1
|
Ponikowska M, Żebrowska J, Skowron PM. New-Generation Antibacterial Agent-Cellulose-Binding Thermostable TP84_Endolysin. Int J Mol Sci 2024; 25:13111. [PMID: 39684821 DOI: 10.3390/ijms252313111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
The increasing antibiotic resistance among bacteria challenges the biotech industry to search for new antibacterial molecules. Endolysin TP84_28 is a thermostable, lytic enzyme, encoded by the bacteriophage (phage) TP-84, and it effectively digests host bacteria cell wall. Biofilms, together with antibiotic resistance, are major problems in clinical medicine and industry. The challenge is to keep antibacterial molecules at the site of desired action, as their diffusion leads to a loss of efficacy. The TP84_28 endolysin gene was cloned into an expression-fusion vector, forming a fusion gene cbd_tp84_28_his with a cellulose-binding domain from the cellulase enzyme. The Cellulose-Binding Thermostable TP84_Endolysin (CBD_TP84_28_His) fusion protein was biosynthesized in Escherichia coli and purified. Thermostability and enzymatic activities against various bacterial species were measured by a turbidity reduction assay, a spot assay, and biofilm removal. Cellulose-binding properties were confirmed via interactions with microcellulose and cellulose paper-based immunoblotting. The high affinity of the CBD allows for a high concentration of the fusion enzyme at desired target sites such as cellulose-based wound dressings, artificial heart valves and food packaging. CBD_TP84_28_His exhibits a lytic effect against thermophilic bacteria Geobacillus stearothemophilus, Thermus aquaticus, Bacillus stearothermophilus, and Geobacillus ICI and minor effects against mesophilic Bacillus cereus and Bacillus subtilis. CBD_TP84_28_His retains full activity after preincubation in the temperatures of 30-65 °C and exhibits significant activity up to its melting point at 73 °C. CBD_TP84_28_His effectively reduces biofilms. These findings suggest that integrating CBDs into thermostable endolysins could enable the development of targeted antibacterial recombinant proteins with diverse clinical and industrial applications.
Collapse
Affiliation(s)
- Małgorzata Ponikowska
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, 80-309 Gdansk, Poland
- Department of Biology and Medical Genetics, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Joanna Żebrowska
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, 80-309 Gdansk, Poland
| | - Piotr M Skowron
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, 80-309 Gdansk, Poland
| |
Collapse
|
2
|
Raeisi H, Leeflang J, Hasan S, Woods SL. Bioengineered Probiotics for Clostridioides difficile Infection: An Overview of the Challenges and Potential for This New Treatment Approach. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10398-x. [PMID: 39531149 DOI: 10.1007/s12602-024-10398-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
The rapid increase in microbial antibiotic resistance in Clostridioides difficile (C. difficile) strains and the formation of hypervirulent strains have been associated with a global increase in the incidence of C. difficile infection (CDI) and subsequently, an increase in the rate of recurrence. These consequences have led to an urgent need to develop new and promising alternative strategies to control this pathogen. Engineered probiotics are exciting new bacterial strains produced by editing the genome of the original probiotics. Recently, engineered probiotics have been used to develop delivery vehicles for vaccines, diagnostics, and therapeutics. Recent studies have demonstrated engineered probiotics may potentially be an effective approach to control or treat CDI. This review provides a brief overview of the considerations for engineered probiotics for medicinal use, with a focus on recent preclinical research using engineered probiotics to prevent or treat CDI. We also address the challenges faced in the production of engineered strains and how they may be overcome in the application of these agents to meet patient needs in the future.
