1
|
Kim JS, Kim TY, Lim MC, Khan MSI. Campylobacter control strategies at postharvest level. Food Sci Biotechnol 2024; 33:2919-2936. [PMID: 39220305 PMCID: PMC11364751 DOI: 10.1007/s10068-024-01644-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/09/2024] [Accepted: 06/17/2024] [Indexed: 09/04/2024] Open
Abstract
Campylobacter is highly associated with poultry and frequently causes foodborne illness worldwide. Thus, effective control measures are necessary to reduce or prevent human infections. In this review, Campylobacter control methods applicable at postharvest level for poultry meat during production, storage, and preparation are discussed. Drying and temperature are discussed as general strategies. Traditional strategies such as steaming, freezing, sanitizing, organic acid treatment, and ultraviolet light treatment are also discussed. Recent advances in nanotechnology using antibacterial nanoparticles and natural antimicrobial agents from plants and food byproducts are also discussed. Although advances have been made and there are various methods for preventing Campylobacter contamination, it is still challenging to prevent Campylobacter contamination in raw poultry meats with current methods. In addition, some studies have shown that large strain-to-strain variation in susceptibility to these methods exists. Therefore, more effective methods or approaches need to be developed to substantially reduce human infections caused by Campylobacter.
Collapse
Affiliation(s)
- Joo-Sung Kim
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365 Republic of Korea
- Department of Food Biotechnology, Korea University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Daejeon, 34113 Republic of Korea
| | - Tai-Yong Kim
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365 Republic of Korea
| | - Min-Cheol Lim
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365 Republic of Korea
- Department of Food Biotechnology, Korea University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Daejeon, 34113 Republic of Korea
| | | |
Collapse
|
2
|
Fu H, Fu J, Zhou B, Wu H, Liao D, Liu Z. Biochemical mechanisms preventing wilting under grafting: a case study on pumpkin rootstock grafting to wax gourd. FRONTIERS IN PLANT SCIENCE 2024; 15:1331698. [PMID: 38756963 PMCID: PMC11096461 DOI: 10.3389/fpls.2024.1331698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/15/2024] [Indexed: 05/18/2024]
Abstract
Wax gourd wilt is a devastating fungal disease caused by a specialized form of Fusarium oxysporum Schl. f. sp. benincasae (FOB), which severely restricts the development of the wax gourd industry. Resistant rootstock pumpkin grafting is often used to prevent and control wax gourd wilt. The "Haizhan 1" pumpkin has the characteristic of high resistance to wilt, but the mechanism through which grafted pumpkin rootstock plants acquire resistance to wax gourd wilt is still poorly understood. In this study, grafted wax gourd (GW) and self-grafted wax gourd (SW) were cultured at three concentrations [2.8 × 106 Colony Forming Units (CFU)·g-1, 8.0 × 105 CFU·g-1, and 4.0 × 105 CFU·g-1, expressed by H, M, and L]. Three culture times (6 dpi, 10 dpi, and 13 dpi) were used to observe the incidence of wilt disease in the wax gourd and the number of F. oxysporum spores in different parts of the soil and plants. Moreover, the physiological indices of the roots of plants at 5 dpi, 9 dpi, and 12 dpi in soil supplemented with M (8.0 × 105 CFU·g-1) were determined. No wilt symptoms in GW. Wilt symptoms in SW were exacerbated by the amount of FOB in the inoculated soil and culture time. At any culture time, the amount of FOB in the GW soil under the three treatments was greater than that in the roots. However, for the SW treatments, at 10 dpi and 13 dpi, the amount of FOB in the soil was lower than that in the roots. The total phenol (TP) and lignin (LIG) contents and polyphenol oxidase (PPO) and chitinase (CHI) activities were significantly increased in the GWM roots. The activities of phenylalanine ammonia lyase (PAL) and peroxidase (POD) initially decreased but then increased in the GWM roots. When the TP content decreased significantly, the LIG content and PAL and CHI activities increased initially but then decreased, whereas the PPO and POD activities did not change significantly in the SWM roots. The results indicated that the roots of the "Haizhan 1" pumpkin stock plants initiated a self-defense response after being infected with FOB, and the activities of PPO, POD, PAL, and CHI increased, and additional LIG and TP accumulated, which could effectively prevent FOB infection.
