1
|
Wang H, He J. In Silico Exploration of Staphylococcal Cassette Chromosome mec (SCC mec) Evolution Based on Phylogenetic Relationship of ccrAB/C. Microorganisms 2025; 13:153. [PMID: 39858921 PMCID: PMC11767417 DOI: 10.3390/microorganisms13010153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/04/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
As the mobile cassette carrier of the methicillin resistance gene mecA that is transported across staphylococci species, the evolution and origin of Staphylococcal Cassette Chromosome mec (SCCmec)-and in particular, the composition of mecA and SCCmec-have been extensively discussed in the scientific literature; however, information regarding its dissemination across geographical limits and evolution over decades remains limited. In addition, whole-genome sequencing-based macro-analysis was unable to provide sufficiently detailed evolutionary information on SCCmec. Herein, the cassette chromosome recombinase genes ccrAB/C, as essential components of SCCmec, were employed to explore the evolution of SCCmec. This work established the basic taxonomy of 33 staphylococci species. The CUB of mecA, ccrAB/C of 12 SCCmec types and core genome of 33 staphylococci species were subsequently compared; the phylogenetic relationship of ccrAB/C was observed via SCCmec typing on a temporal and geographical scale; and the duplicate appearance of ccrAB/C was illustrated by comparing SCCmec compositions. The results highlighted a deviation in the CUB of mecA and ccrAB/C, which evidenced their exogenous characteristics to staphylococci, and provided theological support for the phylogenetic analysis of ccrAB/C as representative of SCCmec. Importantly, the phylogenetic relationship of ccrAB/C did not exhibit centralization over time; instead, similarly to mecA, ccrAB/C with similar identities had close clades across decades and geographical limits and different SCCmec types, which enabled us to discriminate SCCmec based on the sequence identity of ccrAB/C. In addition, the duplicate appearance of ccrAB/C and fixed composition of the ccrAB/C complex among different strains were indicative of more complicated transmission mechanisms than targeting direct repeats of SCCmec.
Collapse
Affiliation(s)
- Huawei Wang
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | | |
Collapse
|
2
|
Belhout C, Fernandez JE, Butaye P, Perreten V. Clonal dissemination of methicillin-resistant Staphylococcaceae between Algerian sheep farms. J Glob Antimicrob Resist 2024; 41:96-104. [PMID: 39742995 DOI: 10.1016/j.jgar.2024.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/27/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025] Open
Abstract
OBJECTIVES Sheep farming represents an important economic sector in Algeria, and the potential dissemination of methicillin-resistant Staphylococcaceae (MRS) is a critical veterinary and public health concern. This study aimed to determine the prevalence and types of MRS in ovine in Algeria and characterize them using whole-genome sequencing (WGS) analysis. METHODS Two hundred sheep from 20 different Algerian farms across 3 regions were screened for nasal colonization with MRS. The isolates were identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), their minimal inhibitory concentration (MIC) was determined by broth microdilution, and the presence of the mec gene was confirmed with polymerase chain reaction (PCR). The mec-positive isolates were sequenced using Illumina technology to build species specific core genome multilocus sequence typing (cgMLST)- and single nucleotide polymorphisms (SNPs)-based phylogenies and perform an in silico screening for antimicrobial resistance genes. RESULTS The prevalence of MRS-positive farms was 85% (95% confidence interval [CI] = 69.34%-100%) across the sampled farms. Ten distinct Staphylococcaceae species were identified, with Staphylococcus saprophyticus (S. saprophyticus; n = 29), Mammaliicoccus lentus (M. lentus; n = 24), and Staphylococcus haemolyticus (S. haemolyticus; n = 19) being the predominant species. WGS-based phylogeny and SNP analysis (0 to 126 SNPs) revealed that isolates of these three species were highly related, indicating clonal dissemination within and between farms. MRS exhibited a multi-drug resistance pattern, with detection of resistance genes for β-lactams, tetracyclines, fusidic acid, trimethoprim, aminoglycosides, tiamulin, and macrolides. CONCLUSIONS Specific clonal lineages of methicillin-resistant S. saprophyticus, S. haemolyticus, and M. lentus are widespread in Algerian sheep farms. Enhancing hygiene practices on farms is recommended to prevent further dissemination of these resistant strains to animals and humans. © 2025 The Author(s). Published by Elsevier Ltd on behalf of International Society for Antimicrobial Chemotherapy.
Collapse
Affiliation(s)
- Chahrazed Belhout
- Division of Molecular Bacterial Epidemiology & Infectious Diseases, Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Switzerland
| | - Javier E Fernandez
- Division of Molecular Bacterial Epidemiology & Infectious Diseases, Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Switzerland
| | - Patrick Butaye
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium; Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Vincent Perreten
- Division of Molecular Bacterial Epidemiology & Infectious Diseases, Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Switzerland.