Collapse
Affiliation(s)
- Hamideh Raeisi
- Gastroenterology and Liver Diseases Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Julia Leeflang
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Sadia Hasan
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Susan L Woods
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| |
Collapse
|
3
|
Wang Y, Wu J, Li J, Yu C, Gao J, Song F, Zhou L, Zhang R, Jiang S, Zhu Y. Isolation and characterization of duck sewage source Salmonella phage P6 and antibacterial activity for recombinant endolysin LysP6. Poult Sci 2024; 103:104227. [PMID: 39217665 PMCID: PMC11402287 DOI: 10.1016/j.psj.2024.104227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Salmonella is a globally prevalent foodborne pathogen, and adverse events caused by S. Enteritidis and S. Typhimurium are extremely common. With the emergence of drug resistance, there is an urgent need for efficient and specific lytic bacteriophages as alternative to antibiotics in clinical practice. In this study, phage P6 was isolated and screened from effluent and fecal samples from duck farm environments to specifically lyse the duck sources S. Typhimurium and S. Enteritidis. Phage P6 belongs to the genus Lederbergvirus, unclassified Lederbergvirus species. The phage P6 genome did not contained non-coding RNA, virulence genes and drug resistance genes, indicating that phage P6 was biologically safe for clinical applications. Phage P6 lysed 77.78% (28/36) of multidrug-resistant Salmonella and reduced biofilms formed by S. Enteritidis CVCC 3377, 4, and 24, and S. Typhimurium 44 by 44% to 75% within 3 h, and decreased Salmonella in duckling feces by up to 1.64 orders of magnitude. Prokaryotic expression of endolysin LysP6 lysed the chloroform-treated bacterial outer membrane from different serotypes of duck-derived Salmonella and E. coli standard strain ATCC 25922. The host range was expanded compared to phage P6, and the growth of Salmonella was effectively inhibited by LysP6 in conjunction with the membrane permeabilizer EDTA within 24 h. Therefore, phage P6 and phage-derived endolysins LysP6 are suitable for application as potent biocontrol agents to improve poultry health and food safety.
Collapse
Affiliation(s)
- Yanjun Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China
| | - Jikun Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China
| | - Jie Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China
| | - Changxu Yu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China
| | - Jing Gao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China
| | - Fahui Song
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China
| | - Luyang Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China
| | - Ruihua Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China
| | - Shijin Jiang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China
| | - Yanli Zhu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
4
|
Tian Y, Xu X, Ijaz M, Shen Y, Shahid MS, Ahmed T, Ali HM, Yan C, Gu C, Lu J, Wang Y, Ondrasek G, Li B. Role of hypothetical protein PA1-LRP in antibacterial activity of endolysin from a new Pantoea phage PA1. Front Microbiol 2024; 15:1463192. [PMID: 39507333 PMCID: PMC11538084 DOI: 10.3389/fmicb.2024.1463192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction Pantoea ananatis has emerged as a significant plant pathogen affecting various crops worldwide, causing substantial economic losses. Bacteriophages and their endolysins offer promising alternatives for controlling bacterial infections, addressing the growing concerns of antibiotic resistance. Methods This study isolated and characterized the Pantoea phage PA1 and investigated the role of PA1-LRP in directly damaging bacteria and assisting endolysin PA1-Lys in cell lysis, comparing its effect to exogenous transmembrane domains following the identification and analysis of the PA1-Lys and the PA1-LRP based on whole genome analysis of phage PA1. Additionally, this study also explored how hydrophobic region of PA1-LRP (HPP) contributes to bacterial killing when combined with PA1-Lys and examined the stability and lytic spectrum of PA1-Lys under various conditions. Results and discussion Phage PA1 belonging to the Chaseviridae family exhibited a broad host range against P. ananatis strains, with a latent period of 40 minutes and a burst size of 17.17 phages per infected cell. PA1-Lys remained stable at pH 6-10 and temperatures of 20-50°C and showed lytic activity against various Gram-negative bacteria, while PA1-Lys alone could not directly lyse bacteria, its lytic activity was enhanced in the presence of EDTA. Surprisingly, PA1-LRP inhibited bacterial growth when expressed alone. After 24 h of incubation, the OD600 value of pET28a-LRP decreased by 0.164 compared to pET28a. Furthermore, the lytic effect of co-expressed PA1-LRP and PA1-Lys was significantly stronger than each separately. After 24 h of incubation, compared to pET28a-LRP, the OD600 value of pET28a-Lys-LRP decreased by 0.444, while the OD420 value increased by 3.121. Live/dead cell staining, and flow cytometry experiments showed that the fusion expression of PA1-LRP and PA1-Lys resulted in 41.29% cell death, with bacterial morphology changing from rod-shaped to filamentous. Notably, PA1-LRP provided stronger support for endolysin-mediated cell lysis than exogenous transmembrane domains. Additionally, our results demonstrated that the HPP fused with PA1-Lys, led to 40.60% cell death, with bacteria changing from rod-shaped to spherical and exhibiting vacuolation. Taken together, this study provides insights into the lysis mechanisms of Pantoea phages and identifies a novel lysis-related protein, PA1-LRP, which could have potential applications in phage therapy and bacterial disease control.
