1
|
Rolim PADS, Catanoze IA, Fracasso JAR, Barbosa DB, dos Santos L, Ximenes VF, Guiotti AM. Antifungal, Antioxidant, and Irritative Potential of Citronella Oil (Cymbopogon nardus) Associated with Phenethyl Ester of Caffeic Acid (CAPE). COSMETICS 2024; 11:162. [DOI: 10.3390/cosmetics11050162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
The present study aimed to analyze the antifungal, antioxidant, and irritant potential of citronella oil, both isolated and combined with caffeic acid phenethyl ester (CAPE), for topical oral candidiasis. The antioxidant potential was evaluated using two methods, the DPPH test and the reducing power test (FRAP), while the irritant potential of the solutions was assessed through the hen’s egg chorioallantoic membrane test (HET-CAM). The DPPH test (IC50) values for the CITRO III + CAPE III combination were 32 ± 9 mg/mL, and for isolated CAPE, 13 ± 3 mg/mL. The results from the FRAP method revealed a low iron-reducing power for the combination of 1.25 mg/mL of citronella and 0.0775 mg/mL of CAPE (CITRO III + CAPE III), showing no significant difference compared to the isolated solution of 0.15 mg/mL of CAPE. The antibacterial activity of CAPE and isolated citronella in vitro against microorganisms was evaluated using two methods: microdilution and biofilm assay. The results showed that the MIC and MFC values were 0.5 mg/mL for citronella at both tested times (24 h and 48 h). For CAPE, the MFC values were 0.031 mg/mL. For the biofilm assay, the isolated compounds and combinations at 1 min and 6 h showed significantly different results from the controls (p < 0.05). Furthermore, the HET-CAM results demonstrated the absence of irritability. Based on these premises, the antifungal and antioxidant actions, and absence of irritability were proven. Moreover, this work presents a natural antifungal of interest to the pharmaceutical industry.
Collapse
Affiliation(s)
- Pedro Antônio de Souza Rolim
- School of Dentistry, São Paulo State University (UNESP), 1193, José Bonifacio Street, Araçatuba 16015-050, Brazil
| | - Isabela Araguê Catanoze
- School of Dentistry, São Paulo State University (UNESP), 1193, José Bonifacio Street, Araçatuba 16015-050, Brazil
| | | | - Debora Barros Barbosa
- School of Dentistry, São Paulo State University (UNESP), 1193, José Bonifacio Street, Araçatuba 16015-050, Brazil
| | - Lucineia dos Santos
- Faculty of Sciences and Letters, São Paulo State University (UNESP), 2100, Dom Antonio Avenue, Assis 19806-900, Brazil
| | - Valdecir Farias Ximenes
- School of Sciences, São Paulo State University (UNESP), 14-01, Eng. Luiz Edmundo Carrijo Coube Avenue, Bauru 17033-360, Brazil
| | - Aimée Maria Guiotti
- School of Dentistry, São Paulo State University (UNESP), 1193, José Bonifacio Street, Araçatuba 16015-050, Brazil
| |
Collapse
|
2
|
Er-Rahmani S, Errabiti B, Matencio A, Trotta F, Latrache H, Koraichi SI, Elabed S. Plant-derived bioactive compounds for the inhibition of biofilm formation: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:34859-34880. [PMID: 38744766 DOI: 10.1007/s11356-024-33532-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 04/27/2024] [Indexed: 05/16/2024]
Abstract
Biofilm formation is a widespread phenomenon that impacts different fields, including the food industry, agriculture, health care and the environment. Accordingly, there is a serious need for new methods of managing the problem of biofilm formation. Natural products have historically been a rich source of varied compounds with a wide variety of biological functions, including antibiofilm agents. In this review, we critically highlight and discuss the recent progress in understanding the antibiofilm effects of several bioactive compounds isolated from different plants, and in elucidating the underlying mechanisms of action and the factors influencing their adhesion. The literature shows that bioactive compounds have promising antibiofilm potential against both Gram-negative and Gram-positive bacterial and fungal strains, via several mechanisms of action, such as suppressing the formation of the polymer matrix, limiting O2 consumption, inhibiting microbial DNA replication, decreasing hydrophobicity of cell surfaces and blocking the quorum sensing network. This antibiofilm activity is influenced by several environmental factors, such as nutritional cues, pH values, O2 availability and temperature. This review demonstrates that several bioactive compounds could mitigate the problem of biofilm production. However, toxicological assessment and pharmacokinetic investigations of these molecules are strongly required to validate their safety.
