1
|
Antani JD, Ward T, Emonet T, Turner PE. Microscopic phage adsorption assay: High-throughput quantification of virus particle attachment to host bacterial cells. Proc Natl Acad Sci U S A 2024; 121:e2410905121. [PMID: 39700139 DOI: 10.1073/pnas.2410905121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 11/12/2024] [Indexed: 12/21/2024] Open
Abstract
Phages, viruses of bacteria, play a pivotal role in Earth's biosphere and hold great promise as therapeutic and diagnostic tools in combating infectious diseases. Attachment of phages to bacterial cells is a crucial initial step of the interaction. The classic assay to quantify the dynamics of phage attachment involves coculturing and enumeration of bacteria and phages, which is laborious, lengthy, hence low-throughput, and only provides ensemble estimates of model-based adsorption rate constants. Here, we utilized fluorescence microscopy and particle tracking to obtain trajectories of individual virus particles interacting with cells. The trajectory durations quantified the heterogeneity in dwell time, the time that each phage spends interacting with a bacterium. The average dwell time strongly correlated with the classically measured adsorption rate constant. We successfully applied this technique to quantify host-attachment dynamics of several phages including those targeting key bacterial pathogens. This approach should benefit the field of phage biology by providing highly quantitative, model-free readouts at single-virus resolution, helping to uncover single-virus phenomena missed by traditional measurements. Owing to significant reduction in manual effort, our method should enable rapid, high-throughput screening of a phage library against a target bacterial strain for applications such as therapy or diagnosis.
Collapse
Affiliation(s)
- Jyot D Antani
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520
- Center for Phage Biology & Therapy, Yale University, New Haven, CT 06520
- Quantitative Biology Institute, Yale University, New Haven, CT 06520
| | - Timothy Ward
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520
| | - Thierry Emonet
- Quantitative Biology Institute, Yale University, New Haven, CT 06520
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520
- Department of Physics, Yale University, New Haven, CT 06520
| | - Paul E Turner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520
- Center for Phage Biology & Therapy, Yale University, New Haven, CT 06520
- Quantitative Biology Institute, Yale University, New Haven, CT 06520
- Program in Microbiology, Yale School of Medicine, New Haven, CT 06520
| |
Collapse
|
2
|
Cui L, Kiga K, Kondabagil K, Węgrzyn A. Current and future directions in bacteriophage research for developing therapeutic innovations. Sci Rep 2024; 14:24404. [PMID: 39420115 PMCID: PMC11487266 DOI: 10.1038/s41598-024-76427-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Affiliation(s)
- Longzhu Cui
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke, Tochigi, 329-0498, Japan.
| | - Kotaro Kiga
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Kiran Kondabagil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay Powai, 400076, Mumbai, India
| | - Alicja Węgrzyn
- University of Gdansk, University Center for Applied and Interdisciplinary Research, Kładki 24, 80-822, Gdansk, Poland
| |
Collapse
|
3
|
Antani JD, Ward T, Emonet T, Turner PE. Microscopic Phage Adsorption Assay: High-throughput quantification of virus particle attachment to host bacterial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617072. [PMID: 39416219 PMCID: PMC11482966 DOI: 10.1101/2024.10.09.617072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Phages, viruses of bacteria, play a pivotal role in Earth's biosphere and hold great promise as therapeutic and diagnostic tools in combating infectious diseases. Attachment of phages to bacterial cells is a crucial initial step of the interaction. The classic assay to quantify the dynamics of phage attachment involves co-culturing and enumeration of bacteria and phages, which is laborious, lengthy, hence low-throughput, and only provides ensemble estimates of model-based adsorption rate constants. Here, we utilized fluorescence microscopy and particle tracking to obtain trajectories of individual virus particles interacting with cells. The trajectory durations quantified the heterogeneity in dwell time, the time that each phage spends interacting with a bacterium. The average dwell time strongly correlated with the classically-measured adsorption rate constant. We successfully applied this technique to quantify host-attachment dynamics of several phages including those targeting key bacterial pathogens. This approach should benefit the field of phage biology by providing highly quantitative, model-free readouts at single-virus resolution, helping to uncover single-virus phenomena missed by traditional measurements. Owing to significant reduction in manual effort, our method should enable rapid, high-throughput screening of a phage library against a target bacterial strain for applications such as therapy or diagnosis.
Collapse
Affiliation(s)
- Jyot D. Antani
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
- Center for Phage Biology & Therapy, Yale University, New Haven, CT 06520, USA
- Quantitative Biology Institute, Yale University, New Haven, CT 06520, USA
| | - Timothy Ward
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Thierry Emonet
- Quantitative Biology Institute, Yale University, New Haven, CT 06520, USA
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
- Department of Physics, Yale University, New Haven, CT 06520, USA
| | - Paul E. Turner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
- Center for Phage Biology & Therapy, Yale University, New Haven, CT 06520, USA
- Quantitative Biology Institute, Yale University, New Haven, CT 06520, USA
- Program in Microbiology, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
4
|
Cui L, Watanabe S, Miyanaga K, Kiga K, Sasahara T, Aiba Y, Tan XE, Veeranarayanan S, Thitiananpakorn K, Nguyen HM, Wannigama DL. A Comprehensive Review on Phage Therapy and Phage-Based Drug Development. Antibiotics (Basel) 2024; 13:870. [PMID: 39335043 PMCID: PMC11428490 DOI: 10.3390/antibiotics13090870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
Phage therapy, the use of bacteriophages (phages) to treat bacterial infections, is regaining momentum as a promising weapon against the rising threat of multidrug-resistant (MDR) bacteria. This comprehensive review explores the historical context, the modern resurgence of phage therapy, and phage-facilitated advancements in medical and technological fields. It details the mechanisms of action and applications of phages in treating MDR bacterial infections, particularly those associated with biofilms and intracellular pathogens. The review further highlights innovative uses of phages in vaccine development, cancer therapy, and as gene delivery vectors. Despite its targeted and efficient approach, phage therapy faces challenges related to phage stability, immune response, and regulatory approval. By examining these areas in detail, this review underscores the immense potential and remaining hurdles in integrating phage-based therapies into modern medical practices.