| |
Collapse
|
3
|
Ocloo R, Newton-Foot M, Chabuka L, Ziebuhr W, Whitelaw AC. Epidemiology and antibiotic resistance of staphylococci on commercial pig farms in Cape Town, South Africa. Sci Rep 2024; 14:19747. [PMID: 39187540 PMCID: PMC11347665 DOI: 10.1038/s41598-024-70183-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024] Open
Abstract
Staphylococci are responsible for a wide range of infections in animals. The most common species infecting animals include Staphylococcus aureus, Staphylococcus epidermidis and Staphylococcus intermedius. Recent increases in antibiotic use and antibiotic resistance in animals highlight the need to understand the potential role of commercial livestock as a reservoir of staphylococci and antibiotic resistance genes. Nasal swabs were collected from 143 apparently healthy pigs and 21 pig farm workers, and 45 environmental swabs of feed and water troughs, from two commercial pig farms in the Western Cape, South Africa. Staphylococci were isolated, identified using mass-spectrometry, and antimicrobial susceptibility testing and Illumina whole genome sequencing were performed. One hundred and eighty-five (185) Staphylococcus spp. isolates were obtained, with Mammalicoccus sciuri (n = 57; 31%) being the most common, followed by S. hyicus (n = 40; 22%) and S. aureus (n = 29; 16%). S. epidermidis was predominantly identified in the farm workers (n = 18; 86%). Tetracycline resistance was observed across all species, with rates ranging from 67 to 100%. Majority of M. sciuri isolates (n = 40; 70%) were methicillin resistant, with 78% (n = 31) harbouring mecA. M. sciuri isolates had genes/elements which were associated with SCCmec_type_III (3A) and SCCmec_type_VIII(4A) and were mostly observed in ST61 strains. ST239 strains were associated with SCCmec_type_III(3A). High rates of tetracycline resistance were identified among staphylococci in the pig farms in Western Cape, South Africa. This highlights the need for policy makers to regulate the use of this antibiotic in pig farming.
Collapse
Affiliation(s)
- Remous Ocloo
- Department of Pathology, Division of Medical Microbiology, Stellenbosch University, Stellenbosch, South Africa.
- TASK, Cape Town, South Africa.
| | - Mae Newton-Foot
- Department of Pathology, Division of Medical Microbiology, Stellenbosch University, Stellenbosch, South Africa
- National Health Laboratory Service (NHLS), Tygerberg Hospital, (TBH), Cape Town, South Africa
| | - Lucious Chabuka
- Centre for Epidemic Control and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
- Public Health Institute of Malawi, Ministry of Health, Lilongwe, Malawi
| | - Wilma Ziebuhr
- Institute of Molecular Infection Biology, Würzburg University, Würzburg, Germany
| | - Andrew Christopher Whitelaw
- Department of Pathology, Division of Medical Microbiology, Stellenbosch University, Stellenbosch, South Africa
- National Health Laboratory Service (NHLS), Tygerberg Hospital, (TBH), Cape Town, South Africa
| |
Collapse
|
4
|
Pogány Simonová M, Chrastinová Ľ, Ščerbová J, Focková V, Plachá I, Tokarčíková K, Žitňan R, Lauková A. The effect of enterocin A/P dipeptide on growth performance, glutathione-peroxidase activity, IgA secretion and jejunal morphology in rabbits after experimental methicillin-resistant Staphylococcus epidermidis P3Tr2a Infection. Vet Res Commun 2024; 48:507-517. [PMID: 38051451 PMCID: PMC10810977 DOI: 10.1007/s11259-023-10277-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/02/2023] [Indexed: 12/07/2023]
Abstract
The increasing frequency of methicillin-resistant (MR) staphylococci in humans and animals need special attention for their difficult treatment and zoonotic character, therefore novel antimicrobial compounds on a natural base against antibiotic-resistant bacteria are requested. Currently, bacteriocins/enterocins present a new promising way to overcome this problem, both in prevention and treatment. Therefore, the preventive and medicinal effect of dipeptide enterocin EntA/P was evaluated against MR Staphylococcus epidermidis SEP3/Tr2a strain in a rabbit model, testing their influence on growth performance, glutathione-peroxidase (GPx) enzyme activity, phagocytic activity (PA), secretory (s)IgA, and jejunal morphometry (JM). Eighty-eight rabbits (aged 35 days, meat line M91, both sexes) were divided into experimental groups S (SEP3/Tr2a strain; 1.0 × 105 CFU/mL; dose 500µL/animal/day for 7 days, between days 14 and 21 to simulate the pathogen attack), E (EntA/P; 50 µL/animal/day, 25,600 AU/mL in two intervals, for preventive effect between days 0 and 14; for medicinal effect between days 28 and 42), E + S (EntA/P + SEP3/Tr2a; preventive effect; SEP3/Tr2a + EntA/P; medicinal effect) and control group (C; without additives). Higher body weight was recorded in all experimental groups (p < 0.001) compared to control data. The negative influence/attack of the SEP3Tra2 strain on the intestinal immunity and environment was reflected as decreased GPx activity, worse JM parameters and higher sIgA concentration in infected rabbits. These results suggest the promising preventive use of EntA/P to improve the immunity and growth of rabbits, as well as its therapeutic potential and protective role against staphylococcal infections in rabbit breeding.
Collapse
Affiliation(s)
- Monika Pogány Simonová
- Centre of Biosciences of the Slovak Academy of Sciences, Institute of Animal Physiology, Šoltésovej 4-6, Košice, 04001, Slovakia.
