus spp. Isolated from Locally Produced Fish and Imported Fish Sold in the Centre Region of Cameroon. J Food Prot 2024; 87:100377. [PMID: 39424103 DOI: 10.1016/j.jfp.2024.100377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 09/24/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024]
Abstract
Antimicrobial resistance has emerged as a significant threat to global health, with the World Health Organization (WHO) classifying it among the top 10 public health threats. However, more epidemiological information is needed to support policy and stewardship programs. This study aimed to investigate the antimicrobial resistance profiles of Escherichia coli and Staphylococcus spp. isolated from locally produced and imported fish sold in markets in the Mfoundi Division of the Centre Region of Cameroon. A total of 11 E . coli and 28 Staphylococcus spp. strains were isolated from the 100 fish samples collected in the study area. Antimicrobial susceptibility testing was performed for 16 antimicrobial agents using the disk diffusion method. Overall, multidrug resistance rates of 54.54% (95% confidence interval: 26.9-82.1) and 60.7% (95% confidence interval: 43.7-77.7) were obtained for Escherichia coli and Staphylococcus spp., respectively. The prevalence of antimicrobial-resistant E . coli and Staphylococcus spp. strains was significantly (p < 0.05) higher in locally produced fish (18.6%; 32.6%) than in imported fish (5.3%; 24.6%). According to the WHO Essential Medicines List Access, Watch, and Reserve (AWaRe) classification, the antimicrobial resistance profile of E. coli strains isolates ranged from 5% to 45% for antimicrobials classified as Access and Watch. For Staphylococcus spp., the antimicrobial resistance profile ranges from 7% to 60% for drugs categorized as Access, whereas it ranges from 25% to 100% for drugs belonging to the Watch category. This study revealed that locally produced fish were more contaminated by antimicrobial-resistant E. coli and Staphylococcus spp. than imported fish. The continuous awareness of fish farmers about the appropriate use of aqua drugs is one of the cornerstones for reducing the risk of antimicrobial resistance related to public health.
Collapse
Affiliation(s)
- Frédéric Moffo
- Department of Pharmacy, Pharmacology and Toxicology, School of Veterinary Medicine and Sciences, University of Ngaoundéré, Cameroon; One Health Innovative Solutions (OHIS) Research Unit, Ngaoundéré, Cameroon.
| | | | - Isaac Dah
- National Veterinary Laboratory Anex Yaoundé, Yaoundé, Cameroon
| | - Esther NNeme Nkolo
- Department of Pharmacy, Pharmacology and Toxicology, School of Veterinary Medicine and Sciences, University of Ngaoundéré, Cameroon
| | - Ronald Vougat Ngom
- Department of Animal Production, School of Veterinary Medicine and Sciences, University of Ngaoundéré, Cameroon
| | - Fabiola Nango Madjeue
- Department of Pharmacy, Pharmacology and Toxicology, School of Veterinary Medicine and Sciences, University of Ngaoundéré, Cameroon
| | - Abel Wade
- National Veterinary Laboratory Anex Yaoundé, Yaoundé, Cameroon
| | - Hélène Tiomo
- National Veterinary Laboratory Anex Yaoundé, Yaoundé, Cameroon
| | - Victor Ngu Ngwa
- Department of Pharmacy, Pharmacology and Toxicology, School of Veterinary Medicine and Sciences, University of Ngaoundéré, Cameroon
| | - Mohamed Moctar Mouliom Mouiche
- Department of Pharmacy, Pharmacology and Toxicology, School of Veterinary Medicine and Sciences, University of Ngaoundéré, Cameroon; One Health Innovative Solutions (OHIS) Research Unit, Ngaoundéré, Cameroon
| |
Collapse
|
3
|
Vougat Ngom R, Jajere SM, Ayissi GJ, Tanyienow A, Moffo F, Watsop HM, Mimboe LM, Mouiche MM, Schüpbach-Regula G, Carmo LP. Unveiling the landscape of resistance against high priority critically important antimicrobials in food-producing animals across Africa: A scoping review. Prev Vet Med 2024; 226:106173. [PMID: 38503073 DOI: 10.1016/j.prevetmed.2024.106173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/10/2024] [Accepted: 03/06/2024] [Indexed: 03/21/2024]
Abstract
The rapid population growth in Africa is associated with an increasing demand for livestock products which in turn can lead to antimicrobial use. Antimicrobial usage in animals contributes to the emergence and selection of resistant bacteria which constitutes a serious public health threat. This study aims to review and summarize the available information on highest priority critically important antimicrobials (HPCIAs) resistance in livestock production in Africa. This work will help to inform future policies for controlling antimicrobial resistance (AMR) in the food production chain. A scoping review was conducted according to the Cochrane handbook and following PRISMA 2020 guidelines for reporting. Primary research studies published after 1999 and reporting resistance of Escherichia coli, Enterococcus spp, Staphylococcus aureus, Salmonella spp, and Campylobacter spp to HPCIAs in poultry, cattle, pigs, goats, and sheep in Africa were searched in four databases. A total of 312 articles were included in the review. The majority of the studies (40.7) were conducted in North African countries. More than 49.0% of included studies involved poultry and 26.2% cattle. Cephalosporins and quinolones were the most studied antimicrobial classes. Of the bacteria investigated in the current review, E. coli (41.7%) and Salmonella spp (24.9%) represented the most commonly studied. High levels of resistance against erythromycin in E. coli were found in poultry (MR 96.1%, IQR 83.3-100.0%), cattle (MR 85.7%, IQR 69.2-100.0%), and pigs (MR 94.0%, IQR 86.2-94.0%). In sheep, a high level of resistance was observed in E. coli against nalidixic acid (MR 87.5%, IQR 81.3-93.8%). In goats, the low level of sensibility was noted in S. aureus against streptomycin (MR 86.8%, IQR 19.4-99.0%). The study provides valuable information on HPCIAs resistance in livestock production in Africa and highlights the need for further research and policies to address the public health risk of AMR. This will likely require an investment in diagnostic infrastructure across the continent. Awareness on the harmful impact of AMR in African countries is a requirement to produce more effective and sustainable measures to curb AMR.