Collapse
Affiliation(s)
- Ye Tian
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xinyan Xu
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Munazza Ijaz
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Ying Shen
- Station for the Plant Protection & Quarantine and Control of Agrochemicals of Zhejiang Province, Hangzhou, China
| | - Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud, Muscat, Oman
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Xianghu Laboratory, Hangzhou, China
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan
| | - Hayssam M. Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Chengqi Yan
- Crop Institute, Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Chunyan Gu
- Institute of Plant Protection and Agricultural Product Quality and Safety, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Jianfei Lu
- Station for the Plant Protection & Quarantine and Control of Agrochemicals of Zhejiang Province, Hangzhou, China
| | - Yanli Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Academy of Agricultural Sciences, Zhejiang, Hangzhou, China
| | - Gabrijel Ondrasek
- Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta, Zagreb, Croatia
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Pattnaik A, Pati S, Samal SK. Bacteriophage as a potential biotherapeutics to combat present-day crisis of multi-drug resistant pathogens. Heliyon 2024; 10:e37489. [PMID: 39309956 PMCID: PMC11416503 DOI: 10.1016/j.heliyon.2024.e37489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/15/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
The rise of Multi-Drug Resistant (MDR) bacterial pathogens to most, if not all, currently available antibacterial agents has become a global threat. As a consequence of the antibiotic resistance epidemic, phage therapy has emerged as a potential alternative to conventional antibiotics. Despite the high therapeutic advantages of phage therapy, they have not yet been successfully used in the clinic due to various limitations of narrow host specificity compared to antibiotics, poor adhesion on biofilm surface, and susceptibility to both human and bacterial defences. This review focuses on the antibacterial effect of bacteriophage and their recent clinical trials with a special emphasis on the underlying mechanism of lytic phage action with the help of endolysin and holin. Furthermore, recent clinical trials of natural and modified endolysins and some marketed products have also been emphasized with future prospective.
Collapse
Affiliation(s)
- Ananya Pattnaik
- ICMR-Regional Medical Research Center, Bhubaneswar, Odisha, India
- KSBT, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India
| | - Sanghamitra Pati
- ICMR-Regional Medical Research Center, Bhubaneswar, Odisha, India
| | | |
Collapse
|
6
|
Zhang M, Xu X, Lv L, Luo J, Ahmed T, Alsakkaf WAA, Ali HM, Bi J, Yan C, Gu C, Shou L, Li B. Genomic Characterization of Phage ZP3 and Its Endolysin LysZP with Antimicrobial Potential against Xanthomonas oryzae pv. oryzae. Viruses 2024; 16:1450. [PMID: 39339926 PMCID: PMC11437452 DOI: 10.3390/v16091450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) is a significant bacterial pathogen responsible for outbreaks of bacterial leaf blight in rice, posing a major threat to rice cultivation worldwide. Effective management of this pathogen is crucial for ensuring rice yield and food security. In this study, we identified and characterized a novel Xoo phage, ZP3, isolated from diseased rice leaves in Zhejiang, China, which may offer new insights into biocontrol strategies against Xoo and contribute to the development of innovative approaches to combat bacterial leaf blight. Transmission electron microscopy indicated that ZP3 had a short, non-contractile tail. Genome sequencing and bioinformatic analysis showed that ZP3 had a double-stranded DNA genome with a length of 44,713 bp, a G + C content of 52.2%, and 59 predicted genes, which was similar to other OP1-type Xoo phages belonging to the genus Xipdecavirus. ZP3's endolysin LysZP was further studied for its bacteriolytic action, and the N-terminal transmembrane domain of LysZP is suggested to be a signal-arrest-release sequence that mediates the translocation of LysZP to the periplasm. Our study contributes to the understanding of phage-Xoo interactions and suggests that phage ZP3 and its endolysin LysZP could be developed into biocontrol agents against this phytopathogen.