Collapse
Affiliation(s)
- Sara Er-Rahmani
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Sciences and Technologies, Sidi Mohamed Ben Abdellah University of Fez, Imouzzer Road, 30000, Fez, Morocco
- Department of Chemistry, Nanomaterials for Industry and Sustainability Centre (NIS Centre), Università Di Torino, 10125, Turin, Italy
| | - Badr Errabiti
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Sciences and Technologies, Sidi Mohamed Ben Abdellah University of Fez, Imouzzer Road, 30000, Fez, Morocco
| | - Adrián Matencio
- Department of Chemistry, Nanomaterials for Industry and Sustainability Centre (NIS Centre), Università Di Torino, 10125, Turin, Italy
| | - Francesco Trotta
- Department of Chemistry, Nanomaterials for Industry and Sustainability Centre (NIS Centre), Università Di Torino, 10125, Turin, Italy
| | - Hassan Latrache
- Laboratory of Bioprocesses and Bio-Interfaces, Faculty of Science and Technology, Sultan Moulay Slimane University, 23000, Beni Mellal, Morocco
| | - Saad Ibnsouda Koraichi
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Sciences and Technologies, Sidi Mohamed Ben Abdellah University of Fez, Imouzzer Road, 30000, Fez, Morocco
| | - Soumya Elabed
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Sciences and Technologies, Sidi Mohamed Ben Abdellah University of Fez, Imouzzer Road, 30000, Fez, Morocco.
| |
Collapse
|
3
|
Tsopmene UJ, Tokam Kuaté CR, Kayoka-Kabongo PN, Bisso BN, Metopa A, Mofor CT, Dzoyem JP. Antibiofilm Activity of Curcumin and Piperine and Their Synergistic Effects with Antifungals against Candida albicans Clinical Isolates. SCIENTIFICA 2024; 2024:2025557. [PMID: 38449801 PMCID: PMC10917476 DOI: 10.1155/2024/2025557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 03/08/2024]
Abstract
Background Candidiasis is the common name for diseases caused by yeast of the genus Candida. Candida albicans is one of the most implicated species in superficial and invasive candidiasis. Antifungals, polyenes, and azoles have been used to treat candidiasis. However, due to the development of antifungal resistance, research of natural substances with potential antifungal effects at low concentrations or combined is also a possibility. Methods The broth microdilution method was used to evaluate the antifungal activity. The biofilm formation was assessed using the microtiter plate method. The antibiofilm activities were assessed using micro plaque tetrazolium salt assay (MTT). The combination effect of antifungal with natural substances was made using the checkerboard method. Results Among our isolates, clotrimazole was the most resistant, but amphotericin B was the most effective antifungal. The biofilm was formed by all isolates of C. albicans. Curcumin and piperine displayed antibiofilm activity with minimum biofilm inhibitory concentration (MBIC) and minimum eradicating concentration (MBEC) ranging from 64 to 1024 μg/mL and 256 to 2048 μg/mL. In combination, piperine presented double synergistic effects compared to curcumin with all antifungals tested. Curcumin shows more synergistic effect when combined with polyenes than with azoles. However, piperine shows a more synergistic effect when combined with azoles compared to polyenes. Conclusion C. albicans was susceptible to curcumin and piperine both on planktonic cells and biofilm. The combination of curcumin and piperine with antifungals has shown synergistic effects against multiresistant clinical isolates of Candida albicans representing an alternative drug research for the treatment of clinical candidiasis.
Collapse
Affiliation(s)
- Ulrich Joël Tsopmene
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | | | - Prudence Ngalula Kayoka-Kabongo
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Florida, South Africa
| | - Borel Ndezo Bisso
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Anisel Metopa
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Clautilde Teugwa Mofor
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Jean Paul Dzoyem
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| |
Collapse
|
4
|
Yolin Angel PASR, Jeyakumar P, Jasmin Suriya AR, Sheena A, Karuppiah P, Periyasami G, Stalin A, Murugan K. Topical antifungal keratitis therapeutic potential of Clitoria ternatea Linn. flower extract: phytochemical profiling, in silico modelling, and in vitro biological activity assessment. Front Microbiol 2024; 15:1343988. [PMID: 38328419 PMCID: PMC10849212 DOI: 10.3389/fmicb.2024.1343988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/04/2024] [Indexed: 02/09/2024] Open
Abstract
Introduction Fungal keratitis (FK) poses a severe threat to vision, potentially leading to blindness if not promptly addressed. Clitoria ternatea flower extracts have a history of use in Ayurvedic and Indian traditional medicines, particularly for treating eye ailments. This study investigates the antifungal and antibiofilm effects of Clitoria ternatea flower extracts on the FK clinical isolate Coniochaeta hoffmannii. Structural details and key compound identification were analysed through FTIR and GC-MS. Methods The minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of Clitoria ternatea flower extracts were determined using broth dilution and well plate techniques. Biofilm inhibitory activity was assessed through microscopic evaluation, while anti-irritant and cytotoxic properties were evaluated using CAE-EI and MTT assays. Through GC-MS and FT-IR analysis the compounds dissolved in the extract and their functional group were studied, and their toxicity screening and pharmacokinetic prediction were conducted in silico. Subsequently, compounds with high corneal permeability were further identified, and molecular docking and simulation studies at 150 ns were used to investigate their interactions with fungal virulence factors and human inflammatory proteins. Results and Discussion At a concentration of 250 µg/mL, the Clitoria ternatea flower extract displayed effective biofilm inhibition. MIC and MFC values were determined as 500 and 1000 µg/mL, respectively. CAE-EI and MTT assays indicated no significant irritant and cytotoxic effects up to a concentration of 3 mg/mL. Compounds like 9,9-dimethoxybicyclo[3.3.1]nonane-2,4-dione showed high corneal permeability with strong and stable interactions with fungal virulence cellobiose dehydrogenase, endo β 1,4 xylanase, and glucanase, as well as corneal inflammation-associated human TNF-α and Interleukin IL-1b protein targets. The findings indicate that extracts from C. ternatea flowers could be formulated for an effective and safe alternative for developing new topical FK therapeutics.