Collapse
Affiliation(s)
- Longzhu Cui
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Shinya Watanabe
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Kazuhiko Miyanaga
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Kotaro Kiga
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Teppei Sasahara
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Yoshifumi Aiba
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Xin-Ee Tan
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Srivani Veeranarayanan
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Kanate Thitiananpakorn
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Huong Minh Nguyen
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Dhammika Leshan Wannigama
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata 990-2292, Japan
| |
Collapse
|
5
|
Uchechukwu CF, Shonekan A. Current status of clinical trials for phage therapy. J Med Microbiol 2024; 73:001895. [PMID: 39320361 PMCID: PMC11423923 DOI: 10.1099/jmm.0.001895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024] Open
Abstract
Recently, bacteriophages have been considered alternatives to antibacterial treatments. Infectious diseases continue to plague the world because bacteria can adapt and develop defence mechanisms against antibiotics. The growing incidence of antibiotic-resistant bacterial infections necessitated the development of new techniques for treating bacterial infections worldwide. Clinical trials have shown efficiency against antibiotic-resistant bacteria. However, scientists in future clinical trials should scrutinize phage resistance implications, assess combination strategies with antimicrobial agents and address challenges in phage therapy delivery for effective implementation.
Collapse
Affiliation(s)
- Chidiebere F. Uchechukwu
- Warwick Medical School, University of Warwick, Coventry, UK
- University of Birmingham, Birmingham, UK
| | | |
Collapse
|
6
|
Ikpe F, Williams T, Orok E, Ikpe A. Antimicrobial resistance: use of phage therapy in the management of resistant infections. Mol Biol Rep 2024; 51:925. [PMID: 39167154 DOI: 10.1007/s11033-024-09870-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
The emergence and increase in antimicrobial resistance (AMR) is now widely recognized as a major public health challenge. Traditional antimicrobial drugs are becoming increasingly ineffective, while the development of new antibiotics is waning. As a result, alternative treatments for infections are garnering increased interest. Among these alternatives, bacteriophages, also known as phages, are gaining renewed attention and are reported to offer a promising solution to alleviate the burden of bacterial infections. This review discusses the current successes of phage therapy (PT) against multidrug-resistant organisms (MDROs), such as Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, and Enterobacter spp. The review also compares the efficacy of PT with that of chemical antibiotics, reporting on its benefits and limitations, while highlighting its impact on the human gut microbiome and immune system. Despite its potential, phage therapy is reported to face challenges such as the narrow antibacterial range, the complexity of developing phage cocktails, and the need for precise dosing and duration protocols. Nevertheless, continued research, improved regulatory frameworks, and increased public awareness are essential to realize its full potential and integration into standard medical practice, paving the way for innovative treatments that can effectively manage infections in an era of rising antimicrobial resistance.
Collapse
Affiliation(s)
- Favour Ikpe
- Department of Pharmaceutical Microbiology and Biotechnology, College of Pharmacy, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Tonfamoworio Williams
- Department of Pharmaceutical Microbiology and Biotechnology, College of Pharmacy, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Edidiong Orok
- Department of Clinical Pharmacy and Public Health, College of Pharmacy, Afe Babalola University, Ado-Ekiti, Nigeria.
| | - Augustine Ikpe
- Department of Sciences, Champion Group of Schools, Okene, Kogi State, Nigeria
| |
Collapse
|
7
|
Azam AH, Sato K, Miyanaga K, Nakamura T, Ojima S, Kondo K, Tamura A, Yamashita W, Tanji Y, Kiga K. Selective bacteriophages reduce the emergence of resistant bacteria in bacteriophage-antibiotic combination therapy. Microbiol Spectr 2024; 12:e0042723. [PMID: 38695573 PMCID: PMC11237537 DOI: 10.1128/spectrum.00427-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/09/2024] [Indexed: 06/06/2024] Open
Abstract
Escherichia coli O157:H7 is a globally important foodborne pathogen with implications for food safety. Antibiotic treatment for O157 may potentially contribute to the exacerbation of hemolytic uremic syndrome, and the increasing prevalence of antibiotic-resistant strains necessitates the development of new treatment strategies. In this study, the bactericidal effects and resistance development of antibiotic and bacteriophage monotherapy were compared with those of combination therapy against O157. Experiments involving continuous exposure of O157 to phages and antibiotics, along with genetic deletion studies, revealed that the deletion of glpT and uhpT significantly increased resistance to fosfomycin. Furthermore, we found that OmpC functions as a receptor for the PP01 phage, which infects O157, and FhuA functions as a receptor for the newly isolated SP15 phage, targeting O157. In the glpT and uhpT deletion mutants, additional deletion in ompC, the receptor for the PP01 phage, increased resistance to fosfomycin. These findings suggest that specific phages may contribute to antibiotic resistance by selecting the emergence of gene mutations responsible for both phage and antibiotic resistance. While combination therapy with phages and antibiotics holds promise for the treatment of bacterial infections, careful consideration of phage selection is necessary.IMPORTANCEThe combination treatment of fosfomycin and bacteriophages against Escherichia coli O157 demonstrated superior bactericidal efficacy compared to monotherapy, effectively suppressing the emergence of resistance. However, mutations selected by phage PP01 led to enhanced resistance not only to the phage but also to fosfomycin. These findings underscore the importance of exercising caution in selecting phages for combination therapy, as resistance selected by specific phages may increase the risk of developing antibiotic resistance.