Collapse
Affiliation(s)
- Ronald Vougat Ngom
- School of Veterinary Medicine and Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon
| | - Saleh M Jajere
- Faculty of Veterinary Medicine, University of Maiduguri, Borno State, Nigeria
| | - Gaspard Ja Ayissi
- School of Veterinary Medicine and Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon
| | - Akenghe Tanyienow
- School of Veterinary Medicine and Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon
| | - Frédéric Moffo
- School of Veterinary Medicine and Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon
| | - Hippolyte M Watsop
- School of Veterinary Medicine and Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon
| | - Leina M Mimboe
- School of Veterinary Medicine and Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon
| | - Mohamed Mm Mouiche
- School of Veterinary Medicine and Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon
| | | | - Luís Pedro Carmo
- Veterinary Public Health Institute, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Norwegian Veterinary Institute, Elizabeth Stephansens vei 1, Ås 1433, Norway
| |
Collapse
|
4
|
Tigabie M, Biset S, Belachew T, Amare A, Moges F. Multidrug-resistant and extended-spectrum beta-lactamase-producing Enterobacteriaceae isolated from chicken droppings in poultry farms at Gondar City, Northwest Ethiopia. PLoS One 2023; 18:e0287043. [PMID: 37294782 PMCID: PMC10256222 DOI: 10.1371/journal.pone.0287043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/29/2023] [Indexed: 06/11/2023] Open
Abstract
BACKGROUND The poultry sector is one of the largest and fastest-growing agricultural sub-sector, especially in developing countries like Ethiopia. In poultry production, poultry farmers use sub-optimum doses of antibiotics for growth promotion and disease prevention purpose. This indiscriminate use of antibiotics in poultry farms contributes to the emergence of antibiotic-resistant bacteria, which has adverse implications for public health. Therefore, this study is aimed to assess multidrug resistance and extended-spectrum beta-lactamase-producing Enterobacteriaceae from chicken droppings in poultry farms. METHODS A total of 87 pooled chicken-dropping samples were collected from poultry farms from March to June 2022. Samples were transported with buffered peptone water. Selenite F broth was used for the enrichment and isolation of Salmonella spp. Isolates were cultured and identified by using MacConkey agar, Xylose lysine deoxycholate agar, and routine biochemical tests. Kirby-Bauer disk diffusion technique and combination disk test were used for antibiotic susceptibility testing and confirmation of extended-spectrum beta-lactamase production, respectively. Data were entered using Epi-data version 4.6 and then exported to SPSS version 26 for analysis. RESULT Out of 87 pooled chicken droppings, 143 Enterobacteriaceae isolates were identified. Of these, E. coli accounts for 87 (60.8%), followed by Salmonella spp. 23 (16.1%), P. mirabilis 18 (12.6%) and K. pneumoniae 11 (7.7%). A high resistance rate was observed for ampicillin 131 (91.6%), followed by tetracycline 130 (90.9), and trimethoprim-sulfamethoxazole 94 (65.7%). The overall multidrug resistance rate was 116/143 (81.1%; 95% CI: 74.7-87.5). A total of 12/143 (8.4%; CI: 3.9-12.9) isolates were extended-spectrum beta-lactamase producers, with 11/87 (12.6%) E. coli and 1/11 (9.1%) K. pneumoniae. CONCLUSION AND RECOMMENDATIONS High prevalence of multi-drug resistant isolates was observed. This study alarms poultry as a potential reservoir of extended-spectrum beta-lactamase-producing Enterobacteriaceae, which might shed and contaminate the environment through faecal matter. Prudent use of antibiotics should be implemented to manage antibiotic resistance in poultry production.
