1
|
Soimala T, Wasiksiri S, Boonchuay K, Wongtawan T, Fungwithaya P. Methicillin-resistant coagulase-positive staphylococci in new, middle-aged, and old veterinary hospitals in southern Thailand: A preliminary study. Vet World 2024; 17:282-288. [PMID: 38595667 PMCID: PMC11000468 DOI: 10.14202/vetworld.2024.282-288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/08/2024] [Indexed: 04/11/2024] Open
Abstract
Background and Aim Methicillin-resistant coagulase-positive staphylococci (MRCoPS) cause pyoderma, dermatitis, and nosocomial infection. Numerous factors, including indiscriminate antimicrobial use (AMU) in veterinary medicine, cleaning practices, and AMU in hospitals, contribute to MRCoPS. However, the relationship between hospital age and MRCoPS has not yet been investigated. This study aimed to estimate the prevalence of MRCoPS in the treatment and operation rooms of new, middle-aged, and old veterinary hospitals. Materials and Methods Samples were collected from small animal hospitals in Surat Thani, Nakhon Si Thammarat, and Songkhla in Thailand. Hospitals were defined as those that had been in operation for 5 years (new, n = 5), 5-15 years (middle-aged, n = 6), or >15 years (old, n = 3). Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was used to identify 280 samples, and duplex polymerase chain reaction was used to identify resistance genes (mecA and blaZ). The VITEK2® automated system was then used to determine the minimum inhibitory concentration. Results A total of 57 Staphylococcus species were identified and classified as coagulase-positive staphylococci (CoPS) (22/57, 38.60%) or coagulase-negative staphylococci (35/57, 61.40%), respectively. Nine of the 22 CoPS (40.90%) harbored the mecA gene, and 21 isolates (95.45%) harbored the blaZ gene. Interestingly, more MRCoPS was found in new hospitals (six isolates) than in middle-aged (one isolate) and old hospitals (two isolates), although there was no statistically significant difference in the presence of MRCoPS across new, middle-aged, and old veterinary hospitals (p = 0.095), Kruskal-Wallis test. There is a need for further detailed studies, including an increase in the number of hospitals in various locations. Conclusion MRCoPS is a nosocomial pathogen that causes zoonotic and recurrent infections in veterinary hospitals. The prevalence of MRCoPS tended to be higher in new hospitals. Areas with heavy animal contact, such as hospital floors, are areas of particular concern, and cleaning/disinfection of these areas must be highlighted in hygiene regimens.
Collapse
Affiliation(s)
- Tanawan Soimala
- Faculty of Veterinary Science, Prince of Songkhla University, Songkhla 90110, Thailand
- Tierärztliches Gesundheitszentrum Oerzen, Melbeck 21406, Germany
| | - Siriwat Wasiksiri
- Faculty of Veterinary Science, Prince of Songkhla University, Songkhla 90110, Thailand
| | - Kanpapat Boonchuay
- Akkraratchkumari Veterinary College, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat 80160, Thailand
- Centre for One Health, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat 80160, Thailand
| | - Tuempong Wongtawan
- Akkraratchkumari Veterinary College, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat 80160, Thailand
- Centre for One Health, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat 80160, Thailand
- Excellence Centre for Melioidosis and Other, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat 80160, Thailand
| | - Punpichaya Fungwithaya
- Office of Administrative Interdisciplinary Program on Agricultural Technology, School of Agricultural Technology, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520 Thailand
| |
Collapse
|
2
|
Díaz-Formoso L, Silva V, Contente D, Feito J, Hernández PE, Borrero J, Igrejas G, del Campo R, Muñoz-Atienza E, Poeta P, Cintas LM. Antibiotic Resistance Genes, Virulence Factors, and Biofilm Formation in Coagulase-Negative Staphylococcus spp. Isolates from European Hakes ( Merluccius merluccius, L.) Caught in the Northeast Atlantic Ocean. Pathogens 2023; 12:1447. [PMID: 38133330 PMCID: PMC10745931 DOI: 10.3390/pathogens12121447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
The indiscriminate use of antibiotics has contributed to the dissemination of multiresistant bacteria, which represents a public health concern. The aim of this work was to characterize 27 coagulase-negative staphylococci (CoNS) isolated from eight wild Northeast Atlantic hakes (Merluccius merluccius, L.) and taxonomically identified as Staphylococcus epidermidis (n = 16), Staphylococcus saprophyticus (n = 4), Staphylococcus hominis (n = 3), Staphylococcus pasteuri (n = 2), Staphylococcus edaphicus (n = 1), and Staphylococcus capitis (n = 1). Biofilm formation was evaluated with a microtiter assay, antibiotic susceptibility testing was performed using the disk diffusion method, and antibiotic resistance and virulence determinants were detected by PCR. Our results showed that all staphylococci produced biofilms and that 92.6% of the isolates were resistant to at least one antibiotic, mainly penicillin (88.8%), fusidic acid (40.7%), and erythromycin (37%). The penicillin resistance gene (blaZ) was detected in 66.6% (18) of the isolates, of which 10 also carried resistance genes to macrolides and lincosamides (mphC, msr(A/B), lnuA, or vgaA), 4 to fusidic acid (fusB), and 3 to trimethoprim-sulfamethoxazole (dfrA). At least one virulence gene (scn, hla, SCCmecIII, and/or SCCmecV) was detected in 48% of the isolates. This study suggests that wild European hake destined for human consumption could act as a vector of CoNS carrying antibiotic resistance genes and/or virulence factors.