| | - Ľubica Chrastinová
- Department of Animal Nutrition, National Agricultural and Food Centre, Hlohovecká 2, Nitra-Lužianky, 95141, Slovakia
| | - Jana Ščerbová
- Centre of Biosciences of the Slovak Academy of Sciences, Institute of Animal Physiology, Šoltésovej 4-6, Košice, 04001, Slovakia
| | - Valentína Focková
- Centre of Biosciences of the Slovak Academy of Sciences, Institute of Animal Physiology, Šoltésovej 4-6, Košice, 04001, Slovakia
| | - Iveta Plachá
- Centre of Biosciences of the Slovak Academy of Sciences, Institute of Animal Physiology, Šoltésovej 4-6, Košice, 04001, Slovakia
| | - Katarína Tokarčíková
- Centre of Biosciences of the Slovak Academy of Sciences, Institute of Animal Physiology, Šoltésovej 4-6, Košice, 04001, Slovakia
| | - Rudolf Žitňan
- Department of Animal Nutrition, National Agricultural and Food Centre, Hlohovecká 2, Nitra-Lužianky, 95141, Slovakia
| | - Andrea Lauková
- Centre of Biosciences of the Slovak Academy of Sciences, Institute of Animal Physiology, Šoltésovej 4-6, Košice, 04001, Slovakia
| |
Collapse
|
5
|
Santos ICD, Barbosa LN, Sposito PH, Silva KRD, Caldart ET, Costa LMB, Martins LA, Gonçalves DD. Presence and Resistance Profile of Staphylococcus spp. Isolated from Slaughtered Pigs. Vector Borne Zoonotic Dis 2023; 23:576-582. [PMID: 37695815 DOI: 10.1089/vbz.2022.0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023] Open
Abstract
Background: The objective of this study was to isolate Staphylococcus spp. and to characterize the resistance profile in nasal samples from pigs slaughtered for consumption. Material and Methods: Intranasal swabs were collected from 100 pigs immediately after bleeding in a slaughterhouse located in the largest pork production region in Brazil, these samples were cultured and isolated to identify Staphylococcus spp. in coagulase positive (CoPS) and coagulase negative (CoNS) and molecular identification of Staphylococcus aureus and then subjected to the disk-diffusion test to identify the bacterial resistance profile and search for the mecA gene. Results: Of the 100 samples collected, it was possible to isolate 79 Staphylococcus spp., of these, 72.15% were classified as CoNS and 27.85% of the isolates classified as CoPS. Among the CoPS isolates, 77.27% were identified as S. aureus. Through the disk-diffusion test, it was possible to verify isolates resistant to clindamycin and erythromycin (98.73%), chloramphenicol (93.67%), and doxycycline (89.87%). There was amplification of the mecA gene in 30.38% of Staphylococcus spp. Conclusion: The results of this study highlight the need for the careful use of antibiotics in swine production, in addition to aiming at continuous surveillance in relation to the rate of multiresistant microorganisms within these environments, focused on large industrial centers; such results also indicate the importance of understanding, through future studies, possible pathways to transmission of these microorganisms directly, or indirectly, through meat products derived from these pigs, which can be considered neglected diffusers of variants of Staphylococcus spp. resistant to antibiotics or carriers of important resistance genes related to One Health.
Collapse
Affiliation(s)
| | | | - Paulo Henrique Sposito
- Médico Veterinário do Ministério da Agricultura, Pecuária e Abastecimento, MAPA/DF, Brasilia, Brasil
| | | | | | | | | | | |
Collapse
|
6
|
Abdullahi IN, Lozano C, Simón C, Zarazaga M, Torres C. Within-Host Diversity of Coagulase-Negative Staphylococci Resistome from Healthy Pigs and Pig Farmers, with the Detection of cfr-Carrying Strains and MDR- S. borealis. Antibiotics (Basel) 2023; 12:1505. [PMID: 37887206 PMCID: PMC10604674 DOI: 10.3390/antibiotics12101505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
The ecology and diversity of resistome in coagulase-negative staphylococci (CoNS) from healthy pigs and pig farmers are rarely available as most studies focused on the livestock-associated methicillin-resistant S. aureus. This study aims to characterize the antimicrobial resistance (AMR) mechanisms, intra-host species diversity (more than one species in a host), and intra-species AMR diversity (same species with more than one AMR profile) in CoNS recovered from the nasal cavities of healthy pigs and pig farmers. One-hundred-and-one CoNS strains previously recovered from 40 pigs and 10 pig farmers from four Spanish pig farms were tested to determine their AMR profiles. Non-repetitive strains were selected (n = 75) and their AMR genes, SCCmec types, and genetic lineages were analyzed by PCR/sequencing. Of the non-repetitive strains, 92% showed a multidrug resistance (MDR) phenotype, and 52% were mecA-positive, which were associated with SCCmec types V (46.2%), IVb (20.5%), and IVc (5.1%). A total of 28% of the pigs and pig farmers had intra-host species diversity, while 26% had intra-species AMR diversity. High repertoires of AMR genes were detected, including unusual ones such as tetO, ermT, erm43, and cfr. Most important was the detection of cfr (in S. saprophyticus and S. epidermidis-ST16) in pigs and pig farmers; whereas MDR-S. borealis strains were identified in pig farmers. Pig-to-pig transmission of CoNS with similar AMR genes and SCCmec types was detected in 42.5% of pigs. The high level of multidrug, within-host, and intra-species resistome diversity in the nasal CoNS highlights their ability to be AMR gene reservoirs in healthy pigs and pig farmers. The detection of MDR-S. borealis and linezolid-resistant strains underscore the need for comprehensive and continuous surveillance of MDR-CoNS at the pig farm level.
Collapse
Affiliation(s)
- Idris Nasir Abdullahi
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (I.N.A.); (C.L.); (M.Z.)
| | - Carmen Lozano
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (I.N.A.); (C.L.); (M.Z.)
| | - Carmen Simón
- Faculty of Veterinary Medicine, University of Zaragoza, 50001 Zaragoza, Spain;
| | - Myriam Zarazaga
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (I.N.A.); (C.L.); (M.Z.)