Collapse
Affiliation(s)
- Mitkie Tigabie
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Sirak Biset
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Teshome Belachew
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Azanaw Amare
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Feleke Moges
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
5
|
Gros M, Mas-Pla J, Sànchez-Melsió A, Čelić M, Castaño M, Rodríguez-Mozaz S, Borrego CM, Balcázar JL, Petrović M. Antibiotics, antibiotic resistance and associated risk in natural springs from an agroecosystem environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159202. [PMID: 36208750 DOI: 10.1016/j.scitotenv.2022.159202] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
This study investigates the occurrence, transport, and risks associated to antibiotic residues, antibiotic resistance genes (ARGs) and antibiotic resistant Escherichia coli (AR-E. coli) in eleven natural springs in an agroecosystem environment with intense livestock production, where groundwater nitrate concentration usually sets above 50 mg L-1. Out of 23 multiple-class antibiotics monitored, tetracycline and sulfonamide residues were the most ubiquitous, and they were detected at concentrations ranging from ng L-1 to μg L-1. Five ARGs were monitored, conferring resistance to the antibiotic classes of major use in livestock production. Thus, genes conferring resistance to sulfonamides (sul1 and sul2) and tetracyclines (tetW) as well as a gene proxy for anthropogenic pollution (intI1) were present in most springs. sul1 was the most abundant, with absolute concentrations ranging from 4 × 102 to 5.6 × 106 gene copies L-1 water. AR-E. coli showing resistance to sulfonamides and tetracyclines was also detected, with a prevalence up to approximately 40 % in some sites but with poor correlations with the concentration of antibiotic residues and ARGs. The occurrence of antibiotics, ARGs and AR-E. coli was characterized by large seasonal variations which were mostly associated to both hydrological factors and reactive transport processes. Finally, a risk assessment approach pointed out towards low risk for both the groundwater environment and human health, when spring water is used for direct human consumption, associated with the occurrence of antibiotics, ARGs and AR-E. coli. However, long-term effects cannot be neglected, and proper actions must be taken to preserve groundwater quality.
Collapse
Affiliation(s)
- Meritxell Gros
- Catalan Institute for Water Research (ICRA), Spain; University of Girona (UdG), Spain.
| | - Josep Mas-Pla
- Catalan Institute for Water Research (ICRA), Spain; Grup de Recerca GAiA-Geocamb, Department of Environmental Sciences, University of Girona, Spain
| | | | - Mira Čelić
- Catalan Institute for Water Research (ICRA), Spain; University of Girona (UdG), Spain
| | - Marc Castaño
- Catalan Institute for Water Research (ICRA), Spain; University of Girona (UdG), Spain
| | - Sara Rodríguez-Mozaz
- Catalan Institute for Water Research (ICRA), Spain; University of Girona (UdG), Spain
| | - Carles M Borrego
- Catalan Institute for Water Research (ICRA), Spain; Group of Molecular Microbial Ecology, Institute of Aquatic Ecology, University of Girona, Spain
| | - José Luis Balcázar
- Catalan Institute for Water Research (ICRA), Spain; University of Girona (UdG), Spain
| | - Mira Petrović
- Catalan Institute for Water Research (ICRA), Spain; Catalan Institution for Research and Advanced Studies (ICREA), Spain
| |
Collapse
|
6
|
Al-Mustapha AI, Alada SA, Raufu IA, Lawal AN, Eskola K, Brouwer MS, Adetunji V, Heikinheimo A. Co-occurrence of antibiotic and disinfectant resistance genes in extensively drug-resistant Escherichia coli isolated from broilers in Ilorin, North Central Nigeria. J Glob Antimicrob Resist 2022; 31:337-344. [PMID: 36375754 DOI: 10.1016/j.jgar.2022.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES The occurrence of multidrug-resistant (MDR) bacteria in poultry poses the public health threat of zoonotic transmission to humans. Hence, this study assessed the occurrence of drug-resistant Escherichia coli in broilers in the largest live bird market in Kwara State, Nigeria in December 2020. METHODS Presumptive E. coli isolates were isolated using the European Union Reference Laboratory guideline of 2017 and confirmed via matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF/MS). Broth microdilution was performed on confirmed E. coli isolates to determine the minimum inhibitory concentration. Five extensively drug-resistant (XDR) isolates were selected for Illumina whole genome sequencing to predict the resistome, phylotype, sequence type, serotype, and diversity of mobile genetic elements in these isolates. RESULTS Of the 181 broiler caecal samples, 73 E. coli isolates were obtained, of which 67 (82.0%) and 37 (50.6%) were determined as MDR (resistant to at least three classes of antibiotics) and XDR (resistant to at least five classes of antibiotics), respectively. Whole genome sequencing revealed diverse sequence types, phylogroups, and serotypes (ST165/B1 - O80:H19, ST115/A - Unknown: H7, ST901/B1 - O109:H4, ST4087/F - O117:H42, and ST8324/A - O127:H42). The XDR E. coli isolates encoded resistance to fluoroquinolones, fosfomycin, sulfamethoxazole, ampicillin and cephalosporins, trimethoprim, aminoglycosides, chloramphenicol, tetracycline, and macrolides. Mutations in the gyrA gene conferring resistance to fluoroquinolones were also detected. There was a positive correlation between phenotypic resistance patterns and the antibiotic resistance genes that were detected in the sequenced isolates. The XDR isolates also harbored two disinfectant resistance genes (qacE and sitABCD) that conferred resistance to hydrogen peroxide and quaternary ammonium compounds, respectively. The genome of the XDR isolates harbored several mobile genetic elements and virulence-associated genes, which were conserved in all sequenced XDR isolates. CONCLUSIONS This is the first report of co-carriage of antibiotic resistance genes and disinfectant resistance genes in E. coli isolated from broilers in Ilorin, Nigeria. Our findings suggest that poultry are potential carriers of clonally diverse, pathogenic, MDR/XDR E. coli, which may have detrimental zoonotic potentials on human health.