Collapse
Affiliation(s)
- Aa Haeruman Azam
- Therapeutic Drugs and Vaccine Development Research Center, National Institute of Infectious Diseases, Toyama-ku, Shinjuku, Tokyo, Japan
| | - Koji Sato
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsutacho, Yokohama, Japan
| | - Kazuhiko Miyanaga
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsutacho, Yokohama, Japan
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Shimotsukeshi, Tochigi, Japan
| | - Tomohiro Nakamura
- Therapeutic Drugs and Vaccine Development Research Center, National Institute of Infectious Diseases, Toyama-ku, Shinjuku, Tokyo, Japan
| | - Shinjiro Ojima
- Therapeutic Drugs and Vaccine Development Research Center, National Institute of Infectious Diseases, Toyama-ku, Shinjuku, Tokyo, Japan
| | - Kohei Kondo
- Therapeutic Drugs and Vaccine Development Research Center, National Institute of Infectious Diseases, Toyama-ku, Shinjuku, Tokyo, Japan
| | - Azumi Tamura
- Therapeutic Drugs and Vaccine Development Research Center, National Institute of Infectious Diseases, Toyama-ku, Shinjuku, Tokyo, Japan
| | - Wakana Yamashita
- Therapeutic Drugs and Vaccine Development Research Center, National Institute of Infectious Diseases, Toyama-ku, Shinjuku, Tokyo, Japan
| | - Yasunori Tanji
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsutacho, Yokohama, Japan
| | - Kotaro Kiga
- Therapeutic Drugs and Vaccine Development Research Center, National Institute of Infectious Diseases, Toyama-ku, Shinjuku, Tokyo, Japan
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Shimotsukeshi, Tochigi, Japan
| |
Collapse
|
8
|
Thanaskody K, Natashah FN, Nordin F, Kamarul Zaman WSW, Tye GJ. Designing molecules: directing stem cell differentiation. Front Bioeng Biotechnol 2024; 12:1396405. [PMID: 38803845 PMCID: PMC11129639 DOI: 10.3389/fbioe.2024.1396405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
Stem cells have been widely applied in regenerative and therapeutic medicine for their unique regenerative properties. Although much research has shown their potential, it remains tricky in directing stem cell differentiation. The advancement of genetic and therapeutic technologies, however, has facilitated this issue through development of design molecules. These molecules are designed to overcome the drawbacks previously faced, such as unexpected differentiation outcomes and insufficient migration of endogenous or exogenous MSCs. Here, we introduced aptamer, bacteriophage, and biological vectors as design molecules and described their characteristics. The methods of designing/developing discussed include various Systematic Evolution of Ligands by Exponential Enrichment (SELEX) procedures, in silico approaches, and non-SELEX methods for aptamers, and genetic engineering methods such as homologous recombination, Bacteriophage Recombineering of Electroporated DNA (BRED), Bacteriophage Recombineering with Infectious Particles (BRIP), and genome rebooting for bacteriophage. For biological vectors, methods such as alternate splicing, multiple promoters, internal ribosomal entry site, CRISPR-Cas9 system and Cre recombinase mediated recombination were used to design viral vectors, while non-viral vectors like exosomes are generated through parental cell-based direct engineering. Besides that, we also discussed the pros and cons, and applications of each design molecule in directing stem cell differentiation to illustrate their great potential in stem cells research. Finally, we highlighted some safety and efficacy concerns to be considered for future studies.
Collapse
Affiliation(s)
- Kalaiselvaan Thanaskody
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia
| | - Fajriyah Nur Natashah
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia
| | - Fazlina Nordin
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia
| | - Wan Safwani Wan Kamarul Zaman
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia
- Centre for Innovation in Medical Engineering (CIME), Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Malaysia
| |
Collapse
|
9
|
Guo X, Wang X, Shi J, Ren J, Zeng J, Li J, Li Y. A review and new perspective on oral bacteriophages: manifestations in the ecology of oral diseases. J Oral Microbiol 2024; 16:2344272. [PMID: 38698893 PMCID: PMC11064738 DOI: 10.1080/20002297.2024.2344272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/12/2024] [Indexed: 05/05/2024] Open
Abstract
Objective To explore the manifestations of bacteriophages in different oral disease ecologies, including periodontal diseases, dental caries, endodontic infections, and oral cancer, as well as to propel phage therapy for safer and more effective clinical application in the field of dentistry. Methods In this literature review, we outlined interactions between bacteriophages, bacteria and even oral cells in the oral ecosystem, especially in disease states. We also analyzed the current status and future prospects of phage therapy in the perspective of different oral diseases. Results Various oral bacteriophages targeting at periodontal pathogens as Porphyromonas gingivalis, Fusobacterium nucleatum, Treponema denticola and Aggregatibacter actinomycetemcomitans, cariogenic pathogen Streptococcus mutans, endodontic pathogen Enterococcus faecalis were predicted or isolated, providing promising options for phage therapy. In the realm of oral cancer, aside from displaying tumor antigens or participating in tumor-targeted therapies, phage-like particle vaccines demonstrated the potential to prevent oral infections caused by human papillomaviruses (HPVs) associated with head-and-neck cancers. Conclusion Due to their intricate interactions with bacteria and oral cells, bacteriophages are closely linked to the progression and regression of diverse oral diseases. And there is an urgent need for research to explore additional possibilities of bacteriophages in the management of oral diseases.