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (I.N.A.); (C.L.); (M.Z.)
| |
Collapse
|
7
|
Yang F, Shi W, Meng N, Zhao Y, Ding X, Li Q. Antimicrobial resistance and virulence profiles of staphylococci isolated from clinical bovine mastitis. Front Microbiol 2023; 14:1190790. [PMID: 37455736 PMCID: PMC10344457 DOI: 10.3389/fmicb.2023.1190790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
Staphylococci, mainly including Staphylococcus aureus and coagulase-negative staphylococci (CNS), are one of the most common pathogens causing bovine mastitis worldwide. In this study, we investigated the antimicrobial resistance and virulence profiles of staphylococci from clinical bovine mastitis in Ningxia Hui Autonomous Region of China. Antimicrobial resistance was determined by disc diffusion combined with E-test method. Genes of antimicrobial resistance and virulence factors were determined by PCR. A total of 332 staphylococcal isolates were confirmed from 1,519 mastitic milk samples, including 172 S. aureus and 160 CNS isolates. Fifteen CNS species were identified, with S. chromogenes being the most frequent found (49.4%), followed by S. equorum (13.8%). Noticeably, 2 S. agnetis isolates were found among the CNS isolates. To our knowledge, this is the first report documenting the presence of S. agnetis from bovine mastitis in China. The S. aureus and CNS isolates showed high resistance against penicillin, followed by erythromycin and tetracycline. Multidrug resistance was found in 11.6 and 16.3% of the S. aureus and CNS isolates, respectively. Resistance to penicillin was attributed to the presence of blaZ, erythromycin resistance to ermC (alone or combined with ermB) and tetracycline resistance to tetK (alone or combined with tetM). Notably, one S. equorum isolate and one S. saprophyticus isolate were both methicillin-resistant and mecA positive. Additionally, all S. aureus isolates carried the adhesin genes fnbpA, clfA, clfB, and sdrC, and most of them contained cna and sdrE. Conversely, only a few of the CNS isolates carried clfA, cna, and fnbA. Regarding toxin genes, all S. aureus isolates harbored hlb, and most of them were hlg positive. The lukE-lukD, lukM, sec, sed, sei, sen, seo, tst, seg, seh, and sej were also detected with low frequencies. However, no toxin genes were observed in CNS isolates. This study reveals high species diversity of staphylococci from clinical bovine mastitis in Ningxia Hui Autonomous Region of China. The findings for the genetic determinants of antimicrobial resistance and virulence factor provide valuable information for control and prevention of staphylococcal bovine mastitis.
Collapse
Affiliation(s)
- Feng Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, Gansu, China
| | - Wenli Shi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Na Meng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yiyu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xuezhi Ding
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, Gansu, China
| | - Qinfan Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
8
|
Scollo A, Perrucci A, Stella MC, Ferrari P, Robino P, Nebbia P. Biosecurity and Hygiene Procedures in Pig Farms: Effects of a Tailor-Made Approach as Monitored by Environmental Samples. Animals (Basel) 2023; 13:ani13071262. [PMID: 37048519 PMCID: PMC10093544 DOI: 10.3390/ani13071262] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023] Open
Abstract
In livestock, the importance of hygiene management is gaining importance within the context of biosecurity. The aim of this study was to monitor the implementation of biosecurity and hygiene procedures in 20 swine herds over a 12-month period, as driven by tailor-made plans, including training on-farm. The measure of adenosine triphosphate (ATP) environmental contents was used as an output biomarker. The presence of livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) and extended-spectrum β-lactamase producing Escherichia coli (ESBL-E. coli) was also investigated as sentinels of antibiotic resistance. A significant biosecurity improvement (p = 0.006) and a reduction in the ATP content in the sanitised environment (p = 0.039) were observed. A cluster including 6/20 farms greatly improved both biosecurity and ATP contents, while the remaining 14/20 farms ameliorated them only slightly. Even if the ESBL-E. coli prevalence (30.0%) after the hygiene procedures significantly decreased, the prevalence of LA-MRSA (22.5%) was unaffected. Despite the promising results supporting the adoption of tailor-made biosecurity plans and the measure of environmental ATP as an output biomarker, the high LA-MRSA prevalence still detected at the end of the study underlines the importance of improving even more biosecurity and farm hygiene in a one-health approach aimed to preserve also the pig workers health.
Collapse
Affiliation(s)
- Annalisa Scollo
- Department of Veterinary Sciences, University of Torino, 10095 Grugliasco, Italy
| | - Alice Perrucci
- Department of Veterinary Sciences, University of Torino, 10095 Grugliasco, Italy
| | | | - Paolo Ferrari
- CRPA Research Centre for Animal Production, 42121 Reggio Emilia, Italy
| | - Patrizia Robino
- Department of Veterinary Sciences, University of Torino, 10095 Grugliasco, Italy
| | - Patrizia Nebbia
- Department of Veterinary Sciences, University of Torino, 10095 Grugliasco, Italy
| |
Collapse
|
9
|
Bertelloni F, Cagnoli G, Bresciani F, Scotti B, Lazzerini L, Marcucci M, Colombani G, Ebani VV. Antimicrobial Resistant Coagulase-Negative Staphylococci Carried by House Flies ( Musca domestica) Captured in Swine and Poultry Farms. Antibiotics (Basel) 2023; 12:antibiotics12040636. [PMID: 37106998 PMCID: PMC10135123 DOI: 10.3390/antibiotics12040636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
House flies (Musca domestica) are very diffuse insects attracted by biological materials. They are abundantly present in farm environments and can frequently come in contact with animals, feed, manure, waste, surfaces, and fomites; consequently, these insects could be contaminated, carry, and disperse several microorganisms. The aim of this work was to evaluate the presence of antimicrobial-resistant staphylococci in house flies collected in poultry and swine farms. Thirty-five traps were placed in twenty-two farms; from each trap, 3 different kinds of samples were tested: attractant material present in the traps, the body surface of house flies and the body content of house flies. Staphylococci were detected in 72.72% of farms, 65.71% of traps and 43.81% of samples. Only coagulase-negative staphylococci (CoNS) were isolated, and 49 isolates were subjected to an antimicrobial susceptibility test. Most of the isolates were resistant to amikacin (65.31%), ampicillin (46.94%), rifampicin (44.90%), tetracycline (40.82%) and cefoxitin (40.82%). Minimum Inhibitory concentration assay allowed to confirm 11/49 (22.45%) staphylococci as methicillin-resistant; 4 of them (36.36%) carried the mecA gene. Furthermore, 53.06% of the isolates were classified as multidrug-resistant (MDR). Higher levels of resistance and multidrug resistance were detected in CoNS isolated from flies collected in poultry farms than in swine farms. Therefore, house flies could carry MDR and methicillin-resistant staphylococci, representing a possible source of infection for animals and humans.