Collapse
Affiliation(s)
- Ahmad Ibrahim Al-Mustapha
- Department of Veterinary Services, Kwara State Ministry of Agriculture and Rural Development, Ilorin, Kwara State, Nigeria; Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Ibadan, Oyo State, Nigeria; Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Finland.
| | - Shafi Abdullah Alada
- Veterinary Microbiology Laboratory, University of Ilorin Veterinary Teaching Hospital, Ilorin, Kwara State, Nigeria
| | - Ibrahim Adisa Raufu
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Ilorin, Kwara State, Nigeria
| | - Adedeji Nurudeen Lawal
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Ilorin, Kwara State, Nigeria; Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Katarina Eskola
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Finland
| | - Michael Sm Brouwer
- Department of Bacteriology and Host-Pathogen Reaction, Wageningen University and Research, Lelystad, The Netherlands
| | - Victoria Adetunji
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Ibadan, Oyo State, Nigeria
| | - Annamari Heikinheimo
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Finland; Finnish Food Authority, Seinäjoki, Finland
| |
Collapse
|
7
|
A Comprehensive Study of the Microbiome, Resistome, and Physical and Chemical Characteristics of Chicken Waste from Intensive Farms. Biomolecules 2022; 12:biom12081132. [PMID: 36009027 PMCID: PMC9406075 DOI: 10.3390/biom12081132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/17/2022] Open
Abstract
The application of chicken waste to farmland could be detrimental to public health. It may contribute to the dissemination of antibiotic-resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) from feces and their subsequent entry into the food chain. The present study analyzes the metagenome and resistome of chicken manure and litter obtained from a commercial chicken farm in Poland. ARB were isolated, identified, and screened for antibiogram fingerprints using standard microbiological and molecular methods. The physicochemical properties of the chicken waste were also determined. ARGs, integrons, and mobile genetic elements (MGE) in chicken waste were analyzed using high-throughput SmartChip qPCR. The results confirm the presence of many ARGs, probably located in MGE, which can be transferred to other bacteria. Potentially pathogenic or opportunistic microorganisms and phytopathogens were isolated. More than 50% of the isolated strains were classified as being multi-drug resistant, and the remainder were resistant to at least one antibiotic class; these pose a real risk of entering the groundwater and contaminating the surrounding environment. Our results indicate that while chicken manure can be sufficient sources of the nutrients essential for plant growth, its microbiological aspects make this material highly dangerous to the environment.
Collapse
|
8
|
Antimicrobial Resistance Trends of Escherichia coli Isolates: A Three-Year Prospective Study of Poultry Production in Spain. Antibiotics (Basel) 2022; 11:antibiotics11081064. [PMID: 36009933 PMCID: PMC9404938 DOI: 10.3390/antibiotics11081064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
Antimicrobial resistance (AMR) poses a major threat to health worldwide. Poultry products are one of the main threats, due to the transmission of antimicrobial resistance genes throughout the food chain. Escherichia coli is the main cause of mortality in the poultry industry, mainly mitigated with antibiotics, but due to the high genetic strain variability, recurrent outbreaks of multidrug resistant E. coli take place. The major challenge to tackling AMR is understanding the burden of resistance. For this reason, one of the main strategies is monitoring AMR by phenotypic characterisation. Our study aimed to monitor the resistance of E. coli strains isolated from the poultry sector over a period of three years (2019–2021) to provide information on the resistance magnitude and trends. Promising results have been found concerning the low frequency of resistance to cephalosporins, polymyxin, and fluoroquinolones. However, levels of resistance found to antimicrobials such as erythromycin (100%), tylosin (98%), or penicillin (97%) suggest the need to continue working on the limitation of use of antimicrobials in poultry to achieve the demise of MDR.