Collapse
Affiliation(s)
- Xinyu Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaowan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jia Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiayi Ren
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jumei Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jinquan Li
- State Key Laboratory of Agricultural Microbiology, College of Biomedicine and Health, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Center for Archaeological Science, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Migueletti MR, García Rey J, Micheloni J, Lomanto C, Martelli E, Sánchez G, Colombo JM, Vallecillo LM, Lamagni F, Giusti T, Acosta F, Villagrán F, Gvozdenovich M, Pricco Frakich A, Pianesi T, Tulin G, Mascali FC, Petitti TD, Torres Manno MA, Fusari CM, Buttigliero L, Giordana MF, Gramajo H, Diacovich L, Espariz M, Mussi MA. Complete genome sequence of the Microbacterium foliorum bacteriophage Garey24. Microbiol Resour Announc 2024; 13:e0121523. [PMID: 38315107 DOI: 10.1128/mra.01215-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024] Open
Abstract
In this work, we report the discovery and characterization of Garey24, a bacteriophage that forms medium-size plaques with halo rings isolated from a soil sample in Funes, Argentina. Its 41,522 bp circularly permuted genome contains 63 putative protein-coding genes. Based on gene content similarity, Garey24 was assigned to subcluster EA1.
Collapse
Affiliation(s)
- Matías R Migueletti
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Julieta García Rey
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Josefina Micheloni
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Camila Lomanto
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Elisa Martelli
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Gastón Sánchez
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Julián M Colombo
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Luciano M Vallecillo
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Francisco Lamagni
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Tomás Giusti
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Fabrina Acosta
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Franco Villagrán
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Martín Gvozdenovich
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Abril Pricco Frakich
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Tulio Pianesi
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Gonzalo Tulin
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Florencia C Mascali
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Tomás D Petitti
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Mariano A Torres Manno
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Corina M Fusari
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | | | | | - Hugo Gramajo
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Lautaro Diacovich
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Martín Espariz
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - María Alejandra Mussi
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
11
|
Banar M, Rokaya D, Azizian R, Khurshid Z, Banakar M. Oral bacteriophages: metagenomic clues to interpret microbiomes. PeerJ 2024; 12:e16947. [PMID: 38406289 PMCID: PMC10885796 DOI: 10.7717/peerj.16947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/24/2024] [Indexed: 02/27/2024] Open
Abstract
Bacteriophages are bacterial viruses that are distributed throughout the environment. Lytic phages and prophages in saliva, oral mucosa, and dental plaque interact with the oral microbiota and can change biofilm formation. The interactions between phages and bacteria can be considered a portion of oral metagenomics. The metagenomic profile of the oral microbiome indicates various bacteria. Indeed, there are various phages against these bacteria in the oral cavity. However, some other phages, like phages against Absconditabacteria, Chlamydiae, or Chloroflexi, have not been identified in the oral cavity. This review gives an overview of oral bacteriophage and used for metagenomics. Metagenomics of these phages deals with multi-drug-resistant bacterial plaques (biofilms) in oral cavities and oral infection. Hence, dentists and pharmacologists should know this metagenomic profile to cope with predental and dental infectious diseases.
Collapse
Affiliation(s)
- Maryam Banar
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Dinesh Rokaya
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
| | - Reza Azizian
- Biomedical Innovation and Start-up student association (Biomino), Tehran University of Medical Sciences, Tehran, Iran
- Pediatric Infectious Diseases Research Center (PIDRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Zohaib Khurshid
- Department of Prosthodontics and Implantology, College of Dentistry, King Faisal University, Al-Hofuf, Al Ahsa, Saudi Arabia
- Center of Excellence for Regenerative Dentistry, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Morteza Banakar
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Ranveer SA, Dasriya V, Ahmad MF, Dhillon HS, Samtiya M, Shama E, Anand T, Dhewa T, Chaudhary V, Chaudhary P, Behare P, Ram C, Puniya DV, Khedkar GD, Raposo A, Han H, Puniya AK. Positive and negative aspects of bacteriophages and their immense role in the food chain. NPJ Sci Food 2024; 8:1. [PMID: 38172179 PMCID: PMC10764738 DOI: 10.1038/s41538-023-00245-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
Bacteriophages infect and replicate inside a bacterial host as well as serve as natural bio-control agents. Phages were once viewed as nuisances that caused fermentation failures with cheese-making and other industrial processes, which lead to economic losses, but phages are now increasingly being observed as being promising antimicrobials that can fight against spoilage and pathogenic bacteria. Pathogen-free meals that fulfil industry requirements without synthetic additives are always in demand in the food sector. This study introduces the readers to the history, sources, and biology of bacteriophages, which include their host ranges, absorption mechanisms, lytic profiles, lysogenic profiles, and the influence of external factors on the growth of phages. Phages and their derivatives have emerged as antimicrobial agents, biodetectors, and biofilm controllers, which have been comprehensively discussed in addition to their potential applications in the food and gastrointestinal tract, and they are a feasible and safe option for preventing, treating, and/or eradicating contaminants in various foods and food processing environments. Furthermore, phages and phage-derived lytic proteins can be considered potential antimicrobials in the traditional farm-to-fork context, which include phage-based mixtures and commercially available phage products. This paper concludes with some potential safety concerns that need to be addressed to enable bacteriophage use efficiently.