Collapse
Affiliation(s)
- Fabrizio Bertelloni
- Department of Veterinary Science, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy
| | - Giulia Cagnoli
- Department of Veterinary Science, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy
| | - Flavio Bresciani
- Department of Veterinary Science, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy
| | - Bruno Scotti
- Sede Sicurezza Alimentare e Sanità Pubblica Veterinaria, Zona Versilia, Azienda Usl Toscana Nord Ovest, Via Martiri di S. Anna 12, 55045 Pietrasanta, Italy
| | - Luca Lazzerini
- Sede Sicurezza Alimentare e Sanità Pubblica Veterinaria, Zona Versilia, Azienda Usl Toscana Nord Ovest, Via Martiri di S. Anna 12, 55045 Pietrasanta, Italy
| | - Marco Marcucci
- Sede Sicurezza Alimentare e Sanità Pubblica Veterinaria, Zona Valle del Serchio, Azienda Usl Toscana Nord Ovest, Via IV Novembre 10, 55027 Gallicano, Italy
| | - Giuseppe Colombani
- Sede Sicurezza Alimentare e Sanità Pubblica Veterinaria, Zona Valle del Serchio, Azienda Usl Toscana Nord Ovest, Via IV Novembre 10, 55027 Gallicano, Italy
| | | |
Collapse
|
10
|
Dos Santos IC, Barbosa LN, Grossi GD, de Paula Ferreira LR, Ono JM, Martins LA, Alberton LR, Gonçalves DD. Presence of Staphylococcus spp. carriers of the mecA gene in the nasal cavity of piglets in the nursery phase. Res Vet Sci 2023; 155:51-55. [PMID: 36634542 DOI: 10.1016/j.rvsc.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/21/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
The presence of Staphylococcus spp. resistant to methicillin in the nasal cavity of swine has been previously reported. Considering the possible occurrence of bacterial resistance and presence of resistance genes in intensive swine breeding and the known transmissibility and dispersion potential of such genes, this study aimed to investigate the prevalence of resistance to different antibiotics and the presence of the mecA resistance gene in Staphylococcus spp. from piglets recently housed in a nursery. For this, 60 nasal swabs were collected from piglets at the time of their housing in the nursery, and then Staphylococcus spp. were isolated and identified in coagulase-positive (CoPS) and coagulase-negative (CoNS) isolates. These isolates were subjected to the disk-diffusion test to evaluate the bacterial resistance profile and then subjected to molecular identification of Staphylococcus aureus and analyses of the mecA gene through polymerase chain reaction. Of the 60 samples collected, 60 Staphylococcus spp. were isolated, of which 38 (63.33%) were classified as CoNS and 22 (36.67%) as CoPS. Of these, ten (45.45%) were identified as Staphylococcus aureus. The resistance profile of these isolates showed high resistance to different antibiotics, with 100% of the isolates resistant to chloramphenicol, clindamycin, and erythromycin, 98.33% resistant to doxycycline, 95% resistant to oxacillin, and 85% resistant to cefoxitin. Regarding the mecA gene, 27 (45%) samples were positive for the presence of this gene, and three (11.11%) were phenotypically sensitive to oxacillin and cefoxitin. This finding highlights the importance of researching the phenotypic profile of resistance to different antimicrobials and resistance genes in the different phases of pig rearing to identify the real risk of these isolates from a One Health perspective. The present study revealed the presence of samples resistant to different antibiotics in recently weaned production animal that had not been markedly exposed to antimicrobials as growth promoters or even as prophylactics. This information highlights the need for more research on the possible sharing of bacteria between sows and piglets, the environmental pressure within production environments, and the exposure of handlers during their transport, especially considering the community, hospital, and political importance of the presence of circulating resistant strains.
Collapse
Affiliation(s)
- Isabela Carvalho Dos Santos
- Bolsista PROSUP/CAPES - Universidade Paranaense (UNIPAR), Praça Mascarenhas de Moraes, 4282, Centro, 87502-210 Umuarama, PR, Brazil
| | - Lidiane Nunes Barbosa
- Universidade Paranaense (UNIPAR), Praça Mascarenhas de Moraes, 4282, Centro, 87502-210 Umuarama, PR, Brazil
| | - Giovana Dantas Grossi
- Universidade Paranaense (UNIPAR), Praça Mascarenhas de Moraes, 4282, Centro, 87502-210 Umuarama, PR, Brazil
| | | | - Jacqueline Midori Ono
- Universidade Paranaense (UNIPAR), Praça Mascarenhas de Moraes, 4282, Centro, 87502-210 Umuarama, PR, Brazil
| | - Lisiane Almeida Martins
- Faculdade de Ensino Superior Santa Bárbara (FAESB), Rua Onze de Agosto, 2900, Jardim Lucila, 18277-000 Tatuí, SP, Brazil
| | - Luiz Rômulo Alberton
- Propig soluções Ltda, Estrada Linha Andreis - Cerro Azul, SN, Zona Rural - Bom Sucesso do Sul, PR, Brazil
| | - Daniela Dib Gonçalves
- Universidade Paranaense (UNIPAR), Praça Mascarenhas de Moraes, 4282, Centro, 87502-210 Umuarama, PR, Brazil.