Collapse
Affiliation(s)
| | - Palanisamy Jeyakumar
- Biofilm and Bioprocess Laboratory, Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India
| | - Arul Raj Jasmin Suriya
- Biofilm and Bioprocess Laboratory, Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India
| | - Aliyas Sheena
- Biofilm and Bioprocess Laboratory, Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India
| | - Ponmurugan Karuppiah
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Antony Stalin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Kasi Murugan
- Biofilm and Bioprocess Laboratory, Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India
| |
Collapse
|
5
|
Ali A, Zahra A, Kamthan M, Husain FM, Albalawi T, Zubair M, Alatawy R, Abid M, Noorani MS. Microbial Biofilms: Applications, Clinical Consequences, and Alternative Therapies. Microorganisms 2023; 11:1934. [PMID: 37630494 PMCID: PMC10459820 DOI: 10.3390/microorganisms11081934] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 08/27/2023] Open
Abstract
Biofilms are complex communities of microorganisms that grow on surfaces and are embedded in a matrix of extracellular polymeric substances. These are prevalent in various natural and man-made environments, ranging from industrial settings to medical devices, where they can have both positive and negative impacts. This review explores the diverse applications of microbial biofilms, their clinical consequences, and alternative therapies targeting these resilient structures. We have discussed beneficial applications of microbial biofilms, including their role in wastewater treatment, bioremediation, food industries, agriculture, and biotechnology. Additionally, we have highlighted the mechanisms of biofilm formation and clinical consequences of biofilms in the context of human health. We have also focused on the association of biofilms with antibiotic resistance, chronic infections, and medical device-related infections. To overcome these challenges, alternative therapeutic strategies are explored. The review examines the potential of various antimicrobial agents, such as antimicrobial peptides, quorum-sensing inhibitors, phytoextracts, and nanoparticles, in targeting biofilms. Furthermore, we highlight the future directions for research in this area and the potential of phytotherapy for the prevention and treatment of biofilm-related infections in clinical settings.
Collapse
Affiliation(s)
- Asghar Ali
- Clinical Biochemistry Lab, D/O Biochemistry, School of Chemical and Lifesciences, Jamia Hamdard, New Delhi 110062, India;
| | - Andaleeb Zahra
- Department of Botany, School of Chemical and Lifesciences, Jamia Hamdard, New Delhi 110062, India;
| | - Mohan Kamthan
- Clinical Biochemistry Lab, D/O Biochemistry, School of Chemical and Lifesciences, Jamia Hamdard, New Delhi 110062, India;
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Thamer Albalawi
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Mohammad Zubair
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia; (M.Z.); (R.A.)
| | - Roba Alatawy
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia; (M.Z.); (R.A.)