Collapse
|
9
|
Menck-Costa MF, Baptista AAS, Gazal LEDS, Justino L, Sanches MS, de Souza M, Nishio EK, Queiroz Dos Santos B, Cruz VD, Berbert JVM, Gonçalves BC, Andrade G, Vespero EC, Nakazato G, Kobayashi RKT. High-Frequency Detection of fosA3 and bla CTX-M-55 Genes in Escherichia coli From Longitudinal Monitoring in Broiler Chicken Farms. Front Microbiol 2022; 13:846116. [PMID: 35663865 PMCID: PMC9158547 DOI: 10.3389/fmicb.2022.846116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Considering the worrying emergence of multidrug resistance, including in animal husbandry and especially in food-producing animals, the need to detect antimicrobial resistance strains in poultry environments is relevant, mainly considering a One Health approach. Thus, this study aimed to conduct longitudinal monitoring of antimicrobial resistance in broiler chicken farms, with an emphasis on evaluating the frequency of resistance to fosfomycin and β-lactams. Escherichia coli was isolated from broiler chicken farms (cloacal swabs, meconium, poultry feed, water, poultry litter, and Alphitobius diaperinus) in northern Paraná from 2019 to 2020 during three periods: the first period (1st days of life), the second period (20th to 25th days of life), and third period (40th to 42nd days of life). Antibiogram tests and the detection of phenotypic extended-spectrum β-lactamase (ESBL) were performed, and they were confirmed by seaching for genes from the blaCTX–M group. The other resistance genes searched were mcr-1 and fosA3. Some ESBL blaCTX–M–1 group strains were selected for ESBL identification by sequencing and enterobacterial repetitive intergenic consensus-polymerase chain reaction analysis. To determine the transferability of the blaCTX–M–1– and fosA3-carrying plasmids, strains were subjected to conjugation experiments. A total of 507 E. coli were analyzed: 360 from cloacal swabs, 24 from meconium samples, 3 from poultry feed samples, 18 from water samples, 69 from poultry litter samples, and 33 from A. diaperinus samples. Among the strain isolate, 80% (406/507) were multidrug-resistant (MDR), and 51% (260/507) were ESBL-positive, with the blaCTX–M–1 group being the most frequent. For the fosA3 gene, 68% (344/507) of the strains isolated were positive, deserves to be highlighted E. coli isolated from day-old chickens (OR 6.34, CI 2.34–17.17), when compared with strains isolated from other origins (poultry litter, A. diaperinus, water, and poultry feed). This work alerts us to the high frequency of the fosA3 gene correlated with the CTX-M-1 group (OR 3.57, CI 95% 2.7–4.72, p < 0.05), especially the blaCTX–M–55 gene, in broiler chickens. This profile was observed mainly in day-old chicken, with a high percentage of E. coli that were MDR. The findings emphasize the importance of conducting longitudinal monitoring to detect the primary risk points during poultry production.
Collapse
Affiliation(s)
- Maísa Fabiana Menck-Costa
- Department of Microbiology, Biological Sciences Center, State University of Londrina, Londrina, Brazil
| | - Ana Angelita Sampaio Baptista
- Department of Preventive Veterinary Medicine, Avian Medicine Laboratory, State University of Londrina, Londrina, Brazil
| | | | - Larissa Justino
- Department of Preventive Veterinary Medicine, Avian Medicine Laboratory, State University of Londrina, Londrina, Brazil
| | - Matheus Silva Sanches
- Department of Microbiology, Biological Sciences Center, State University of Londrina, Londrina, Brazil
| | - Marielen de Souza
- Department of Preventive Veterinary Medicine, Avian Medicine Laboratory, State University of Londrina, Londrina, Brazil
| | - Erick Kenji Nishio
- Department of Microbiology, Biological Sciences Center, State University of Londrina, Londrina, Brazil
| | - Beatriz Queiroz Dos Santos
- Department of Preventive Veterinary Medicine, Avian Medicine Laboratory, State University of Londrina, Londrina, Brazil
| | - Victor Dellevedove Cruz
- Department of Microbiology, Biological Sciences Center, State University of Londrina, Londrina, Brazil
| | - João Vitor Monteiro Berbert
- Department of Preventive Veterinary Medicine, Avian Medicine Laboratory, State University of Londrina, Londrina, Brazil
| | - Bruna Carolina Gonçalves
- Department of Microbiology, Biological Sciences Center, State University of Londrina, Londrina, Brazil
| | - Galdino Andrade
- Department of Microbiology, Biological Sciences Center, State University of Londrina, Londrina, Brazil
| | - Eliana Carolina Vespero
- Department of Pathology, Clinical Analysis and Toxicology, Health Sciences Center, State University of Londrina, Londrina, Brazil
| | - Gerson Nakazato
- Department of Microbiology, Biological Sciences Center, State University of Londrina, Londrina, Brazil
| | | |
Collapse
|
10
|
Mouiche MMM, Wouembe FDK, Mpouam SE, Moffo F, Djuntu M, Toukam CMW, Kameni JMF, Okah-Nnane NH, Awah-Ndukum J. Cross-Sectional Survey of Prophylactic and Metaphylactic Antimicrobial Use in Layer Poultry Farming in Cameroon: A Quantitative Pilot Study. Front Vet Sci 2022; 9:646484. [PMID: 35518638 PMCID: PMC9063002 DOI: 10.3389/fvets.2022.646484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 01/14/2022] [Indexed: 11/21/2022] Open