Collapse
Affiliation(s)
- Houlong Fu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Junyu Fu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Bin Zhou
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Haolong Wu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Daolong Liao
- Institute of Vegetables, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Zifan Liu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| |
Collapse
|
3
|
Balta I, McCleery D, David SRF, Pet E, Stef D, Iancu T, Pet I, Stef L, Corcionivoschi N. The mechanistic role of natural antimicrobials in preventing Staphylococcus aureus invasion of MAC-T cells using an in vitro mastitis model. Ir Vet J 2024; 77:3. [PMID: 38414081 PMCID: PMC10898119 DOI: 10.1186/s13620-024-00265-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Starting primarily as an inflammation of the mammary gland, mastitis is frequently driven by infectious agents such as Staphylococcus aureus. Mastitis has a large economic impact globally, which includes diagnostic, treatment, and the production costs not to mention the potential milk contamination with antimicrobial residues. Currently, mastitis prevention and cure depends on intramammary infusion of antimicrobials, yet, their overuse risks engendering resistant pathogens, posing further threats to livestock. METHODS In our study we aimed to investigate, in vitro, using bovine mammary epithelial cells (MAC-T), the efficacy of the AuraShield an antimicrobial mixture (As) in preventing S. aureus attachment, internalisation, and inflammation. The antimicrobial mixture (As) included: 5% maltodextrin, 1% sodium chloride, 42% citric acid, 18% sodium citrate, 10% silica, 12% malic acid, 9% citrus extract and 3% olive extract (w/w). RESULTS AND DISCUSSION Herein we show that As can significantly reduce both adherence and invasion of MAC-T cells by S. aureus, with no impact on cell viability at all concentrations tested (0.1, 0.2, 0.5, 1%) compared with untreated controls. The anti-apoptotic effect of As was achieved by significantly reducing cellular caspase 1, 3 and 8 activities in the infected MAC-T cells. All As concentrations were proven to be subinhibitory, suggesting that Ac can reduce S. aureus virulence without bacterial killing and that the effect could be dual including a host modulation effect. In this context, we show that As can reduce the expression of S. aureus clumping factor (ClfB) and block its interaction with the host Annexin A2 (AnxA2), resulting in decreased bacterial adherence in infection of MAC-T cells. Moreover, the ability of As to block AnxA2 had a significant decreasing effect on the levels of pro inflammatory cytokine released upon S. aureus interaction with MAC-T cells. CONCLUSION The results presented in this study indicate that mixtures of natural antimicrobials could potentially be considered an efficient alternative to antibiotics in treating S. aureus induced mastitis.
Collapse
Affiliation(s)
- Igori Balta
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, Timisoara, 300645, Romania
| | - David McCleery
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Northern Ireland, Belfast, BT4 3SD, UK
| | - Saida Roxana Feier David
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, Timisoara, 300645, Romania
| | - Elena Pet
- Faculty of Management and Rural Development, University of Life Sciences King Mihai I from Timisoara, Timisoara, 300645, Romania
| | - Ducu Stef
- Faculty of Food Engineering, University of Life Sciences King Mihai I from Timisoara, Timisoara, 300645, Romania
| | - Tiberiu Iancu
- Faculty of Management and Rural Development, University of Life Sciences King Mihai I from Timisoara, Timisoara, 300645, Romania
| | - Ioan Pet
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Northern Ireland, Belfast, BT4 3SD, UK
| | - Lavinia Stef
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Northern Ireland, Belfast, BT4 3SD, UK
| | - Nicolae Corcionivoschi
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, Timisoara, 300645, Romania.
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Northern Ireland, Belfast, BT4 3SD, UK.
| |
Collapse
|
4
|
Touza-Otero L, Landin M, Diaz-Rodriguez P. Fighting antibiotic resistance in the local management of bovine mastitis. Biomed Pharmacother 2024; 170:115967. [PMID: 38043445 DOI: 10.1016/j.biopha.2023.115967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/15/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023] Open
Abstract
Bovine mastitis is a widespread infectious disease with a significant economic burden, accounting for 80 % of the antibiotic usage in dairy animals. In recent years, extensive research has focused on using biomimetic approaches such as probiotics, bacteriocins, bacteriophages, or phytochemicals as potential alternatives to antibiotics. The local administration of therapeutic molecules through the intramammary route is one of the most commonly strategies to manage bovine mastitis. This review highlights the most important findings in this field and discusses their local application in mastitis therapy. In contrast to antibiotics, the proposed alternatives are not limited to promote bacterial death but consider other factors associated to the host microenvironments. To this end, the proposed biomimetic strategies can modulate different stages of infection by modifying the local microbiota, preventing oxidative stress, reducing bacterial adhesion to epithelial cells, modulating the immune response, or mediating the inflammatory process. Numerous in vitro studies support the antimicrobial, antibiofilm or antioxidant properties of these alternatives. However, in vivo studies incorporating these components within pharmaceutical formulations with potential clinical application are limited. The development of secure, stable, and effective drug delivery systems based on the proposed options is necessary to achieve real alternatives to antibiotics in the clinic.