| | - Mohammad Abid
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India;
| | - Md Salik Noorani
- Department of Botany, School of Chemical and Lifesciences, Jamia Hamdard, New Delhi 110062, India;
| |
Collapse
|
6
|
Mohanasundaram P, Saral AM. Phytochemical Screening, Antibacterial, Antifungal, Anti-Biofilm and Antioxidant Activity of Azadiracta Indica A. Juss. Flowers. Chem Biodivers 2023; 20:e202201049. [PMID: 36810960 DOI: 10.1002/cbdv.202201049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 02/24/2023]
Abstract
The present study involves investigation of Azadiracta Indica flowers with respect to its pharmacognostic properties, phytochemical screening, and its application as anti-oxidant, anti-biofilm, and anti-microbial agent. The Pharmacognostic characteristics were evaluated with respect to moisture content, total ash content, acid, and water-soluble ash content, swelling index, foaming index, and metal content. The macro and micronutrient content of the crude drug was estimated by AAS and Flame photometric methods and it gives the quantitative estimation of minerals, where calcium is present in abundance (88.64 mg/L). Soxhlet extraction was carried out in the increasing order of polarity of the solvent viz Petroleum Ether (PE), Acetone (AC), and Hydroalcohol (20 %) (HA) to extract the bioactive compounds. The characterization of the bioactive compounds of all the three extract have been carried out using gcms and lcms. The presence of 13 major compounds have been identified in PE extract and 8 compounds in AC extract using gcms studies. The HA extract is found to contain polyphenols, flavanoids, and glycosides. The antioxidant activity of the extracts was evaluated by DPPH, FRAP, and Phosphomolybdenum assay. This reveals that HA extract shows good scavenging activity than PE and AC extracts which is well correlated with the bioactive compounds, especially phenols which are present as a major component in the extract. The anti-microbial activity was investigated via Agar well diffusion method for all the extracts. Among all the extracts HA extract shows good antibacterial activity with MIC of 25 μg/mL and AC extract shows good anti-fungal activity with MIC of 25 μg/mL. The antibiofilm assay confirms that the HA extract shows good biofilm inhibition about 94 % among other extracts when tested on human pathogens. The results confirm that the HA extract of A. Indica flowers will be an excellent source of natural anti-oxidant and also antimicrobial agents. This paves the way for its potential uses in herbal product formulation.
Collapse
Affiliation(s)
| | - A Mary Saral
- Department of Chemistry, Vellore Institute of Technology, Vellore, India -, 632 014
| |
Collapse
|
7
|
Courric E, Brinvilier D, Couderc P, Ponce-Mora A, Méril-Mamert V, Sylvestre M, Pelage JH, Vaillant J, Rousteau A, Bejarano E, Cebrian-Torrejon G. Medicinal Plants and Plant-Based Remedies in Grande-Terre: An Ethnopharmacological Approach. PLANTS (BASEL, SWITZERLAND) 2023; 12:654. [PMID: 36771738 PMCID: PMC9919082 DOI: 10.3390/plants12030654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
The island of Grande-Terre is a French overseas region that belongs to the Guadeloupean archipelago, a biodiversity hotspot with unique flora. Herbal medicine is widely used in the island for therapeutical purposes; however, there is a significant knowledge gap in the records relating to medicinal plants and their associated uses. Ethnobotanical survey methodology using quantitative parameters (informant consensus factor, species use value, relative frequency of citation, frequency use of a treatment and plant for an ailment) provided insights into the traditional medicinal use of a given plant. Ninety-six different plant species distributed among 56 families were identified and 523 remedies were documented in the survey. After data filtering, 22 plants species were associated with 182 remedies. The most frequent plant families were Poaceae, Myrtaceae, Cucurbitaceae and Rubiaceae. Aerial parts of these plants were the most common parts of the plant used for the remedies and the most frequent mode of administration was oral ingestion. This study highlights a valuable traditional knowledge of folklore medicine and helps to document and preserve the association of a plant with-and its use frequency for-a given ailment. These findings might be the starting point for the identification of biologically active phytocompounds to fight common health debilities.
Collapse
Affiliation(s)
- Elisa Courric
- COVACHIM-M2E Laboratory EA 3592, Department of Chemistry, University of the French West Indies, Fouillole Campus, UFR SEN, CEDEX, 97157 Pointe-à-Pitre, France
| | - David Brinvilier
- COVACHIM-M2E Laboratory EA 3592, Department of Chemistry, University of the French West Indies, Fouillole Campus, UFR SEN, CEDEX, 97157 Pointe-à-Pitre, France
| | - Petra Couderc
- COVACHIM-M2E Laboratory EA 3592, Department of Chemistry, University of the French West Indies, Fouillole Campus, UFR SEN, CEDEX, 97157 Pointe-à-Pitre, France
| | - Alejandro Ponce-Mora
- Department of Biomedical Sciences, School of Health Sciences and Veterinary, Universidad Cardenal Herrera-CEU, CEU Universities, 46113 Moncada, Spain
| | - Vanessa Méril-Mamert
- COVACHIM-M2E Laboratory EA 3592, Department of Chemistry, University of the French West Indies, Fouillole Campus, UFR SEN, CEDEX, 97157 Pointe-à-Pitre, France
| | - Muriel Sylvestre
- COVACHIM-M2E Laboratory EA 3592, Department of Chemistry, University of the French West Indies, Fouillole Campus, UFR SEN, CEDEX, 97157 Pointe-à-Pitre, France
| | - Jeannie Hélène Pelage
- Départament de Medicine Générale, Faculté Hyacinthe Bastaraud, University of the French West Indies, Fouillole Campus, 97157 Pointe-à-Pitre, France