Collapse
Affiliation(s)
- Soniya Ashok Ranveer
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Vaishali Dasriya
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Science, Jazan University, Jazan, 45142, Saudi Arabia
| | - Harmeet Singh Dhillon
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Mrinal Samtiya
- Department of Nutrition Biology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, 123031, India
| | - Eman Shama
- Department of Clinical Nutrition, College of Applied Medical Science, Jazan University, Jazan, 45142, Saudi Arabia
| | - Taruna Anand
- ICAR-National Research Centre on Equines, Sirsa Road, Hisar, 125001, India
| | - Tejpal Dhewa
- Department of Nutrition Biology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, 123031, India
| | - Vishu Chaudhary
- University Institute of Biotechnology, Chandigarh University, Sahibzada Ajit Singh Nagar, 140413, India
| | - Priya Chaudhary
- Microbiology Department, VCSG Government Institute of Medical Science and Research, Ganganali Srikot, Srinagar Pauri Garhwal, 246174, India
| | - Pradip Behare
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Chand Ram
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Dharun Vijay Puniya
- Centre of One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Gulab D Khedkar
- Paul Hebert Centre for DNA Barcoding and Biodiversity Studies, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande, 376, 1749-024 Lisboa, Portugal.
| | - Heesup Han
- College of Hospitality and Tourism Management, Sejong University, 98 Gunja-Dong, Gwanjin-gu, Seoul, 143-747, Republic of Korea.
| | - Anil Kumar Puniya
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, 132001, India.
| |
Collapse
|
13
|
Lin CY, Murayama T, Futada K, Tanaka S, Masuda Y, Honjoh KI, Miyamoto T. Screening of genes involved in phage-resistance of Escherichia coli and effects of substances interacting with primosomal protein A on the resistant bacteria. J Appl Microbiol 2024; 135:lxad318. [PMID: 38142224 DOI: 10.1093/jambio/lxad318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 12/25/2023]
Abstract
AIMS The study was to identify the genes involved in phage resistance and to develop an effective biocontrol method to improve the lytic activity of phages against foodborne pathogens. METHODS AND RESULTS A total of 3,909 single gene-deletion mutants of Escherichia coli BW25113 from the Keio collection were individually screened for genes involved in phage resistance. Phage S127BCL3 isolated from chicken liver, infecting both E. coli BW25113 and O157: H7, was characterized and used for screening. The 10 gene-deletion mutants showed increased susceptibility to phage S127BCL3. Among them, priA gene-deletion mutant strain showed significant susceptibility to the phages S127BCL3 and T7. Furthermore, we investigated the substances that have been reported to inhibit the function of primosomal protein A (PriA) and were used to confirm increased phage susceptibility in E. coli BW25113 (Parent strain) and O157: H7. CONCLUSION PriA inhibitors at a low concentration showed combined effects with phage against E. coli O157: H7 and delayed the regrowth rate of phage-resistant cells.
Collapse
Affiliation(s)
- Chen-Yu Lin
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Tomoka Murayama
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Koshiro Futada
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Shota Tanaka
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Yoshimitsu Masuda
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Ken-Ichi Honjoh
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Takahisa Miyamoto
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
14
|
Garvey M. Medical Device-Associated Healthcare Infections: Sterilization and the Potential of Novel Biological Approaches to Ensure Patient Safety. Int J Mol Sci 2023; 25:201. [PMID: 38203372 PMCID: PMC10778788 DOI: 10.3390/ijms25010201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Healthcare-associated infections caused by multi-drug-resistant pathogens are increasing globally, and current antimicrobial options have limited efficacy against these robust species. The WHO details the critically important bacterial and fungal species that are often associated with medical device HAIs. The effective sterilization of medical devices plays a key role in preventing infectious disease morbidity and mortality. A lack of adherence to protocol and limitations associated with each sterilization modality, however, allows for the incidence of disease. Furthermore, issues relating to carcinogenic emissions from ethylene oxide gas (EtO) have motivated the EPA to propose limiting EtO use or seeking alternative sterilization methods for medical devices. The Food and Drug Administration supports the sterilization of healthcare products using low-temperature VH2O2 as an alternative to EtO. With advances in biomaterial and medical devices and the increasing use of combination products, current sterilization modalities are becoming limited. Novel approaches to disinfection and sterilization of medical devices, biomaterials, and therapeutics are warranted to safeguard public health. Bacteriophages, endolysins, and antimicrobial peptides are considered promising options for the prophylactic and meta-phylactic control of infectious diseases. This timely review discusses the application of these biologics as antimicrobial agents against critically important WHO pathogens, including ESKAPE bacterial species.
Collapse
Affiliation(s)
- Mary Garvey
- Department of Life Science, Atlantic Technological University, F91 YW50 Sligo, Ireland;
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Atlantic Technological University, F91 YW50 Sligo, Ireland
| |
Collapse
|
15
|
Nguyen HM, Watanabe S, Sharmin S, Kawaguchi T, Tan XE, Wannigama DL, Cui L. RNA and Single-Stranded DNA Phages: Unveiling the Promise from the Underexplored World of Viruses. Int J Mol Sci 2023; 24:17029. [PMID: 38069353 PMCID: PMC10707117 DOI: 10.3390/ijms242317029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
RNA and single-stranded DNA (ssDNA) phages make up an understudied subset of bacteriophages that have been rapidly expanding in the last decade thanks to advancements in metaviromics. Since their discovery, applications of genetic engineering to ssDNA and RNA phages have revealed their immense potential for diverse applications in healthcare and biotechnology. In this review, we explore the past and present applications of this underexplored group of phages, particularly their current usage as therapeutic agents against multidrug-resistant bacteria. We also discuss engineering techniques such as recombinant expression, CRISPR/Cas-based genome editing, and synthetic rebooting of phage-like particles for their role in tailoring phages for disease treatment, imaging, biomaterial development, and delivery systems. Recent breakthroughs in RNA phage engineering techniques are especially highlighted. We conclude with a perspective on challenges and future prospects, emphasizing the untapped diversity of ssDNA and RNA phages and their potential to revolutionize biotechnology and medicine.