Collapse
Affiliation(s)
- Lara Touza-Otero
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Grupo I+D Farma (GI-1645), Facultad de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), IDIS Research Institute, 15706 Santiago de Compostela, Spain; Instituto de Materiais da Universidade de Santiago de Compostela (iMATUS), 15706 Santiago de Compostela, Spain
| | - Mariana Landin
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Grupo I+D Farma (GI-1645), Facultad de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), IDIS Research Institute, 15706 Santiago de Compostela, Spain; Instituto de Materiais da Universidade de Santiago de Compostela (iMATUS), 15706 Santiago de Compostela, Spain
| | - Patricia Diaz-Rodriguez
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Grupo I+D Farma (GI-1645), Facultad de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), IDIS Research Institute, 15706 Santiago de Compostela, Spain; Instituto de Materiais da Universidade de Santiago de Compostela (iMATUS), 15706 Santiago de Compostela, Spain.
| |
Collapse
|
5
|
Sessou P, Keisam S, Gagara M, Komagbe G, Farougou S, Mahillon J, Jeyaram K. Comparative analyses of the bacterial communities present in the spontaneously fermented milk products of Northeast India and West Africa. Front Microbiol 2023; 14:1166518. [PMID: 37886068 PMCID: PMC10598763 DOI: 10.3389/fmicb.2023.1166518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/28/2023] [Indexed: 10/28/2023] Open
Abstract
Introduction Spontaneous fermentation of raw cow milk without backslopping is in practice worldwide as part of the traditional food culture, including "Doi" preparation in earthen pots in Northeast India, "Kindouri" of Niger and "Fanire" of Benin prepared in calabash vessels in West Africa. Very few reports are available about the differences in bacterial communities that evolved during the spontaneous mesophilic fermentation of cow milk in diverse geographical regions. Methods In this study, we used high throughput amplicon sequencing of bacterial 16S rRNA gene to investigate 44 samples of naturally fermented homemade milk products and compared the bacterial community structure of these foods, which are widely consumed in Northeast India and Western Africa. Results and discussion The spontaneous milk fermentation shared the lactic acid bacteria, mainly belonging to Lactobacillaceae (Lactobacillus) and Streptococcaceae (Lactococcus) in these two geographically isolated regions. Indian samples showed a high bacterial diversity with the predominance of Acetobacteraceae (Gluconobacter and Acetobacter) and Leuconostoc, whereas Staphylococcaceae (Macrococcus) was abundant in the West African samples. However, the Wagashi cheese of Benin, prepared by curdling the milk with proteolytic leaf extract of Calotrophis procera followed by natural fermentation, contained Streptococcaceae (Streptococcus spp.) as the dominant bacteria. Our analysis also detected several potential pathogens, like Streptococcus infantarius an emerging infectious foodborne pathogen in Wagashi samples, an uncultured bacterium of Enterobacteriaceae in Kindouri and Fanire samples, and Clostridium spp. in the Doi samples of Northeast India. These findings will allow us to develop strategies to address the safety issues related to spontaneous milk fermentation and implement technological interventions for controlled milk fermentation by designing starter culture consortiums for the sustainable production of uniform quality products with desirable functional and organoleptic properties.