| | - Jean Vaillant
- LAMIA, EA 4540, Department of Chemistry, University of the French West Indies, Fouillole Campus, UFR SEN, CEDEX, 97157 Pointe-à-Pitre, France
| | - Alain Rousteau
- UA, UMR EcoFoG, CNRS, Cirad, INRA, Université des Antilles, Université de Guyane, Université des Antilles, 97159 Pointe-à-Pitre, France
| | - Eloy Bejarano
- Department of Biomedical Sciences, School of Health Sciences and Veterinary, Universidad Cardenal Herrera-CEU, CEU Universities, 46113 Moncada, Spain
| | - Gerardo Cebrian-Torrejon
- COVACHIM-M2E Laboratory EA 3592, Department of Chemistry, University of the French West Indies, Fouillole Campus, UFR SEN, CEDEX, 97157 Pointe-à-Pitre, France
| |
Collapse
|
8
|
Sotthibandhu DS, Indoung S, Niwasawat H, Chaiboon J, Sungsorn N, Longji NI, Polya K, Noosak C, Schwarz S, Soimala T. The prevalence and antibiotic susceptibility of Staphylococcus spp. on ocular surfaces of fighting bulls ( Bos indicus) in Thailand. Vet World 2022; 15:2922-2928. [PMID: 36718321 PMCID: PMC9880847 DOI: 10.14202/vetworld.2022.2922-2928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/18/2022] [Indexed: 12/25/2022] Open
Abstract
Background and Aim fighting bulls have a high risk of eye injuries, and opportunistic conjunctival bacterial flora may cause subsequent eye diseases. There is little information about the ocular health care of fighting bulls in Thailand. Thus, this study aimed to estimate the prevalence of Staphylococcus spp. from the eyes of fighting bulls and investigate their antimicrobial susceptibility. Materials and Methods The samples were collected from the right conjunctival sacs of 105 fighting bulls. Biochemical tests and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry were used to identify bacteria to genus and species levels. Antimicrobial susceptibility was tested by agar disk diffusion. Results Staphylococcus spp. (36.84%, 56/152) were the most detected bacteria. The most prevalent Staphylococcus spp. was Staphylococcus chromogenes (37.50%, 21/56). The susceptibility test revealed that all isolates were susceptible to sulfamethoxazole/trimethoprim (56/56, 100%) and most were susceptible to chloramphenicol and gentamicin (54/56, 96.43%). The highest resistance rates were seen for tetracycline and doxycycline (23.21%, 13/56) followed by erythromycin (19.64%, 11/56). In addition, S. chromogenes isolates were evaluated for their ability to produce biofilms by a quantitative biofilm production assay. A total of 21 isolates exhibited biofilm production, independent of their antimicrobial susceptibility. Three multidrug-resistant isolates were found, including two Staphylococcus epidermidis isolates and a single S. chromogenes isolate. Conclusion As antimicrobial resistant bacteria were detected on the eye surface, veterinarians should always conduct antimicrobial susceptibility testing before using antimicrobial agents. The results from this study will help to improve the standard of eye treatment for fighting bulls in Thailand.
Collapse
Affiliation(s)
| | - Saowakon Indoung
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Husna Niwasawat
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Jiradchaya Chaiboon
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Nattakan Sungsorn
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Nu-issana Longji
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Kittipol Polya
- Thunderbolt fighting Bull Clinic, Songkhla 90110, Thailand
| | - Chayanee Noosak
- Faculty of Medical Technology, Prince of Songkla University, Songkhla 90110, Thailand
| | - Stefan Schwarz
- Department of Veterinary Medicine, Institute of Microbiology and Epizootics, Centre for Infection Medicine, Freie Universität Berlin, 14163 Berlin, Germany,Veterinary Centre for Resistance Research (TZR), Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | - Tanawan Soimala
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla 90110, Thailand,Corresponding author: Tanawan Soimala, e-mail: Co-authors: DSS: , SI: , HN: , JC: , NS: , NL: , KP: , CN: , SS:
| |
Collapse
|
9
|
Cymbopogon citratus Essential Oil Increases the Effect of Digluconate Chlorhexidine on Microcosm Biofilms. Pathogens 2022; 11:pathogens11101067. [PMID: 36297124 PMCID: PMC9607486 DOI: 10.3390/pathogens11101067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/24/2022] [Accepted: 09/08/2022] [Indexed: 12/03/2022] Open
Abstract
The aim of this study was to evaluate the effect of the Cymbopogon citratus essential oil and its association with chlorhexidine on cariogenic microcosm biofilm composition and acidogenicity. Minimum inhibitory and bactericide concentrations from the essential oil and chlorhexidine were determined by broth microdilution assay. Microcosms (polymicrobial) biofilms were produced on glass coverslips, using inoculum from human saliva in McBain culture medium (0.5% sucrose exposure for 6 h/day) for 3 days in 24-well plates. The biofilms were treated twice a day and their composition was evaluated by microorganism quantification. The acidogenicity was evaluated by measuring the pH of the spent culture medium in contact with the biofilm. Overall, the association of C. citratus and chlorhexidine reduced total bacterial counts and aciduric bacteria (maximum reduction of 3.55 log UFC/mL) in microcosm biofilms. This group also presented the lowest acidogenicity even when exposed to sucrose-containing medium. C. citratus essential oil increases the effect of digluconate chlorhexidine on microcosm biofilms. Based on these findings, this study can contribute to the development of new formulations that might allow for the use of mouthwashes for a shorter period, which may reduce undesirable effects and increase patient compliance to the treatment.