Collapse
Affiliation(s)
- Muchen Zhang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.Z.); (X.X.); (L.L.); (T.A.)
- Food Quality Supervision, Inspection and Testing Center of the Ministry of Agriculture and Rural Affairs (Shanghai), Shanghai Center of Agricultural Products Quality Safety, Shanghai 201708, China
| | - Xinyan Xu
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.Z.); (X.X.); (L.L.); (T.A.)
| | - Luqiong Lv
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.Z.); (X.X.); (L.L.); (T.A.)
| | - Jinyan Luo
- Department of Plant Quarantine, Shanghai Extension and Service Center of Agriculture Technology, Shanghai 201103, China;
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.Z.); (X.X.); (L.L.); (T.A.)
- Department of Life Sciences, Western Caspian University, Baku AZ1001, Azerbaijan
- MEU Research Unit, Middle East University, Amman 11192, Jordan
| | - Waleed A. A. Alsakkaf
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (W.A.A.A.); (H.M.A.)
| | - Hayssam M. Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (W.A.A.A.); (H.M.A.)
| | - Ji’an Bi
- Crop Institute, Ningbo Academy of Agricultural Sciences, Ningbo 315040, China; (J.B.); (C.Y.)
| | - Chengqi Yan
- Crop Institute, Ningbo Academy of Agricultural Sciences, Ningbo 315040, China; (J.B.); (C.Y.)
| | - Chunyan Gu
- Anhui Province Key Laboratory of Pesticide Resistance Management on Grain and Vegetable Pests, Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Linfei Shou
- Station for the Plant Protection & Quarantine and Control of Agrochemicals Zhejiang Province, Hangzhou 310004, China
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.Z.); (X.X.); (L.L.); (T.A.)
| |
Collapse
|
7
|
Arora R, Nadar K, Bajpai U. Discovery and characterization of a novel LysinB from F2 sub-cluster mycobacteriophage RitSun. Sci Rep 2024; 14:18073. [PMID: 39103410 PMCID: PMC11300654 DOI: 10.1038/s41598-024-68636-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/25/2024] [Indexed: 08/07/2024] Open
Abstract
The escalating antibiotic resistance in mycobacterial species poses a significant threat globally, necessitating an urgent need to find alternative solutions. Bacteriophage-derived endolysins, which facilitate phage progeny release by attacking bacterial cell walls, present promising antibacterial candidates due to their rapid lytic action, high specificity and low risk of resistance development. In mycobacteria, owing to the complex, hydrophobic cell wall, mycobacteriophages usually synthesize two endolysins: LysinA, which hydrolyzes peptidoglycan; LysinB, which delinks mycolic acid-containing outer membrane and arabinogalactan, releasing free mycolic acid. In this study, we conducted domain analysis and functional characterization of a novel LysinB from RitSun, an F2 sub-cluster mycobacteriophage from our phage collection. Several key properties of RitSun LysinB make it an important antimycobacterial agent: its ability to lyse Mycobacterium smegmatis from without, a higher than previously reported specific activity of 1.36 U/mg and its inhibitory effect on biofilm formation. Given the impermeable nature of the mycobacterial cell envelope, dissecting RitSun LysinB at the molecular level to identify its cell wall-destabilizing sequence could be utilized to engineer other native lysins as fusion proteins, broadening their activity spectrum.