| |
Collapse
|
11
|
Ocloo R, Nyasinga J, Munshi Z, Hamdy A, Marciniak T, Soundararajan M, Newton-Foot M, Ziebuhr W, Shittu A, Revathi G, Abouelfetouh A, Whitelaw A. Epidemiology and antimicrobial resistance of staphylococci other than Staphylococcus aureus from domestic animals and livestock in Africa: a systematic review. Front Vet Sci 2022; 9:1059054. [PMID: 36583033 PMCID: PMC9792789 DOI: 10.3389/fvets.2022.1059054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/16/2022] [Indexed: 12/14/2022] Open
Abstract
Introduction Staphylococci other than Staphylococcus aureus (SOSA) in animals are becoming more pathogenic and antibiotic resistant and can potentially disseminate to humans. However, there is little synthesized information regarding SOSA from animals in Africa. This systematic review provides a comprehensive overview of the epidemiology and antimicrobial resistance of SOSA in companion animals (pets) and livestock in Africa. Method This systematic review (PROSPERO-CRD42021252303) was conducted according to the PRISMA guidelines, and 75 eligible studies from 13 countries were identified until August 2022. Three electronic databases (Pubmed, Scopus and Web of Science) were employed. Results The frequently isolated SOSA were S. epidermidis, S. intermedius, S. pseudintermedius, S. xylosus, S. chromogenes, S. hyicus, M. sciuri, S. hominis, and S. haemolyticus. Thirty (40%) studies performed antibiotic susceptibility testing (AST). Penicillin (58%) and tetracycline (28%) resistance were most common across all SOSA with high rates of resistance to aminoglycosides, fluoroquinolones, and macrolides in some species. Resistance to last-resort antibiotics such as linezolid and fusidic acid were also reported. Limited data on strain typing and molecular resistance mechanisms precluded analysis of the clonal diversity of SOSA on the continent. Conclusion The findings of this review indicate that research on livestock-associated SOSA in Africa is lacking in some regions such as Central and Western Africa, furthermore, research on companion animals and more advanced methods for identification and strain typing of SOSA need to be encouraged. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier: CRD42021252303.
Collapse
Affiliation(s)
- Remous Ocloo
- Division of Medical Microbiology and Immunology, Stellenbosch University, Stellenbosch, South Africa
| | - Justin Nyasinga
- Department of Pathology, Aga Khan University Hospital, Nairobi, Kenya
- Institute of Science, Technology and Innovation, Pan African University, Nairobi, Kenya
- Department of Biomedical Sciences and Technology, The Technical University of Kenya, Nairobi, Kenya
| | - Zubair Munshi
- Department of Pathology, Aga Khan University Hospital, Nairobi, Kenya
| | - Aisha Hamdy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Tessa Marciniak
- Institute for Molecular Infection Biology, University of Wuerzburg, Wuerzburg, Germany
| | | | - Mae Newton-Foot
- Division of Medical Microbiology and Immunology, Stellenbosch University, Stellenbosch, South Africa
- National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
| | - Wilma Ziebuhr
- Institute for Molecular Infection Biology, University of Wuerzburg, Wuerzburg, Germany
| | - Adebayo Shittu
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Gunturu Revathi
- Department of Pathology, Aga Khan University Hospital, Nairobi, Kenya
| | - Alaa Abouelfetouh
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alamein International University, Alamein, Egypt
| | - Andrew Whitelaw
- Division of Medical Microbiology and Immunology, Stellenbosch University, Stellenbosch, South Africa
- National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
| |
Collapse
|
12
|
Whole Genome Sequencing (WGS) Analysis of Virulence and AMR Genes in Extended-Spectrum β-Lactamase (ESBL)-Producing Escherichia coli from Animal and Environmental Samples in Four Italian Swine Farms. Antibiotics (Basel) 2022; 11:antibiotics11121774. [PMID: 36551431 PMCID: PMC9774568 DOI: 10.3390/antibiotics11121774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
Whole genome sequencing (WGS) is a powerful tool to analyze bacterial genomes rapidly, and can be useful to study and detect AMR genes. We carried out WGS on a group of Escherichia coli (n = 30), sampled from healthy animals and farm environment in four pigsties in northern Italy. Two × 250bp paired end sequencing strategy on Illumina MiSeq™ was used. We performed in silico characterization of E. coli isolates through the web tools provided by the Center for Genomic Epidemiology (cge.cbs.dtu.dk/services/) to study AMR and virulence genes. Bacterial strains were further analyzed to detect phenotypic antimicrobial susceptibility against several antimicrobials. Data obtained from WGS were compared to phenotypic results. All 30 strains were MDR, and they were positive for the genes blaCTX-M and blaTEM as verified by PCR. We observed a good concordance between phenotypic and genomic results. Different AMR determinants were identified (e.g., qnrS, sul, tet). Potential pathogenicity of these strains was also assessed, and virulence genes were detected (e.g., etsC, gad, hlyF, iroN, iss), mostly related to extraintestinal E. coli pathotypes (UPEC/APEC). However, enterotoxin genes, such as astA, ltcA and stb were also identified, indicating a possible hybrid pathogenic nature. Various replicons associated to plasmids, previously recovered in pathogenic bacteria, were identified (e.g., IncN and IncR plasmid), supporting the hypothesis that our strains were pathogenic. Eventually, through WGS it was possible to confirm the phenotypic antibiotic resistance results and to appreciate the virulence side of our ESBL-producing E. coli. These findings highlight the need to monitor commensal E. coli sampled from healthy pigs considering a One Health perspective.