Collapse
Affiliation(s)
- Huong Minh Nguyen
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke 329-0498, Tochigi, Japan; (H.M.N.); (S.W.); (S.S.); (T.K.); (X.-E.T.)
| | - Shinya Watanabe
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke 329-0498, Tochigi, Japan; (H.M.N.); (S.W.); (S.S.); (T.K.); (X.-E.T.)
| | - Sultana Sharmin
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke 329-0498, Tochigi, Japan; (H.M.N.); (S.W.); (S.S.); (T.K.); (X.-E.T.)
| | - Tomofumi Kawaguchi
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke 329-0498, Tochigi, Japan; (H.M.N.); (S.W.); (S.S.); (T.K.); (X.-E.T.)
| | - Xin-Ee Tan
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke 329-0498, Tochigi, Japan; (H.M.N.); (S.W.); (S.S.); (T.K.); (X.-E.T.)
| | - Dhammika Leshan Wannigama
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata 990-2292, Yamagata, Japan;
| | - Longzhu Cui
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke 329-0498, Tochigi, Japan; (H.M.N.); (S.W.); (S.S.); (T.K.); (X.-E.T.)
| |
Collapse
|
16
|
Fadaie M, Dianat-Moghadam H, Ghafouri E, Naderi S, Darvishali MH, Ghovvati M, Khanahmad H, Boshtam M, Makvandi P. Unraveling the potential of M13 phages in biomedicine: Advancing drug nanodelivery and gene therapy. ENVIRONMENTAL RESEARCH 2023; 238:117132. [PMID: 37714365 DOI: 10.1016/j.envres.2023.117132] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
M13 phages possessing filamentous phage genomes offer the benefits of selective display of molecular moieties and delivery of therapeutic agent payloads with a tolerable safety profile. M13 phage-displayed technology for resembling antigen portions led to the discovery of mimetic epitopes that applied to antibody-based therapy and could be useful in the design of anticancer vaccines. To date, the excremental experiences have engaged the M13 phage in the development of innovative biosensors for detecting biospecies, biomolecules, and human cells with an acceptable limit of detection. Addressing the emergence of antibiotic-resistant bacteria, M13 phages are potent for packaging the programmed gene editing tools, such as CRISPR/Cas, to target multiple antimicrobial genes. Moreover, their display potential in combination with nanoparticles inspires new approaches for engineering targeted theragnostic platforms targeting multiple cellular biomarkers in vivo. In this review, we present the available data on optimizing the use of bacteriophages with a focus on the to date experiences with M13 phages, either as monoagent or as part of combination regimens in the practices of biosensors, vaccines, bactericidal, modeling of specific antigen epitopes, and phage-guided nanoparticles for drug delivery systems. Despite increasing research interest, a deep understanding of the underlying biological and genetic behaviors of M13 phages is needed to enable the full potential of these bioagents in biomedicine, as discussed here. We also discuss some of the challenges that have thus far limited the development and practical marketing of M13 phages.
Collapse
Affiliation(s)
- Mahmood Fadaie
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hassan Dianat-Moghadam
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Pediatric Inherited Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Ghafouri
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shamsi Naderi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Hossein Darvishali
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahsa Ghovvati
- Department of Radiological Sciences, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Maryam Boshtam
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, Zhejiang, China.
| |
Collapse
|
17
|
Oromí-Bosch A, Antani JD, Turner PE. Developing Phage Therapy That Overcomes the Evolution of Bacterial Resistance. Annu Rev Virol 2023; 10:503-524. [PMID: 37268007 DOI: 10.1146/annurev-virology-012423-110530] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The global rise of antibiotic resistance in bacterial pathogens and the waning efficacy of antibiotics urge consideration of alternative antimicrobial strategies. Phage therapy is a classic approach where bacteriophages (bacteria-specific viruses) are used against bacterial infections, with many recent successes in personalized medicine treatment of intractable infections. However, a perpetual challenge for developing generalized phage therapy is the expectation that viruses will exert selection for target bacteria to deploy defenses against virus attack, causing evolution of phage resistance during patient treatment. Here we review the two main complementary strategies for mitigating bacterial resistance in phage therapy: minimizing the ability for bacterial populations to evolve phage resistance and driving (steering) evolution of phage-resistant bacteria toward clinically favorable outcomes. We discuss future research directions that might further address the phage-resistance problem, to foster widespread development and deployment of therapeutic phage strategies that outsmart evolved bacterial resistance in clinical settings.