Collapse
Affiliation(s)
- Ritu Arora
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi, 110019, India
| | - Kanika Nadar
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi, 110019, India
| | - Urmi Bajpai
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi, 110019, India.
| |
Collapse
|
8
|
Gontijo M, Pereira Teles M, Martins Correia H, Pérez Jorge G, Rodrigues Santos Goes IC, Fasabi Flores AJ, Braz M, de Moraes Ceseti L, Zonzini Ramos P, Rosa e Silva I, Pereira Vidigal PM, Kobarg J, Miguez Couñago R, Alvarez-Martinez CE, Pereira C, Freire CSR, Almeida A, Brocchi M. Combined effect of SAR-endolysin LysKpV475 with polymyxin B and Salmonella bacteriophage phSE-5. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001462. [PMID: 38739436 PMCID: PMC11170124 DOI: 10.1099/mic.0.001462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/26/2024] [Indexed: 05/14/2024]
Abstract
Endolysins are bacteriophage (or phage)-encoded enzymes that catalyse the peptidoglycan breakdown in the bacterial cell wall. The exogenous action of recombinant phage endolysins against Gram-positive organisms has been extensively studied. However, the outer membrane acts as a physical barrier when considering the use of recombinant endolysins to combat Gram-negative bacteria. This study aimed to evaluate the antimicrobial activity of the SAR-endolysin LysKpV475 against Gram-negative bacteria as single or combined therapies, using an outer membrane permeabilizer (polymyxin B) and a phage, free or immobilized in a pullulan matrix. In the first step, the endolysin LysKpV475 in solution, alone and combined with polymyxin B, was tested in vitro and in vivo against ten Gram-negative bacteria, including highly virulent strains and multidrug-resistant isolates. In the second step, the lyophilized LysKpV475 endolysin was combined with the phage phSE-5 and investigated, free or immobilized in a pullulan matrix, against Salmonella enterica subsp. enterica serovar Typhimurium ATCC 13311. The bacteriostatic action of purified LysKpV475 varied between 8.125 μg ml-1 against Pseudomonas aeruginosa ATCC 27853, 16.25 μg ml-1 against S. enterica Typhimurium ATCC 13311, and 32.50 μg ml-1 against Klebsiella pneumoniae ATCC BAA-2146 and Enterobacter cloacae P2224. LysKpV475 showed bactericidal activity only for P. aeruginosa ATCC 27853 (32.50 μg ml-1) and P. aeruginosa P2307 (65.00 μg ml-1) at the tested concentrations. The effect of the LysKpV475 combined with polymyxin B increased against K. pneumoniae ATCC BAA-2146 [fractional inhibitory concentration index (FICI) 0.34; a value lower than 1.0 indicates an additive/combined effect] and S. enterica Typhimurium ATCC 13311 (FICI 0.93). A synergistic effect against S. enterica Typhimurium was also observed when the lyophilized LysKpV475 at ⅔ MIC was combined with the phage phSE-5 (m.o.i. of 100). The lyophilized LysKpV475 immobilized in a pullulan matrix maintained a significant Salmonella reduction of 2 logs after 6 h of treatment. These results demonstrate the potential of SAR-endolysins, alone or in combination with other treatments, in the free form or immobilized in solid matrices, which paves the way for their application in different areas, such as in biocontrol at the food processing stage, biosanitation of food contact surfaces and biopreservation of processed food in active food packing.
Collapse
Affiliation(s)
- Marco Gontijo
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-862, Brazil
| | - Mateus Pereira Teles
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-862, Brazil
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP 13083-970, Brazil
- Department of Biology, and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Hugo Martins Correia
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-862, Brazil
| | - Genesy Pérez Jorge
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-862, Brazil
- Research Group Statistics and Mathematical Modeling Applied to Educational Quality (GEMMA), University of Sucre, Sincelejo, Sucre, Colombia
| | - Isabella Carolina Rodrigues Santos Goes
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-862, Brazil
| | - Anthony Jhoao Fasabi Flores
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-862, Brazil
| | - Márcia Braz
- Department of Biology, and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Lucas de Moraes Ceseti
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-862, Brazil
| | - Priscila Zonzini Ramos
- Centro de Química Medicinal, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-970, Brazil
| | - Ivan Rosa e Silva
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP 13083-970, Brazil
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-871, Brazil
| | - Pedro Marcus Pereira Vidigal
- Núcleo de Análise de Biomoléculas (NuBioMol), Universidade Federal de Viçosa (UFV), Viçosa, MG 36570-900, Brazil
| | - Jörg Kobarg
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-871, Brazil
| | - Rafael Miguez Couñago
- Centro de Química Medicinal, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-970, Brazil
| | - Cristina Elisa Alvarez-Martinez
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-862, Brazil
| | - Carla Pereira
- Department of Biology, and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Carmen S. R. Freire
- CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Adelaide Almeida
- Department of Biology, and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Marcelo Brocchi
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-862, Brazil
| |
Collapse
|
9
|
MacNair CR, Rutherford ST, Tan MW. Alternative therapeutic strategies to treat antibiotic-resistant pathogens. Nat Rev Microbiol 2024; 22:262-275. [PMID: 38082064 DOI: 10.1038/s41579-023-00993-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2023] [Indexed: 04/19/2024]
Abstract
Resistance threatens to render antibiotics - which are essential for modern medicine - ineffective, thus posing a threat to human health. The discovery of novel classes of antibiotics able to overcome resistance has been stalled for decades, with the developmental pipeline relying almost entirely on variations of existing chemical scaffolds. Unfortunately, this approach has been unable to keep pace with resistance evolution, necessitating new therapeutic strategies. In this Review, we highlight recent efforts to discover non-traditional antimicrobials, specifically describing the advantages and limitations of antimicrobial peptides and macrocycles, antibodies, bacteriophages and antisense oligonucleotides. These approaches have the potential to stem the tide of resistance by expanding the physicochemical property space and target spectrum occupied by currently approved antibiotics.
Collapse
Affiliation(s)
- Craig R MacNair
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA, USA
| | - Steven T Rutherford
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA, USA
| | - Man-Wah Tan
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA, USA.
| |
Collapse
|
10
|
Sisson HM, Jackson SA, Fagerlund RD, Warring SL, Fineran PC. Gram-negative endolysins: overcoming the outer membrane obstacle. Curr Opin Microbiol 2024; 78:102433. [PMID: 38350268 DOI: 10.1016/j.mib.2024.102433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 02/15/2024]
Abstract
Our ability to control the growth of Gram-negative bacterial pathogens is challenged by rising antimicrobial resistance and requires new approaches. Endolysins are phage-derived enzymes that degrade peptidoglycan and therefore offer potential as antimicrobial agents. However, the outer membrane (OM) of Gram-negative bacteria impedes the access of externally applied endolysins to peptidoglycan. This review highlights recent advances in the discovery and characterization of natural endolysins that can breach the OM, as well as chemical and engineering approaches that increase antimicrobial efficacy of endolysins against Gram-negative pathogens.
Collapse
Affiliation(s)
- Hazel M Sisson
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Bioprotection Aotearoa, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Simon A Jackson
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Bioprotection Aotearoa, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Robert D Fagerlund
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Bioprotection Aotearoa, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Suzanne L Warring
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Bioprotection Aotearoa, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| |
Collapse
|
11
|
Liu B, Chang Z, Li Z, Liu R, Liu X. Prediction of key amino acids of Salmonella phage endolysin LysST-3 and detection of its mutants' activity. Arch Microbiol 2024; 206:151. [PMID: 38467842 DOI: 10.1007/s00203-024-03915-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/13/2024]
Abstract
Salmonella Typhimurium, a zoonotic pathogen, causes systemic and localized infection. The emergence of drug-resistant S. Typhimurium has increased; treating bacterial infections remains challenging. Phage endolysins derived from phages have a broader spectrum of bacteriolysis and better bacteriolytic activity than phages, and are less likely to induce drug resistance than antibiotics. LysST-3, the endolysin of Salmonella phage ST-3, was chosen in our study for its high lytic activity, broad cleavage spectrum, excellent bioactivity, and moderate safety profile. LysST-3 is a promising antimicrobial agent for inhibiting the development of drug resistance in Salmonella. The aim of this study is to investigate the molecular characteristics of LysST-3 through the prediction of key amino acid sites of LysST-3 and detection of its mutants' activity. We investigated its lytic effect on Salmonella and identified its key amino acid sites of interaction with substrate. LysST-3 may be a Ca2+, Mg2+ - dependent metalloenzyme. Its concave structure of the bottom "gripper" was found to be an important part of its amino acid active site. We identified its key sites (29P, 30T, 86D, 88 L, and 89 V) for substrate binding and activity using amino acid-targeted mutagenesis. Alterations in these sites did not affect protein secondary structure, but led to a significant reduction in the cleavage activity of the mutant proteins. Our study provides a basis for phage endolysin modification to target drug-resistant bacteria. Identifying the key amino acid site of the endolysin LysST-3 provides theoretical support for the functional modification of the endolysin and the development of subsequent effective therapeutic solutions.