Collapse
|
10
|
Biocontrol of Candida albicans by Antagonistic Microorganisms and Bioactive Compounds. Antibiotics (Basel) 2022; 11:antibiotics11091238. [PMID: 36140017 PMCID: PMC9495215 DOI: 10.3390/antibiotics11091238] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/26/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Candida albicans is an endogenous opportunistic pathogenic fungus that is harmless when the host system remains stable. However, C. albicans could seriously threaten human life and health when the body’s immune function declines or the normal flora is out of balance. Due to the increasing resistance of candidiasis to existing drugs, it is important to find new strategies to help treat this type of systemic fungal disease. Biological control is considered as a promising strategy which is more friendly and safer. In this review, we compare the bacteriostatic behavior of different antagonistic microorganisms (bacteria and fungi) against C. albicans. In addition, natural products with unique structures have attracted researchers’ attention. Therefore, the bioactive nature products produced by different microorganisms and their possible inhibitory mechanisms are also reviewed. The application of biological control strategies and the discovery of new compounds with antifungal activity will reduce the resistance of C. albicans, thereby promoting the development of novel diverse antifungal drugs.
Collapse
|
11
|
Maione A, La Pietra A, de Alteriis E, Mileo A, De Falco M, Guida M, Galdiero E. Effect of Myrtenol and Its Synergistic Interactions with Antimicrobial Drugs in the Inhibition of Single and Mixed Biofilms of Candida auris and Klebsiella pneumoniae. Microorganisms 2022; 10:microorganisms10091773. [PMID: 36144375 PMCID: PMC9501169 DOI: 10.3390/microorganisms10091773] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
The increased incidence of mixed infections requires that the scientific community develop novel antimicrobial molecules. Essential oils and their bioactive pure compounds have been found to exhibit a wide range of remarkable biological activities and are attracting more and more attention. Therefore, the aim of this study was to evaluate myrtenol (MYR), one of the constituents commonly found in some essential oils, for its potential to inhibit biofilms alone and in combination with antimicrobial drugs against Candida auris/Klebsiella pneumoniae single and mixed biofilms. The antimicrobial activity of MYR was evaluated by determining bactericidal/fungicidal concentrations (MIC), and biofilm formation at sub-MICs was analyzed in a 96-well microtiter plate by crystal violet, XTT reduction assay, and CFU counts. The synergistic interaction between MYR and antimicrobial drugs was evaluated by the checkerboard method. The study found that MYR exhibited antimicrobial activity at high concentrations while showing efficient antibiofilm activity against single and dual biofilms. To understand the underlying mechanism by which MYR promotes single/mixed-species biofilm inhibition, we observed a significant downregulation in the expression of mrkA, FKS1, ERG11, and ALS5 genes, which are associated with bacterial motility, adhesion, and biofilm formation as well as increased ROS production, which can play an important role in the inhibition of biofilm formation. In addition, the checkerboard microdilution assay showed that MYR was strongly synergistic with both caspofungin (CAS) and meropenem (MEM) in inhibiting the growth of Candida auris/Klebsiella pneumoniae-mixed biofilms. Furthermore, the tested concentrations showed an absence of toxicity for both mammalian cells in the in vitro and in vivo Galleria mellonella models. Thus, MYR could be considered as a potential agent for the management of polymicrobial biofilms.