Collapse
Affiliation(s)
| | - Jyot D Antani
- Department of Ecology and Evolutionary Biology, Center for Phage Biology & Therapy, and Quantitative Biology Institute, Yale University, New Haven, Connecticut, USA;
| | - Paul E Turner
- Department of Ecology and Evolutionary Biology, Center for Phage Biology & Therapy, and Quantitative Biology Institute, Yale University, New Haven, Connecticut, USA;
- Program in Microbiology, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
18
|
Usman SS, Uba AI, Christina E. Bacteriophage genome engineering for phage therapy to combat bacterial antimicrobial resistance as an alternative to antibiotics. Mol Biol Rep 2023; 50:7055-7067. [PMID: 37392288 DOI: 10.1007/s11033-023-08557-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/30/2023] [Indexed: 07/03/2023]
Abstract
Bacteriophages (phages) are viruses that mainly infect bacteria and are ubiquitously distributed in nature, especially to their host. Phage engineering involves nucleic acids manipulation of phage genome for antimicrobial activity directed against pathogens through the applications of molecular biology techniques such as synthetic biology methods, homologous recombination, CRISPY-BRED and CRISPY-BRIP recombineering, rebooting phage-based engineering, and targeted nucleases including CRISPR/Cas9, zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs). Management of bacteria is widely achieved using antibiotics whose mechanism of action has been shown to target both the genetic dogma and the metabolism of pathogens. However, the overuse of antibiotics has caused the emergence of multidrug-resistant (MDR) bacteria which account for nearly 5 million deaths as of 2019 thereby posing threats to the public health sector, particularly by 2050. Lytic phages have drawn attention as a strong alternative to antibiotics owing to the promising efficacy and safety of phage therapy in various models in vivo and human studies. Therefore, harnessing phage genome engineering methods, particularly CRISPR/Cas9 to overcome the limitations such as phage narrow host range, phage resistance or any potential eukaryotic immune response for phage-based enzymes/proteins therapy may designate phage therapy as a strong alternative to antibiotics for combatting bacterial antimicrobial resistance (AMR). Here, the current trends and progress in phage genome engineering techniques and phage therapy are reviewed.
Collapse
Affiliation(s)
- Sani Sharif Usman
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, 144401, Punjab, India
- Department of Biological Sciences, Faculty of Science, Federal University of Kashere, P.M.B. 0182, Gombe, Nigeria
| | - Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, 34537, Istanbul, Türkiye
| | - Evangeline Christina
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, 144401, Punjab, India.
| |
Collapse
|
19
|
Alaoui Mdarhri H, Benmessaoud R, Yacoubi H, Seffar L, Guennouni Assimi H, Hamam M, Boussettine R, Filali-Ansari N, Lahlou FA, Diawara I, Ennaji MM, Kettani-Halabi M. Alternatives Therapeutic Approaches to Conventional Antibiotics: Advantages, Limitations and Potential Application in Medicine. Antibiotics (Basel) 2022; 11:1826. [PMID: 36551487 PMCID: PMC9774722 DOI: 10.3390/antibiotics11121826] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 12/23/2022] Open
Abstract
Resistance to antimicrobials and particularly multidrug resistance is one of the greatest challenges in the health system nowadays. The continual increase in the rates of antimicrobial resistance worldwide boosted by the ongoing COVID-19 pandemic poses a major public health threat. Different approaches have been employed to minimize the effect of resistance and control this threat, but the question still lingers as to their safety and efficiency. In this context, new anti-infectious approaches against multidrug resistance are being examined. Use of new antibiotics and their combination with new β-lactamase inhibitors, phage therapy, antimicrobial peptides, nanoparticles, and antisense antimicrobial therapeutics are considered as one such promising approach for overcoming bacterial resistance. In this review, we provide insights into these emerging alternative therapies that are currently being evaluated and which may be developed in the future to break the progression of antimicrobial resistance. We focus on their advantages and limitations and potential application in medicine. We further highlight the importance of the combination therapy approach, wherein two or more therapies are used in combination in order to more effectively combat infectious disease and increasing access to quality healthcare. These advances could give an alternate solution to overcome antimicrobial drug resistance. We eventually hope to provide useful information for clinicians who are seeking solutions to the problems caused by antimicrobial resistance.
Collapse
Affiliation(s)
- Hiba Alaoui Mdarhri
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
- National Reference Laboratory, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| | - Rachid Benmessaoud
- National Reference Laboratory, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| | - Houda Yacoubi
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
- National Reference Laboratory, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| | - Lina Seffar
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
- National Reference Laboratory, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| | - Houda Guennouni Assimi
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
- National Reference Laboratory, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| | - Mouhsine Hamam
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
- National Reference Laboratory, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| | - Rihabe Boussettine
- Laboratory of Virology, Oncology, Biosciences, Environment and New Energies, Faculty of Sciences and Techniques Mohammedia, University Hassan II of Casablanca, Casablanca 28 806, Morocco
| | - Najoie Filali-Ansari
- Laboratory of Virology, Oncology, Biosciences, Environment and New Energies, Faculty of Sciences and Techniques Mohammedia, University Hassan II of Casablanca, Casablanca 28 806, Morocco
| | - Fatima Azzahra Lahlou
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
- National Reference Laboratory, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| | - Idrissa Diawara
- Department of Biological Engineering, Higher Institute of Bioscience and Biotechnology, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| | - Moulay Mustapha Ennaji
- Laboratory of Virology, Oncology, Biosciences, Environment and New Energies, Faculty of Sciences and Techniques Mohammedia, University Hassan II of Casablanca, Casablanca 28 806, Morocco
| | - Mohamed Kettani-Halabi
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
- National Reference Laboratory, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| |
Collapse
|
20
|
Complete Genome Sequence and Characteristics of Mycobacteriophage IkeLoa. Microbiol Resour Announc 2022; 11:e0098522. [PMID: 36287013 PMCID: PMC9670876 DOI: 10.1128/mra.00985-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mycobacteriophage IkeLoa is a lytic myovirus. It has a circularly permuted 155,280-bp genome containing 233 putative protein-coding genes, 32 tRNA genes, one tmRNA gene, and 64.7% G+C content. The RNA genes are distributed in five clusters across the genome. Only 28% of IkeLoa's protein-coding genes can be assigned functions.