Collapse
Affiliation(s)
- Lara Díaz-Formoso
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (Grupo SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos (Nutrición, Bromatología, Higiene y Seguridad Alimentaria), Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro, s/n, 28040 Madrid, Spain; (L.D.-F.); (D.C.); (P.E.H.); (J.B.); (L.M.C.)
| | - Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (V.S.); (P.P.)
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Diogo Contente
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (Grupo SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos (Nutrición, Bromatología, Higiene y Seguridad Alimentaria), Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro, s/n, 28040 Madrid, Spain; (L.D.-F.); (D.C.); (P.E.H.); (J.B.); (L.M.C.)
| | - Javier Feito
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (Grupo SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos (Nutrición, Bromatología, Higiene y Seguridad Alimentaria), Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro, s/n, 28040 Madrid, Spain; (L.D.-F.); (D.C.); (P.E.H.); (J.B.); (L.M.C.)
| | - Pablo E. Hernández
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (Grupo SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos (Nutrición, Bromatología, Higiene y Seguridad Alimentaria), Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro, s/n, 28040 Madrid, Spain; (L.D.-F.); (D.C.); (P.E.H.); (J.B.); (L.M.C.)
| | - Juan Borrero
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (Grupo SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos (Nutrición, Bromatología, Higiene y Seguridad Alimentaria), Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro, s/n, 28040 Madrid, Spain; (L.D.-F.); (D.C.); (P.E.H.); (J.B.); (L.M.C.)
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Rosa del Campo
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain;
| | - Estefanía Muñoz-Atienza
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (Grupo SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos (Nutrición, Bromatología, Higiene y Seguridad Alimentaria), Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro, s/n, 28040 Madrid, Spain; (L.D.-F.); (D.C.); (P.E.H.); (J.B.); (L.M.C.)
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (V.S.); (P.P.)
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Luis M. Cintas
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (Grupo SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos (Nutrición, Bromatología, Higiene y Seguridad Alimentaria), Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro, s/n, 28040 Madrid, Spain; (L.D.-F.); (D.C.); (P.E.H.); (J.B.); (L.M.C.)
| |
Collapse
|
3
|
Alghamdi M, Al-Judaibi E, Al-Rashede M, Al-Judaibi A. Comparative De Novo and Pan-Genome Analysis of MDR Nosocomial Bacteria Isolated from Hospitals in Jeddah, Saudi Arabia. Microorganisms 2023; 11:2432. [PMID: 37894090 PMCID: PMC10609288 DOI: 10.3390/microorganisms11102432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/14/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Multidrug-resistant (MDR) bacteria are one of the most serious threats to public health, and one of the most important types of MDR bacteria are those that are acquired in a hospital, known as nosocomial. This study aimed to isolate and identify MDR bacteria from selected hospitals in Jeddah and analyze their antibiotic-resistant genes. Bacteria were collected from different sources and wards of hospitals in Jeddah City. Phoenix BD was used to identify the strains and perform susceptibility testing. Identification of selected isolates showing MDR to more than three classes on antibiotics was based on 16S rRNA gene and whole genome sequencing. Genes conferring resistance were characterized using de novo and pan-genome analyses. In total, we isolated 108 bacterial strains, of which 75 (69.44%) were found to be MDR. Taxonomic identification revealed that 24 (32%) isolates were identified as Escherichia coli, 19 (25.3%) corresponded to Klebsiella pneumoniae, and 17 (22.67%) were methicillin-resistant Staphylococcus aureus (MRSA). Among the Gram-negative bacteria, K. pneumoniae isolates showed the highest resistance levels to most antibiotics. Of the Gram-positive bacteria, S. aureus (MRSA) strains were noticed to exhibit the uppermost degree of resistance to the tested antibiotics, which is higher than that observed for K. pneumoniae isolates. Taken together, our results illustrated that MDR Gram-negative bacteria are the most common cause of nosocomial infections, while MDR Gram-positive bacteria are characterized by a wider antibiotic resistance spectrum. Whole genome sequencing found the appearance of antibiotic resistance genes, including SHV, OXA, CTX-M, TEM-1, NDM-1, VIM-1, ere(A), ermA, ermB, ermC, msrA, qacA, qacB, and qacC.