Collapse
|
13
|
Abreu R, Rodríguez-Álvarez C, Castro-Hernandez B, Lecuona-Fernández M, González JC, Rodríguez-Novo Y, Arias Rodríguez MDLA. Prevalence and Characterisation of Multiresistant Bacterial Strains Isolated in Pigs from the Island of Tenerife. Vet Sci 2022; 9:269. [PMID: 35737321 PMCID: PMC9230743 DOI: 10.3390/vetsci9060269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Antibiotic-resistant bacteria can circulate among human and animal populations through direct contact with animals, as well as via food and the environment. The purpose of this study was to examine the prevalence and characterisation of multiresistant bacteria in pig samples. METHODS 224 samples of pig livestock were taken at the slaughterhouse on the island of Tenerife. A nasal and a rectal sample were collected from each pig. The presence of methicillin-resistant Staphylococcus aureus (MRSA), methicillin-resistant Staphylococcus coagulase-negative (MRCoNS), vancomycin-resistant Enterococcus (VRE), extended-spectrum ß-lactamase-producing Enterobacteriaceae (BLEE), carbapenemase-producing Enterobacteriaceae (CPE), and colistin-resistant Enterobacteriaceae was investigated. The resistance genes of the isolated bacteria were characterised by specific PCRs depending on the microorganism to be studied, and in vitro antimicrobial resistance was determined using the broth microdilution method (Vitek®2 system bioMérieux®, Nurtingen, Germany). RESULTS MRSA prevalence was 73.21% (164 isolates). MRCoNS prevalence was 9.8% (22 isolates), S. sciuri being the prevalent species. Six isolates presented a 2.7% prevalence of extended-spectrum ß-lactamase-producing Escherichia coli (BLEE) in the CTX-M-1 group. No vancomycin-resistant Enterococcus (VRE), carbapenemase-producing Enterobacteriaceae (CRE), or colistin-resistant Enterobacteriaceae were isolated. CONCLUSION we found a high presence of multiresistant bacteria, suggesting the need for increased control and surveillance of this type of strains in pig livestock and a better understanding of the possible transmission routes of these microorganisms through livestock products.
Collapse
Affiliation(s)
- Rossana Abreu
- Department of Preventive Medicine and Public Health, University of La Laguna, Campus de Ofra, s/n, 38071 Santa Cruz de Tenerife, Spain; (R.A.); (C.R.-Á.)
| | - Cristobalina Rodríguez-Álvarez
- Department of Preventive Medicine and Public Health, University of La Laguna, Campus de Ofra, s/n, 38071 Santa Cruz de Tenerife, Spain; (R.A.); (C.R.-Á.)
| | - Beatriz Castro-Hernandez
- Microbiology and Infection Control Service, University Hospital of the Canary Islands, Canary Islands, Tenerife, 38320 San Cristóbal de La Laguna, Spain; (B.C.-H.); (M.L.-F.)
| | - Maria Lecuona-Fernández
- Microbiology and Infection Control Service, University Hospital of the Canary Islands, Canary Islands, Tenerife, 38320 San Cristóbal de La Laguna, Spain; (B.C.-H.); (M.L.-F.)
| | - Juan Carlos González
- Canary Islands Health Service, Canary Islands, 38004 Santa Cruz de Tenerife, Spain;
| | - Yurena Rodríguez-Novo
- Faculty of Health Sciences, Nursing Section, University of La Laguna, Tenerife, 38200 La Laguna, Spain;
| | - Maria de los Angeles Arias Rodríguez
- Department of Preventive Medicine and Public Health, University of La Laguna, Campus de Ofra, s/n, 38071 Santa Cruz de Tenerife, Spain; (R.A.); (C.R.-Á.)
| |
Collapse
|
14
|
Antibiotic Isoflavonoids, Anthraquinones, and Pterocarpanoids from Pigeon Pea (Cajanus cajan L.) Seeds against Multidrug-Resistant Staphylococcus aureus. Metabolites 2022; 12:metabo12040279. [PMID: 35448466 PMCID: PMC9030341 DOI: 10.3390/metabo12040279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 11/17/2022] Open
Abstract
Cajanus cajan L. (pigeon pea, locally known in the Philippines as kadios) seed is a functional food with health benefits that extend beyond their nutritional value. C. cajan seeds contain highly diverse secondary metabolites with enriched beneficial properties, such as antibacterial, anticancer, and antioxidant activities. However, the antibacterial activities of secondary metabolites from Philippine-grown C. cajan, against multidrug-resistant Staphylococcus aureus have not been thoroughly described. Here, we investigated the in vitro antibacterial properties of C. cajan seed against multidrug-resistant S. aureus ATCC BAA-44 (MDRSA) and three other S. aureus strains (S. aureus ATCC 25923, S. aureus ATCC 6538, and coagulase-negative S. aureus) and, subsequently, identified the antibiotic markers against S. aureus strains using mass spectrometry. Secondary metabolites from C. cajan seeds were extracted using acetone, methanol, or 95% ethanol. Antibacterial screening revealed antibiotic activity for the C. cajan acetone extract. Bioassay-guided purification of the C. cajan acetone extract afforded three semi-pure high-performance liquid chromatography (HPLC) fractions exhibiting 32–64 µg/mL minimum inhibitory concentration (MIC) against MDRSA. Chemical profiling of these fractions using liquid chromatography mass spectrometry (LCMS) identified six compounds that are antibacterial against MDRSA. High-resolution mass spectrometry (HRMS), MS/MS, and dereplication using Global Natural Products Social Molecular Networking (GNPS)™, and National Institute of Standards and Technology (NIST) Library identified the metabolites as rhein, formononetin, laccaic acid D, crotafuran E, ayamenin A, and biochanin A. These isoflavonoids, anthraquinones, and pterocarpanoids from C. cajan seeds are potential bioactive compounds against S. aureus, including the multidrug-resistant strains.