Abstract
An evaluation of the patterns of antimicrobial use in livestock can help understand the increasing level of antimicrobial resistance worldwide. This study aimed at evaluating antimicrobial usage in modern layer poultry farms in the West Region of Cameroon. In this light, 70 layer poultry farms and 4 veterinary pharmacies were surveyed. Data on antimicrobial use were collected through interviews using a quantitative-frequency questionnaire and consultation of medical records. The four veterinary pharmacies sold a total of 2.8 tons of antimicrobials (active ingredients) during 2011. At the level of farms, 297 kg of antimicrobials (active ingredients) were used in the 50 layer poultry farms surveyed. Tetracycline, sulfonamides, quinolones, and β-lactams (aminopenicillins) were the most sold and used drugs in layer farms. As for treatment indication, metaphylactic (58.1%) and prophylactic (41.9%) treatments were the most observed practices, and nearly all (99%) treatments were administered per os as remedies to respiratory (33.4%) and digestive (24.7%) tract symptoms. Overall, 78.2% of antimicrobials sold in pharmacies and 67.3% used in the farms belonged to the class of critically important antimicrobials of the WHO categorization of antimicrobials according to their importance to human medicine. Doxycycline, sulfonamide, ampicillin, and streptomycin, which have been banned for layer poultry in the production of eggs for human consumption, were still used in Cameroon. The treatment incidences based on the used daily dose (TIUDD) and animal daily dose (TIADD) were 11.59 and 10.45, respectively. In regard to dosage correctness based on the UDD/ADD ratio, aminoglycosides (100%), macrolides (90.6%), and tetracyclines (74.5%) were the most underdosed, while trimethoprim sulfonamides (45.8%) and β-lactams (35.7%) were overdosed. This study highlights an irrational antimicrobial usage in layer poultry farms. Regulation of the use of antimicrobials and the education of farmers on adequate antimicrobial use are essential to preserve the effectiveness of drugs in both humans and animals.
Collapse
Affiliation(s)
- Mohamed Moctar Mouliom Mouiche
- Department of Pharmacy, Pharmacology and Toxicology, School of Veterinary Medicine and Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon
| | | | - Serge Eugene Mpouam
- Department of Pharmacy, Pharmacology and Toxicology, School of Veterinary Medicine and Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon
| | - Frédéric Moffo
- Department of Pharmacy, Pharmacology and Toxicology, School of Veterinary Medicine and Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon
| | - Michael Djuntu
- Department of Pharmacy, Pharmacology and Toxicology, School of Veterinary Medicine and Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon
| | | | - Jean Marc Feussom Kameni
- Ministry of Livestock, Fisheries and Animal Industries (MINEPIA), Yaoundé, Cameroon.,Epidemiology-Public Health-Veterinary Association (ESPV), Yaoundé, Cameroon
| | | | | |
Collapse
|
11
|
Mansaray AHD, Yankson DPY, Johnson RAB, Moses FL, Kanu JS, Kamara IF, Zachariah R, Kumar AMV, Selvaraj K. Bacterial Isolates and Antibiotic Resistance of Escherichia coli Isolated from Fresh Poultry Excreta Used for Vegetable Farming in Freetown, Sierra Leone. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:5405. [PMID: 35564800 PMCID: PMC9100810 DOI: 10.3390/ijerph19095405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/28/2022] [Accepted: 04/13/2022] [Indexed: 01/13/2023]
Abstract
The transfer of antibiotic resistance from animals to humans is of concern in recent times. One potential source of such transfer is the untreated poultry excreta used as manure in farming. We aim to identify bacterial isolates and antibiotic susceptibility patterns of Escherichia coli in poultry excreta in Sierra Leone. This was a cross-sectional study of fresh poultry excreta samples collected from four commercial poultry sites in Freetown, Sierra Leone, from June−September 2021. Bacterial isolates were tested against eight antibiotics using established standards. Of 100 samples, 93 showed Escherichia coli (93%): of those, eight isolates also had Salmonella (8%). E. coli was 100% resistant to all three ‘Watch’ drugs (erythromycin, cefoxitin and streptomycin) and tetracycline. E. coli was least resistant to ampicillin (12%), followed by chloramphenicol (35%). The prevalence of multidrug resistance was 95.6%. Multiple antibiotic resistance index ranged from 0.5−0.7 (optimal < 0.2), indicating high prior exposure to antibiotics in these poultries. Such high levels of resistance in E. coli isolated from poultry excreta could pose a serious threat to humans. We recommend (i) routine surveillance to monitor antibiotic resistance in poultry excreta, (ii) using poultry excreta as manure only after treatment and (iii) restricting the use of antibiotics as prophylactics and growth promoters in poultry feeds.