Collapse
|
21
|
Kiga K. [RNA functions in bacterial infections and its application to antimicrobial therapy]. Nihon Saikingaku Zasshi 2022; 77:139-144. [PMID: 36351608 DOI: 10.3412/jsb.77.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In the concept of central dogma (RNA is transcribed from DNA to produce proteins), RNA was thought to be merely an intermediary for genetic information to synthesize proteins from DNA. Since the discovery of RNA interference in 2000, research on RNA has progressed remarkably, especially in mammals. On the other hand, the role of RNA in bacterial infections was largely unknown. At that time, we started research on RNA and bacterial infection and revealed that miR-210, a small RNA in the gastric epithelial cells, is involved in gastric diseases caused by Helicobacter pylori in-fection. Furthermore, we have successfully developed sequence-specific antimicrobials by loading CRISPR-Cas13, an RNA-targeting CRISPR-Cas, on bacteriophage. The constructed antimicrobials were effective against at least Escherichia coli and Staphylococcus aureus. In this paper, we would like to introduce the importance of RNA in bacteriology.
Collapse
Affiliation(s)
- Kotaro Kiga
- Laboratory of Drug Design, Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases
| |
Collapse
|
22
|
Veeranarayanan S, Azam AH, Kiga K, Watanabe S, Cui L. Bacteriophages as Solid Tumor Theragnostic Agents. Int J Mol Sci 2021; 23:402. [PMID: 35008840 PMCID: PMC8745063 DOI: 10.3390/ijms23010402] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 12/16/2022] Open
Abstract
Cancer, especially the solid tumor sub-set, poses considerable challenges to modern medicine owing to the unique physiological characteristics and substantial variations in each tumor's microenvironmental niche fingerprints. Though there are many treatment methods available to treat solid tumors, still a considerable loss of life happens, due to the limitation of treatment options and the outcomes of ineffective treatments. Cancer cells evolve with chemo- or radiation-treatment strategies and later show adaptive behavior, leading to failed treatment. These challenges demand tailored and individually apt personalized treatment methods. Bacteriophages (or phages) and phage-based theragnostic vectors are gaining attention in the field of modern cancer medicine, beyond their bactericidal ability. With the invention of the latest techniques to fine-tune phages, such as in the field of genetic engineering, synthetic assembly methods, phage display, and chemical modifications, noteworthy progress in phage vector research for safe cancer application has been realized, including use in pre-clinical studies. Herein, we discuss the distinct fingerprints of solid tumor physiology and the potential for bacteriophage vectors to exploit specific tumor features for improvised tumor theragnostic applications.
Collapse
Affiliation(s)
| | | | | | | | - Longzhu Cui
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke-shi 3290498, Japan; (S.V.); (A.H.A.); (K.K.); (S.W.)
| |
Collapse
|
23
|
Bhargava K, Nath G, Bhargava A, Aseri GK, Jain N. Phage therapeutics: from promises to practices and prospectives. Appl Microbiol Biotechnol 2021; 105:9047-9067. [PMID: 34821965 PMCID: PMC8852341 DOI: 10.1007/s00253-021-11695-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 01/09/2023]
Abstract
The rise in multi-drug resistant bacteria and the inability to develop novel antibacterial agents limits our arsenal against infectious diseases. Antibiotic resistance is a global issue requiring an immediate solution, including the development of new antibiotic molecules and other alternative modes of therapy. This article highlights the mechanism of bacteriophage treatment that makes it a real solution for multidrug-resistant infectious diseases. Several case reports identified phage therapy as a potential solution to the emerging challenge of multi-drug resistance. Bacteriophages, unlike antibiotics, have special features, such as host specificity and do not impact other commensals. A new outlook has also arisen with recent advancements in the understanding of phage immunobiology, where phages are repurposed against both bacterial and viral infections. Thus, the potential possibility of phages in COVID-19 patients with secondary bacterial infections has been briefly elucidated. However, significant obstacles that need to be addressed are to design better clinical studies that may contribute to the widespread use of bacteriophage therapy against multi-drug resistant pathogens. In conclusion, antibacterial agents can be used with bacteriophages, i.e. bacteriophage-antibiotic combination therapy, or they can be administered alone in cases when antibiotics are ineffective.Key points• AMR, a consequence of antibiotic generated menace globally, has led to the resurgence of phage therapy as an effective and sustainable solution without any side effects and high specificity against refractory MDR bacterial infections.• Bacteriophages have fewer adverse reactions and can thus be used as monotherapy as well as in conjunction with antibiotics.• In the context of the COVID-19 pandemic, phage therapy may be a viable option.
Collapse
Affiliation(s)
- Kanika Bhargava
- Amity Institute of Microbial Technology, Amity University Rajasthan, Jaipur, 303 002 India
- Department of Microbiology, IMS, Banaras Hindu University, Varanasi, 221005 India
| | - Gopal Nath
- Department of Microbiology, IMS, Banaras Hindu University, Varanasi, 221005 India
| | - Amit Bhargava
- Department of Medicine, Hayes Memorial Hospital, SHUATS, Allahabad, 211007 India
| | - G. K. Aseri
- Amity Institute of Microbial Technology, Amity University Rajasthan, Jaipur, 303 002 India
| | - Neelam Jain
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303 002 India
| |
Collapse
|