Collapse
Affiliation(s)
- Angela Maione
- Department of Biology, University of Naples ‘Federico II’, Via Cinthia, 80126 Naples, Italy
| | - Alessandra La Pietra
- Department of Biology, University of Naples ‘Federico II’, Via Cinthia, 80126 Naples, Italy
| | - Elisabetta de Alteriis
- Department of Biology, University of Naples ‘Federico II’, Via Cinthia, 80126 Naples, Italy
| | - Aldo Mileo
- Department of Biology, University of Naples ‘Federico II’, Via Cinthia, 80126 Naples, Italy
| | - Maria De Falco
- Department of Biology, University of Naples ‘Federico II’, Via Cinthia, 80126 Naples, Italy
- National Institute of Biostructures and Biosystems (INBB), 00136 Rome, Italy
- Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), 80055 Portici, Italy
| | - Marco Guida
- Department of Biology, University of Naples ‘Federico II’, Via Cinthia, 80126 Naples, Italy
- Correspondence: (M.G.); (E.G.)
| | - Emilia Galdiero
- Department of Biology, University of Naples ‘Federico II’, Via Cinthia, 80126 Naples, Italy
- Correspondence: (M.G.); (E.G.)
| |
Collapse
|
12
|
Wang Y, Liu H, Zhan F. Effects of Natural Borneol on Germ Tube Formation and Preformed Biofilm Activity in Candida albicans. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221129128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Candida albicans infection mainly occurs in patients with suppressed immune function and is the main pathogen of nosocomial infections. The use of natural products aimed at controlling fungal diseases is considered an interesting alternative to synthetic fungicides due to their lower adverse reactions and the lower cost of plant preparations compared to modern conventional pharmaceuticals. Natural borneol has a long history of treating ulcers and local infections in traditional Chinese medicine. In this study, we present an analysis of the in vitro effects of natural borneol on planktonic cells of C albicans in the liquid and vapor phases. We also investigated the effects of natural borneol on germ tube formation and mature biofilm activity of C albicans. We found that vapor-phase borneol (minimum inhibitory concentration [MIC] 0.4 mg/cm3) inhibited C albicans more effectively than in the liquid phase (MIC 2 mg/mL). The C albicans germ tube decreased by 99% to 60% at sub-MICs of 0.5 to 0.125 mg/mL. The inhibitory effects of 0.25, 0.5, 1, 2, and 4 mg/mL borneol on the biofilm activity were 33.7%, 48.6%, 49.9%, 52.9%, and 58.2%, respectively. Natural borneol may have potential in the treatment and prevention of C albicans infections.
Collapse
Affiliation(s)
- Yazhou Wang
- Department of Clinical Laboratory, Changzhou Cancer Hospital, Changzhou, China
| | - Huiling Liu
- Department of Clinical Laboratory, Changzhou Cancer Hospital, Changzhou, China
| | - Feng Zhan
- Department of Clinical Laboratory, Changzhou Cancer Hospital, Changzhou, China
| |
Collapse
|
13
|
Antimicrobial, Antivirulence, and Antiparasitic Potential of Capsicum chinense Jacq. Extracts and Their Isolated Compound Capsaicin. Antibiotics (Basel) 2022; 11:antibiotics11091154. [PMID: 36139934 PMCID: PMC9495104 DOI: 10.3390/antibiotics11091154] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 12/03/2022] Open
Abstract
Bacterial, fungal, and parasitic infections increase morbimortality rates and hospital costs. This study aimed to assess the antimicrobial and antiparasitic activities of the crude extract from the seeds and peel of the pepper Capsicum chinense Jacq. and of the isolated compound capsaicin and to evaluate their ability to inhibit biofilm formation, eradicate biofilm, and reduce hemolysin production by Candida species. The crude ethanolic and hexane extracts were obtained by maceration at room temperature, and their chemical compositions were analyzed by liquid chromatography coupled to mass spectrometry (LC–MS). The antimicrobial activity of the samples was evaluated by determining the minimum inhibitory concentration. Inhibition of biofilm formation and biofilm eradication by the samples were evaluated based on biomass and cell viability. Reduction of Candida spp. hemolytic activity by the samples was determined on sheep blood agar plates. The antiparasitic action of the samples was evaluated by determining their ability to inhibit Toxoplasma gondii intracellular proliferation. LC–MS-ESI analyses helped to identify organic and phenolic acids, flavonoids, capsaicinoids, and fatty acids in the ethanolic extracts, as well as capsaicinoids and fatty acids in the hexane extracts. Antifungal action was more evident against C. glabrata and C. tropicalis. The samples inhibited biofilm formation and eradicated the biofilm formed by C. tropicalis more effectively. Sub-inhibitory concentrations of the samples significantly reduced the C. glabrata and C. tropicalis hemolytic activity. The samples only altered host cell viability when tested at higher concentrations; however, at non-toxic concentrations, they reduced T. gondii growth. In association with gold standard drugs used to treat toxoplasmosis, capsaicin improved their antiparasitic activity. These results are unprecedented and encouraging, indicating the Capsicum chinense Jacq. peel and seed extracts and capsaicin display antifungal and antiparasitic activities.