Collapse
Affiliation(s)
- Molook Alghamdi
- Department of Biological Sciences, Microbiology Section, Faculty of Science, Jeddah University, Jeddah 21959, Saudi Arabia; (M.A.); (E.A.-J.)
| | - Effat Al-Judaibi
- Department of Biological Sciences, Microbiology Section, Faculty of Science, Jeddah University, Jeddah 21959, Saudi Arabia; (M.A.); (E.A.-J.)
| | | | - Awatif Al-Judaibi
- Department of Biological Sciences, Microbiology Section, Faculty of Science, Jeddah University, Jeddah 21959, Saudi Arabia; (M.A.); (E.A.-J.)
| |
Collapse
|
4
|
Kayta G, Manilal A, Tadesse D, Siraj M. Indoor air microbial load, antibiotic susceptibility profiles of bacteria, and associated factors in different wards of Arba Minch General Hospital, southern Ethiopia. PLoS One 2022; 17:e0271022. [PMID: 35797393 PMCID: PMC9262214 DOI: 10.1371/journal.pone.0271022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/21/2022] [Indexed: 11/30/2022] Open
Abstract
The levels of indoor air microbial load in hospitals are very crucial to the health of patients and health care workers and are to be regularly monitored and maintained at an acceptable level. However, this problem remains overlooked, particularly in developing countries including Ethiopia. A hospital-based cross-sectional study is designed to determine the indoor air microbial load (settle plate technique), microbial isolates (standard microbiological techniques), bacterial susceptibility profiles (Kirby-Bauer disk diffusion technique), and associated factors, in different wards of the title Hospital, southern Ethiopia. An observational checklist was used to collect relevant information related to the associated factors; descriptive and inferential statistics were applied using Statistical Package for Social Sciences (SPSS); p-values ≤ 0.05 in the multivariable analysis were considered statistically significant. The total average bacterial and fungal load of the selected wards was 1914±1081.4 Colony Forming Units (CFU)/m3 (95% CI: 1718.5–2109.48 CFU/m3) and 1533.7±858.8 CFU/m3 (95% CI: 1378.5-1688CFU/m3) respectively. The highest mean bacterial (1914±1081.4 CFU/m3) and fungal (1533.7±858.8 CFU/m3) loads were found in the male surgical and female medical wards respectively. A total of 229 bacterial and 139 fungal isolates were obtained; Gram-positive bacteria were the predominant type, 130 (56.7%), particularly the isolates of Staphylococcus aureus, 46 (20.1%). The predominant fungal isolates were Aspergillus sp., 53(38%). Percentages of multidrug-resistant (MDR), extended-spectrum beta-lactamase (ESBL), and carbapenemase producers respectively were 48.5, 26.5, and 25%. High room crowd index [p = 0.003; Adjusted Odds Ratio (AOR) 12.5 (Confidence Interval (CI) 95%: 2.42–65)], presence of damp/wet materials [p = 0.025; AOR 7 (CI 95%: 1.3–37.4)], intense room traffic [p = 0.004; AOR 9.6 (CI 95%: 1.2–79.3)], inappropriate storage of food and drugs [p = 0.008; AOR 7.5 (CI 95%: 1.7–32)], and unclean environment [p = 0.03; AOR 5.8 (CI 95%: 1.2–28)] showed statistical significance concerning the indoor air microbial loads; most of the wards in Arba Minch General Hospital (AMGH) stand high and not in an acceptable level as per the WHO and the European Commission standards on indoor air microbial load. Periodic air surveillance and infection prevention control programs are required to reduce the transmission of these microbes to inpatients, visitors, and health care workers.