Collapse
Affiliation(s)
- Philippe Sessou
- Research Unit on Communicable Diseases, Laboratory of Research in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, Abomey-Calavi, Cotonou, Benin
| | - Santosh Keisam
- Microbial Resources Division, Institute of Bioresources and Sustainable Development (IBSD), Takyelpat Institutional Area, Imphal, Manipur, India
| | - Mariama Gagara
- Research Unit on Communicable Diseases, Laboratory of Research in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, Abomey-Calavi, Cotonou, Benin
- Central Livestock Laboratory, Niamey, Niger
| | - Gwladys Komagbe
- Research Unit on Communicable Diseases, Laboratory of Research in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, Abomey-Calavi, Cotonou, Benin
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Souaïbou Farougou
- Research Unit on Communicable Diseases, Laboratory of Research in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, Abomey-Calavi, Cotonou, Benin
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Kumaraswamy Jeyaram
- Microbial Resources Division, Institute of Bioresources and Sustainable Development (IBSD), Takyelpat Institutional Area, Imphal, Manipur, India
- IBSD Regional Centre, Tadong, Gangtok, Sikkim, India
| |
Collapse
|
6
|
Morales-Ubaldo AL, Rivero-Perez N, Valladares-Carranza B, Velázquez-Ordoñez V, Delgadillo-Ruiz L, Zaragoza-Bastida A. Bovine mastitis, a worldwide impact disease: Prevalence, antimicrobial resistance, and viable alternative approaches. Vet Anim Sci 2023; 21:100306. [PMID: 37547227 PMCID: PMC10400929 DOI: 10.1016/j.vas.2023.100306] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023] Open
Abstract
Bovine mastitis is globally considered one of the most important diseases within dairy herds, mainly due to the associated economic losses. The most prevalent etiology are bacteria, classified into contagious and environmental, with Staphylococcus aureus, Streptococcus agalactiae, Streptococcus uberis, Escherichia coli and Klebsiella pneumoniae being the most common pathogens associated with mastitis cases. To date these pathogens are resistant to the most common active ingredients used for mastitis treatment. According to recent studies resistance to new antimicrobials has increased, which is why developing of alternative treatments is imperative. Therefore the present review aims to summarize the reports about bovine mastitis along 10 years, emphasizing bacterial etiology, its epidemiology, and the current situation of antimicrobial resistance, as well as the development of alternative treatments for this pathology. Analyzed data showed that the prevalence of major pathogens associated with bovine mastitis varied according to geographical region. Moreover, these pathogens are classified as multidrug-resistant, since the effectiveness of antimicrobials on them has decreased. To date, several studies have focused on the research of alternative treatments, among them vegetal extracts, essential oils, or peptides. Some other works have reported the application of nanotechnology and polymers against bacteria associated with bovine mastitis. Results demonstrated that these alternatives may be effective on bacteria associated with bovine mastitis.
Collapse
Affiliation(s)
- Ana Lizet Morales-Ubaldo
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Rancho Universitario Av. Universidad km 1, Universidad Autónoma del Estado de Hidalgo, EX-Hda de Aquetzalpa, Tulancingo, C.P 43660, Hidalgo, Mexico
| | - Nallely Rivero-Perez
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Rancho Universitario Av. Universidad km 1, Universidad Autónoma del Estado de Hidalgo, EX-Hda de Aquetzalpa, Tulancingo, C.P 43660, Hidalgo, Mexico
| | - Benjamín Valladares-Carranza
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Km 15.5 Carretera Panamericana Toluca-Atlacomulco, C.P. 50200 Toluca, Estado de México, Mexico
| | - Valente Velázquez-Ordoñez
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Km 15.5 Carretera Panamericana Toluca-Atlacomulco, C.P. 50200 Toluca, Estado de México, Mexico
| | - Lucía Delgadillo-Ruiz
- Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Zacatecas, CP. 98068, Zacatecas, Zacatecas, Mexico
| | - Adrian Zaragoza-Bastida
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Rancho Universitario Av. Universidad km 1, Universidad Autónoma del Estado de Hidalgo, EX-Hda de Aquetzalpa, Tulancingo, C.P 43660, Hidalgo, Mexico
| |
Collapse
|
7
|
Selenium and Taurine Combination Is Better Than Alone in Protecting Lipopolysaccharide-Induced Mammary Inflammatory Lesions via Activating PI3K/Akt/mTOR Signaling Pathway by Scavenging Intracellular ROS. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5048375. [PMID: 34938382 PMCID: PMC8687852 DOI: 10.1155/2021/5048375] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/07/2021] [Accepted: 11/20/2021] [Indexed: 01/03/2023]
Abstract
Mastitis is mainly induced by gram-negative bacterial infections, causing devastating economic losses to the global cattle industry. Both selenium (Se) and taurine (Tau) exhibit multiple biological effects, including reducing inflammation. However, no studies have reported the protective effect of the combined use of Se and Tau against mastitis, and the underlying mechanisms remain unclear. In this study, lipopolysaccharide (LPS), the vital virulence factor of gram-negative bacteria, was used to construct the in vivo and vitro mastitis models. The results of in vivo model showed that Se and Tau combination was more effective than either substance alone in reducing tissue hyperemia, edema, and neutrophil infiltration in the mammary acinar cavity, improving the blood-milk barrier in LPS-induced mice mastitis, and decreasing the expression of proinflammatory factors and the activity of MPO. Moreover, Se and Tau combination significantly increased the levels of LPS-induced reduction in PI3K/Akt/mTOR, but the expressions of TLRs and NLRP3 were not significantly changed in the mammary tissue. In the in vitro experiments, the effects of Se and Tau combination or alone on inflammatory factors, inflammatory mediators, MPO activity, and blood-milk barrier were consistent with those in vivo. The Se and Tau combination has also been found to increase the survival rate of BMECs compared with each substance alone via promoting cellular proliferation and inhibiting apoptosis. Also, it has been confirmed that this combination could restore the LPS-induced inhibition in the PI3K/Akt/mTOR signaling pathway. Inhibition of mTOR by Rapamycin counteracted the combined protection of SeMet and Tau against LPS-induced inflammatory damage, the inhibition of PI3K by LY294002 blocked the activation of mTOR, and the accumulation of ROS by the ROS agonist blocked the activation of PI3K. In conclusion, these findings suggested that Se and Tau combination was better than either substance alone in protecting LPS-induced mammary inflammatory lesions by upregulating the PI3K/Akt/mTOR signaling pathway.