Collapse
|
15
|
A One Health Approach Molecular Analysis of Staphylococcus aureus Reveals Distinct Lineages in Isolates from Miranda Donkeys (Equus asinus) and Their Handlers. Antibiotics (Basel) 2022; 11:antibiotics11030374. [PMID: 35326837 PMCID: PMC8944429 DOI: 10.3390/antibiotics11030374] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/24/2022] [Accepted: 03/04/2022] [Indexed: 12/11/2022] Open
Abstract
Donkeys (Equus asinus) are in decline in Europe. Occupational exposure to farm animals has been associated with increased staphylococci carriage. We aimed to isolate S. aureus and coagulase-negative staphylococci (CoNS) from donkeys and handlers and characterize the antimicrobial resistance profiles and genetic lineages of S. aureus strains. Oral and nasal swab samples were collected from 49 Miranda donkeys and 23 handlers from 15 different farms. Staphylococci species were identified by MALDI-TOF MS. The presence of antimicrobial resistance genes and virulence factors was investigated by PCR. Molecular typing was performed in S. aureus isolates. From the 49 donkey samples, 4 S. aureus (8.2%) and 21 CoNS (42.9%) were isolated. Ten handlers (43.5%) were carriers of S. aureus and 4 (17.4%) carried CoNS. The CoNS isolates showed resistance to several classes of antimicrobials encoded by the mecA, aph (3′)-IIIa, ant (4′)-Ia, tetM, tetK, lnuA, ermB, ermC, dfrA and dfrG genes. S. aureus isolates were resistant to penicillin, aminoglicosides and tetracycline harboring the blaZ, aph (3′)-IIIa, tetL, tetM and tetK genes. All S. aureus isolates from donkeys belonged to ST49 and spa-type t208 while the strains isolated from the handlers were ascribed to 3 STs and 7 spa-types. However, human isolates were from different STs than the donkey isolates. Donkeys are mainly colonized by methicillin-resistant S. sciuri. S. aureus transmission between donkeys and their handlers appears not to have occurred since the isolates belonged to different genetic lineages.
Collapse
|
16
|
Hassan MA, Abd El-Aziz S, Elbadry HM, El-Aassar SA, Tamer TM. Prevalence, antimicrobial resistance profile, and characterization of multi-drug resistant bacteria from various infected wounds in North Egypt. Saudi J Biol Sci 2022; 29:2978-2988. [PMID: 35531185 PMCID: PMC9073052 DOI: 10.1016/j.sjbs.2022.01.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 11/30/2022] Open
Abstract
Multi-drug resistant (MDR) bacteria associated with wounds are extremely escalating. This study aims to survey different wounds in Alexandria hospitals, North Egypt, to explore the prevalence and characteristics of MDR bacteria for future utilization in antibacterial wound dressing designs. Among various bacterial isolates, we determined 22 MDR bacteria could resist different classes of antibiotics. The collected samples exhibited the prevalence of mono-bacterial infections (60%), while 40% included poly-bacterial species due to previous antibiotic administration. Moreover, Gram-negative bacteria showed dominance with a ratio of 63.6%, while Gram-positive bacteria reported 36.4%. Subsequently, the five most virulent bacteria were identified following the molecular approach by 16S rRNA and physiological properties using the VITEK 2 automated system. They were deposited in GenBank as Staphylococcus haemolyticus MST1 (KY550377), Pseudomonas aeruginosa MST2 (KY550378), Klebsiella pneumoniae MST3 (KY550379), Escherichia coli MST4 (KY550380), and Escherichia coli MST5 (KY550381). In terms of isolation source, S. haemolyticus MST1 was isolated from a traumatic wound, while P. aeruginosa MST2 and E. coli MST4 were procured from hernia surgical wounds, and K. pneumoniae MST3 and E. coli MST5 were obtained from diabetic foot ulcers. Antibiotic sensitivity tests exposed that K. pneumoniae MST3, E. coli MST4, and E. coli MST5 are extended-spectrum β-lactamases (ESBLs) bacteria. Moreover, S. haemolyticus MST1 belongs to the methicillin-resistant coagulase-negative staphylococcus (MRCoNS), whereas P. aeruginosa MST2 exhibited resistance to common empirical bactericidal antibiotics. Overall, the study provides new insights into the prevalent MDR bacteria in Egypt for further use as specific models in formulating antibacterial wound dressings.
Collapse
Affiliation(s)
- Mohamed A. Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934, Alexandria, Egypt
- Corresponding authors.
| | - Sarah Abd El-Aziz
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934, Alexandria, Egypt
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Horeya M. Elbadry
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Samy A. El-Aassar
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Tamer M. Tamer
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934, Alexandria, Egypt
- Corresponding authors.
| |
Collapse
|