Collapse
Affiliation(s)
- Alie H. D. Mansaray
- Senior Agriculture Officer, Crops Division, Ministry of Agriculture and Forestry, West Wing, Youyi Building, Brookfields, Freetown 00232, Sierra Leone; (D.P.Y.Y.); (R.A.B.J.)
| | - Dennis P. Y. Yankson
- Senior Agriculture Officer, Crops Division, Ministry of Agriculture and Forestry, West Wing, Youyi Building, Brookfields, Freetown 00232, Sierra Leone; (D.P.Y.Y.); (R.A.B.J.)
| | - Raymonda A. B. Johnson
- Senior Agriculture Officer, Crops Division, Ministry of Agriculture and Forestry, West Wing, Youyi Building, Brookfields, Freetown 00232, Sierra Leone; (D.P.Y.Y.); (R.A.B.J.)
| | - Francis L. Moses
- Directorate of Reproductive and Child Health, Ministry of Health and Sanitation, Youyi Building, Brookfields, Freetown 00232, Sierra Leone;
- Faculty of Basic Medical Sciences, College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown 00232, Sierra Leone
| | - Joseph Sam Kanu
- National Disease Surveillance Program, Ministry of Health and Sanitation, Sierra Leone National Public Health Emergency Operations Centre, Cockerill, Wilkinson Road, Freetown 00232, Sierra Leone;
- Department of Community Health, Faculty of Clinical Sciences, College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown 00232, Sierra Leone
| | - Ibrahim Franklyn Kamara
- World Health Organization, 21A-B Riverside, Off King Harman Road Freetown, Freetown 00232, Sierra Leone; or
| | - Rony Zachariah
- Special Program for Research and Training in Tropical Diseases (TDR), World Health Organization, Avenue Appia 20, 1211 Geneva 27, Switzerland;
| | - Ajay M. V. Kumar
- International Union against Tuberculosis and Lung Disease, 68 Boulevard Saint Michel, 75006 Paris, France;
- International Union against Tuberculosis and Lung Disease, South-East Asia Office, C-6 Qutub Institutional Area, New Delhi 110016, India
- Yenepoya Medical College, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore 575018, India
| | | |
Collapse
|
12
|
Pellegrini MC, Okada E, González Pasayo RA, Ponce AG. Prevalence of Escherichia coli strains in horticultural farms from Argentina: antibiotic resistance, biofilm formation, and phylogenetic affiliation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:23225-23236. [PMID: 34802078 DOI: 10.1007/s11356-021-17523-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Escherichia coli is the bacteria most commonly used as an indicator of fecal contamination in agricultural environments. Moreover, E. coli is categorized as a priority pathogen due to its widespread antibiotic resistance. This study aimed to characterize E. coli strains isolated from 10 horticultural farms. Isolates were obtained from samples of vegetable crops (n = 62), the surrounding soil (n = 62), poultry litter (n = 8), and groundwater (n = 6). Phyllo-grouping assignment was performed on the total of E. coli isolates. Antibiograms and quantification of the minimal inhibitory concentration (MIC) were performed with antibiotics commonly used in humans. Biofilm formation capacity was studied by quantifying cells attached to culture tubes. Overall, 21 E. coli isolates were obtained. Three phylogenetic groups (A, B1, and C) and two Escherichia clade IV and IV-V were identified in the collection by polymerase chain reaction. Sixty-seven percent of the E. coli isolates were resistant to amoxicillin-clavulanic acid and/or ampicillin. Amoxicillin MIC values ranged from 11.9 to >190.5 µg/mL and ampicillin MIC values ranged from 3 to >190.5 µg/mL. All the E. coli isolates, resistant and non-resistant, had biofilm forming capacity. The presence of phenotypic resistance on fresh produce and environmental matrices could present significant opportunities for contamination that result in health risks for consumers. To the authors' best knowledge, this is the first environmental assessment of resistant E. coli occurrence in horticultural farms in South America.
Collapse
Affiliation(s)
- María Celeste Pellegrini
- Grupo de Investigación en Ingeniería en Alimentos (GIIA), Instituto de Ciencia y Tecnología de alimentos y ambiente (INCITAA, CIC-UNMDP), Facultad de Ingeniería, Universidad Nacional de Mar del Plata, Av. Juan B. Justo 4302, B7602AYL Mar del, Plata, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, CABA, Argentina.