Collapse
|
8
|
Commey L, Tengey TK, Cobos CJ, Dampanaboina L, Dhillon KK, Pandey MK, Sudini HK, Falalou H, Varshney RK, Burow MD, Mendu V. Peanut Seed Coat Acts as a Physical and Biochemical Barrier against Aspergillus flavus Infection. J Fungi (Basel) 2021; 7:jof7121000. [PMID: 34946983 PMCID: PMC8708384 DOI: 10.3390/jof7121000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/21/2021] [Accepted: 11/21/2021] [Indexed: 12/29/2022] Open
Abstract
Aflatoxin contamination is a global menace that adversely affects food crops and human health. Peanut seed coat is the outer layer protecting the cotyledon both at pre- and post-harvest stages from biotic and abiotic stresses. The aim of the present study is to investigate the role of seed coat against A. flavus infection. In-vitro seed colonization (IVSC) with and without seed coat showed that the seed coat acts as a physical barrier, and the developmental series of peanut seed coat showed the formation of a robust multilayered protective seed coat. Radial growth bioassay revealed that both insoluble and soluble seed coat extracts from 55-437 line (resistant) showed higher A. flavus inhibition compared to TMV-2 line (susceptible). Further analysis of seed coat biochemicals showed that hydroxycinnamic and hydroxybenzoic acid derivatives are the predominant phenolic compounds, and addition of these compounds to the media inhibited A. flavus growth. Gene expression analysis showed that genes involved in lignin monomer, proanthocyanidin, and flavonoid biosynthesis are highly abundant in 55-437 compared to TMV-2 seed coats. Overall, the present study showed that the seed coat acts as a physical and biochemical barrier against A. flavus infection and its potential use in mitigating the aflatoxin contamination.
Collapse
Affiliation(s)
- Leslie Commey
- Department of Plant and Soil Science, Fiber and Biopolymer Research Institute (FBRI), Texas Tech University, Lubbock, TX 79409, USA; (L.C.); (T.K.T.); (C.J.C.); (K.K.D.)
| | - Theophilus K. Tengey
- Department of Plant and Soil Science, Fiber and Biopolymer Research Institute (FBRI), Texas Tech University, Lubbock, TX 79409, USA; (L.C.); (T.K.T.); (C.J.C.); (K.K.D.)
- CSIR-Savanna Agricultural Research Institute (SARI), Nyankpala P.O. Box 52, Ghana
| | - Christopher J. Cobos
- Department of Plant and Soil Science, Fiber and Biopolymer Research Institute (FBRI), Texas Tech University, Lubbock, TX 79409, USA; (L.C.); (T.K.T.); (C.J.C.); (K.K.D.)
| | - Lavanya Dampanaboina
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA; (L.D.); (M.D.B.)
| | - Kamalpreet K. Dhillon
- Department of Plant and Soil Science, Fiber and Biopolymer Research Institute (FBRI), Texas Tech University, Lubbock, TX 79409, USA; (L.C.); (T.K.T.); (C.J.C.); (K.K.D.)
| | - Manish K. Pandey
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad 502324, India; (M.K.P.); (H.K.S.); (R.K.V.)
| | - Hari Kishan Sudini
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad 502324, India; (M.K.P.); (H.K.S.); (R.K.V.)
| | - Hamidou Falalou
- International Crops Research Institute for the Semi-Arid Tropics, Niamey B.P. 873, Niger;
| | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad 502324, India; (M.K.P.); (H.K.S.); (R.K.V.)
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch University, Murdoch, WA 6150, Australia
| | - Mark D. Burow
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA; (L.D.); (M.D.B.)
- Texas A&M AgriLife, Lubbock, TX 79401, USA
| | - Venugopal Mendu
- Department of Plant and Soil Science, Fiber and Biopolymer Research Institute (FBRI), Texas Tech University, Lubbock, TX 79409, USA; (L.C.); (T.K.T.); (C.J.C.); (K.K.D.)
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA
- Correspondence: or ; Tel.: +1-806-834-6327 or +1-406-994-9708
| |
Collapse
|