Collapse
Affiliation(s)
- Gebre Kayta
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Arba Minch University, Arba Minch, Ethiopia
| | - Aseer Manilal
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Arba Minch University, Arba Minch, Ethiopia
| | - Dagimawie Tadesse
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Arba Minch University, Arba Minch, Ethiopia
- * E-mail:
| | - Munira Siraj
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Arba Minch University, Arba Minch, Ethiopia
| |
Collapse
|
5
|
Role of Bioaerosols on the Short-Distance Transmission of Multidrug-Resistant Methicillin-Resistant Staphylococcus aureus (MRSA) in a Chicken Farm Environment. Antibiotics (Basel) 2022; 11:antibiotics11010081. [PMID: 35052958 PMCID: PMC8773248 DOI: 10.3390/antibiotics11010081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 02/05/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a dynamic and tenacious pathogenic bacterium which is prevalent in livestock farming environments. This study investigated the possibility of MRSA spread via bioaerosol transmission from an indoor chicken farm environment to outdoors downwind (up to 50 m). The concentration of total airborne bacteria colony formation units (CFUs) was decreased with increasing sampling distance ranging from 9.18 × 101 to 3.67 × 103 per air volume (m3). Among the 21 MRSA isolates, 15 were isolated from indoor chicken sheds and exposure square areas, whereas 6 were isolated from downwind bioaerosol samples. Molecular characterization revealed that all of them carried the staphylococcal cassette chromosome mec (SCCmec) VIII, and they were remarkably linked with the hospital-associated MRSA group. Spa typing analysis determined that all MRSA isolates belonged to spa type t002. Virulence analysis showed that 100% of total isolates possessed exfoliative toxin A (eta), whereas 38.09% and 23.80% strains carried exfoliative toxin B (etb) and enterotoxin A (entA). Additionally, all of these MRSA isolates carried multidrug resistance properties and showed their resistance against chloramphenicol, ciprofloxacin, clindamycin, tetracycline, and erythromycin. In addition, chi-squared statistical analysis displayed a significant distributional relationship of gene phenotypes between MRSA isolates from chicken farm indoor and downwind bioaerosol samples. The results of this study revealed that chicken farm indoor air might act as a hotspot of MRSA local community-level outbreak, wherein the short-distance dispersal of MRSA could be supported by bioaerosols.
Collapse
|
6
|
Tao CW, Chen JS, Hsu BM, Koner S, Hung TC, Wu HM, Rathod J. Molecular Evaluation of Traditional Chicken Farm-Associated Bioaerosols for Methicillin-Resistant Staphylococcus aureus Shedding. Antibiotics (Basel) 2021; 10:antibiotics10080917. [PMID: 34438967 PMCID: PMC8388662 DOI: 10.3390/antibiotics10080917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022] Open
Abstract
The outbreak of airborne pathogens, such as methicillin-resistant Staphylococcus aureus (MRSA) through bioaerosol, and their molecular characterization around domestic poultry farming areas, was not completely understood. This imposes risk of a MRSA-associated health threat for the relevant livestock food production units. To address this issue, the present study investigated the role of bioaerosol in transmitting MRSA strains in poultry house settings by combining molecular typing, phylogenetic classification, antibiotic susceptibility, and virulence gene distribution patterns. The present study highlights that all 18 bioaerosol and stool samples collected were MRSA positive, with a unique set of virulence factors. Out of 57 isolated MRSA isolates, 68.4% and 19.3% consisted of SCCmec I and IV elements, respectively, which are commonly linked with hospital-acquired and livestock-associated MRSA strains. It is worth noting that the exfoliative toxin eta and etb genes were carried by 100% and 70.2% of all isolates, respectively. Only 17.5% of strains showed the presence of enterotoxin entC. These MRSA isolates were resistant to chloramphenicol (C), ciprofloxacin (CIP), clindamycin (DA), erythromycin (E), and tetracycline (T), signifying their multi-drug resistance traits. A cluster of phylogenetic analysis described that 80.7% and 15.8% of total isolates belonged to Staphylococcus aureus protein A (spa) type t002 and t548. Whereas 3.5% were reflected as a new spa type. Additionally, as per the chi-squared test score value, these two spa types (t002 and t548) have a distribution correlation with HA-MRSA and LA-MRSA in all the samples (p < 0.005, chi-squared test; degree of freedom = 1). Ultimately, this study highlights the prevalence of MRSA colonization in the conventional poultry farm environment, showing the risk of bioaerosol transmission, which needs epidemiological attention and prevention strategies.
Collapse
Affiliation(s)
- Chi-Wei Tao
- Department of Internal Medicine, Cheng Hsin General Hospital, Taipei 112401, Taiwan;
- Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu 611310, Taiwan
| | - Jung-Sheng Chen
- Department of Medical Research, E-Da Hospital, Kaohsiung 824005, Taiwan;
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi 621301, Taiwan;
- Correspondence: ; Tel.: +886-5272-0411 (ext. 66218)
| | - Suprokash Koner
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi 621301, Taiwan;
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi 621301, Taiwan
| | - Tung-Che Hung
- Department of Infectious Diseases, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 600566, Taiwan;
| | - Han-Ming Wu
- Family Medicine Department, Asia University Hospital, Taichung 413505, Taiwan;
| | - Jagat Rathod
- Department of Earth Sciences, National Cheng Kung University, Tainan 701401, Taiwan;
| |
Collapse
|