| | - Elena Okada
- Instituto Nacional de Tecnología Agropecuaria (INTA) Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Balcarce, Ruta 226 Km 73.5, 7620, Balcarce, Argentina
| | - Ramón Alejandro González Pasayo
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Innovación para la Producción Agropecuaria y Desarrollo Sostenible (IPADS, CONICET-INTA), Ruta 226 km 73.5, Balcarce, 7620, Buenos Aires, Argentina
| | - Alejandra Graciela Ponce
- Grupo de Investigación en Ingeniería en Alimentos (GIIA), Instituto de Ciencia y Tecnología de alimentos y ambiente (INCITAA, CIC-UNMDP), Facultad de Ingeniería, Universidad Nacional de Mar del Plata, Av. Juan B. Justo 4302, B7602AYL Mar del, Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, CABA, Argentina
| |
Collapse
|
13
|
Attia YA, Bovera F, Hassan RA, Hassan EA, Attia KM, Assar MH, Tawfeek F. Reducing ammonia emission by aluminum sulfate addition in litter and its influence on productive, reproductive, and physiological parameters of dual-purpose breeding hens. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:25093-25110. [PMID: 34837619 DOI: 10.1007/s11356-021-17613-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
This research investigated the impact of aluminum sulfate (AS) as amendment to different types of litter (new, reused, and mixed litters) for reducing ammonia emission and improving productive performance of local dual-purpose breeding hens. A total of 450 hens and 60 cocks from the Inshas strain were randomly assigned to six groups (five replicates each of 15 hens + 2 cocks) raised in pen floor furnished with a wheat straw litter. The groups included: (1) new, (2) reused, (3) mixed (50% new + 50% reused) litter; the other groups (4, 5 and 6) were respectively housed on the same litter as groups 1, 2 and 3 but with the addition of 495 g of AS/m2 litter. The feed conversion ratio was better for layers raised on new litter with or without AS than other groups. Different kinds of litter had different moisture (p < 0.05) and pH (p < 0.05) values. Birds raised on litter types treated with AS significantly (p < 0.05) decreased intestinal pH and decreased total bacterial count compared to the same litter types without AS at the end of the experiment. Birds raised on new litter supplemented with AS had the highest plasma T3, total protein, globulin, Hgb, and PCV% and the lowest levels of uric acid and cholesterol at the end of the experimental period. Therefore, litter amendment with AS, also the mixed or reused one, could be recommended to reduce ammonia and, in turn, increasing plasma T3 and decreasing total bacterial count, leading to increasing bird's performance.
Collapse
Affiliation(s)
- Youssef A Attia
- Agriculture Department, Faculty of Environmental Sciences, King Abdulaziz University, PO Box 80208, Jeddah, 21589, Saudi Arabia.
| | - Fulvia Bovera
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, via F. Delpino,1, 80137, Napoli, Italy.
| | - Reda A Hassan
- Department of Poultry Nutrition, Animal Production Research Institute, Agricultural Center, Dokki, Giza, Egypt
| | - Ebtehal A Hassan
- Department of Poultry Nutrition, Animal Production Research Institute, Agricultural Center, Dokki, Giza, Egypt
| | - Khalil M Attia
- Department of Poultry Nutrition, Animal Production Research Institute, Agricultural Center, Dokki, Giza, Egypt
| | - Mohamed H Assar
- Department of Poultry Breeding, Animal Production Research Institute, Agricultural Center, Dokki, Giza, Egypt
| | - Fouad Tawfeek
- Department of Poultry Breeding, Animal Production Research Institute, Agricultural Center, Dokki, Giza, Egypt
| |
Collapse
|
14
|
Gontar Ł, Sitarek-Andrzejczyk M, Kochański M, Buła M, Drutowska A, Zych D, Markiewicz J. Dynamics and Diversity of Microbial Contamination in Poultry Bedding Materials Containing Parts of Medicinal Plants. MATERIALS 2022; 15:ma15041290. [PMID: 35207831 PMCID: PMC8877630 DOI: 10.3390/ma15041290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/31/2022] [Accepted: 02/05/2022] [Indexed: 12/10/2022]
Abstract
Microorganisms thriving in poultry bedding materials during their exploitation are involved in the development of several diseases and disfunctions of animals. They can also contaminate food products and pose risks to the environment and human health. This study provides an analysis of dynamics and diversity in microbiological contamination observed during the exploitation of poultry bedding materials containing parts of medicinal plants: Satureja hortensis, Origanum vulgare, Melissa officinalis, Salvia officinalis, and Thymus vulgaris, compared with standard types of beddings: straw chaff and straw pellets. The research was carried out in two 42-day experimental cycles involving in total 2400 broiler chickens. Each week, the total count of mesophilic bacteria, fungi and yeasts, the presumptive presence and count of Staphylococcus sp., Escherichia sp., Listeria sp., Salmonella sp., and Candida sp. were determined by culturing on selective media, along with pH and moisture measurements. After 35 days of the experiment, a reduction of the total count of mesophilic bacteria above 1 log compared to the control (11.86 vs. 13.02 log CFU/g) was observed. As the count of yeasts decreased after 21 days, an increase in the total count of bacteria was reported, which indicates a strong competition between microorganisms. The results improve our understanding of the temporal effects of using materials containing parts of medicinal plants on the microbial contamination in poultry litter.
Collapse
Affiliation(s)
- Łukasz Gontar
- Correspondence: (Ł.G.); (M.S.-A.); Tel.: +48-42-636-12-59 (Ł.G.); +48-42-636-12-26 (M.S.-A.)
| | | | | | | | | | | | | |
Collapse
|