Collapse
|
14
|
Evaluation of Anti-Candida Potential of Piper nigrum Extract in Inhibiting Growth, Yeast-Hyphal Transition, Virulent Enzymes, and Biofilm Formation. J Fungi (Basel) 2022; 8:jof8080784. [PMID: 36012773 PMCID: PMC9409899 DOI: 10.3390/jof8080784] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/12/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
Due to the increased incidence of fungal infections and the emergence of antifungal resistance mainly by Candida species, the need for safe and effective novel therapies is imperative. Consequently, plants and herbs are a powerful source to combat infections. Here, we evaluated the anti-Candida potential of an ethanolic extract from Piper nigrum. The phytochemical analysis of P. nigrum revealed bioactive compounds such as alkaloids, terpenoids, and tannis. Our results showed that P. nigrum extract suppressed the virulence factors of C. albicans strains, including hyphae formation in both liquid and solid media, reduced secretion of phospholipases/proteinases, and affected biofilm formation. Furthermore, the P. nigrum extract showed no hemolytic effect in vitro and exhibited reduced cytotoxicity on Vero cells and G. mellonella larvae at concentrations that inhibited hyphae and biofilm in C. albicans. Moreover, the extract demonstrated antifungal activity against C. auris strains. In conclusion, the P. nigrum extract affected the growth and morphogenesis of Candida (even in resistant strains), demonstrating that this plant has an anti-candida activity and represents a promising resource for discovering novel antifungal compounds.
Collapse
|
15
|
Zuzarte M, Salgueiro L. Essential Oils in Respiratory Mycosis: A Review. Molecules 2022; 27:molecules27134140. [PMID: 35807386 PMCID: PMC9268412 DOI: 10.3390/molecules27134140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 01/08/2023] Open
Abstract
Respiratory mycosis is a major health concern, due to the expanding population of immunosuppressed and immunocompromised patients and the increasing resistance to conventional antifungals and their undesired side-effects, thus justifying the development of new therapeutic strategies. Plant metabolites, namely essential oils, represent promising preventive/therapeutic strategies due to their widely reported antifungal potential. However, regarding fungal infections of the respiratory tract, information is disperse and no updated compilation on current knowledge is available. Therefore, the present review aims to gather and systematize relevant information on the antifungal effects of several essential oils and volatile compounds against the main type of respiratory mycosis that impact health care systems. Particular attention is paid to Aspergillus fumigatus, the main pathogen involved in aspergillosis, Candida auris, currently emerging as a major pathogen in certain parts of the world, and Cryptococcus neoformans, one of the main pathogens involved in pulmonary cryptococcosis. Furthermore, the main mechanisms of action underlying essential oils’ antifungal effects and current limitations in clinical translation are presented. Overall, essential oils rich in phenolic compounds seem to be very effective but clinical translation requires more comprehensive in vivo studies and human trials to assess the efficacy and tolerability of these compounds in respiratory mycosis.
Collapse
Affiliation(s)
- Mónica Zuzarte
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-548 Coimbra, Portugal
- Correspondence:
| | - Lígia Salgueiro
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
- Faculty of Sciences and Technology, Department of Chemical Engineering, Chemical Process Engineering and Forest Products Research Centre (CIEPQPF), University of Coimbra, 3030-790 Coimbra, Portugal
| |
Collapse
|
16
|
Boswellia serrata Extract as an Antibiofilm Agent against Candida spp. Microorganisms 2022; 10:microorganisms10010171. [PMID: 35056620 PMCID: PMC8778954 DOI: 10.3390/microorganisms10010171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/10/2022] Open
Abstract
The use of antibiotics or antifungals to control infections caused by pathogenic microorganisms is currently insufficiently effective because of their emerging resistance. Thanks to the ability of microorganisms to form a biofilm and thus increase their resistance to administered drugs even more, modern medicine faces the task of finding novel substances to combat infections caused by them. In this regard, the effects of essential oils or plant extracts are often studied. Among the relatively neglected plants is Boswellia serrata, which has a high content of biologically active boswellic acids. In this study, we focused on one of the most common nosocomial infections, which are caused by Candida species. The most common representative is C. albicans, although the number of infections caused by non-albicans species has recently been increasing. We focused on the antifungal activity of Boswellia serrata extract Bioswellix against planktonic and adhering cells of Candida albicans, Candida parapsilosis and Candida krusei. The antifungal activity against adhering cells was further explored by determining the metabolic activity of cells (MTT) and determining the total amount of biofilm using crystal violet. Boswellic acid-containing plant extract was shown to suppress the growth of a suspension population of all tested Candida species. Boswellia serrata extract Bioswellix was most effective in inhibiting C. albicans biofilm formation.
Collapse
|