Collapse
Affiliation(s)
- Bingxin Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Academy IV, Yanqihu Campus, Beijing, 101314, China.
| | - Zhankun Chang
- College of Resources and Environment, University of Chinese Academy of Sciences, Academy IV, Yanqihu Campus, Beijing, 101314, China
| | - Zong Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Academy IV, Yanqihu Campus, Beijing, 101314, China
| | - Ruyin Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Academy IV, Yanqihu Campus, Beijing, 101314, China
| | - Xinchun Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Academy IV, Yanqihu Campus, Beijing, 101314, China.
- Binzhou Institute of Technology, Building 9, Zhonghai Hotel, West of Huanghe 8th Road, Bincheng District, Binzhou, 256600, China.
| |
Collapse
|
12
|
Maan M, Goyal H, Joshi S, Barman P, Sharma S, Kumar R, Saini A. DP1, a multifaceted synthetic peptide: Mechanism of action, activity and clinical potential. Life Sci 2024; 340:122458. [PMID: 38266815 DOI: 10.1016/j.lfs.2024.122458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
AIMS Microbial infections remain a leading cause of mortality worldwide, with Staphylococcus aureus (S. aureus) being a prominent etiological agent, responsible for causing persistent bacterial infections in humans. It is a nosocomial, opportunistic pathogen, capable to propagate within the bloodstream and withstand therapeutic interventions. In the current study, a novel, indigenously designed synthetic antimicrobial peptide (sAMP) has been evaluated for its antimicrobial potential to inhibit the growth and proliferation of S. aureus. MAIN METHODS The sAMP, designed peptide (DP1) was evaluated for its minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against a panel of pathogenic bacterial strains. Membrane mechanistic studies were performed by measuring membrane conductivity via dielectric spectroscopy and visualizing changes in bacterial membrane structure through field emission scanning electron microscopy (FE-SEM). Further, DP1 was tested for its in vivo antimicrobial potential in an S. aureus-induced systemic infection model. KEY FINDINGS The results indicated that DP1 has the potential to inhibit the growth and proliferation of a broad spectrum of Gram-positive, Gram-negative and multidrug-resistant (MDR) bacterial strains. Strong bactericidal effect attributed to change in electrical conductivity of the bacterial cells leading to membrane disruption was observed through dielectric spectroscopy and FE-SEM micrographs. Further, in the in vivo murine systemic infection study, 50 % reduction in S. aureus bioburden was observed within 1 day of the administration of DP1. SIGNIFICANCE The results indicate that DP1 is a multifaceted peptide with potent bactericidal, antioxidant and therapeutic properties. It holds significance as a novel drug candidate to effectively combat S. aureus-mediated systemic infections.
Collapse
Affiliation(s)
- Mayank Maan
- Department of Biophysics, Panjab University, Chandigarh, U.T. 160014, India
| | - Hemant Goyal
- Department of Biophysics, Panjab University, Chandigarh, U.T. 160014, India
| | - Shubhi Joshi
- Department of Biophysics, Panjab University, Chandigarh, U.T. 160014, India
| | - Panchali Barman
- Institute of Forensic Science and Criminology (UIEAST), Panjab University, Chandigarh, U.T. 160014, India
| | - Sheetal Sharma
- Department of Biophysics, Panjab University, Chandigarh, U.T. 160014, India
| | - Rajesh Kumar
- Department of Physics, Panjab University, Chandigarh, U.T. 160014, India
| | - Avneet Saini
- Department of Biophysics, Panjab University, Chandigarh, U.T. 160014, India.
| |
Collapse
|
13
|
Dzuvor CKO, Shen HH, Haritos VS, He L. Coassembled Multicomponent Protein Nanoparticles Elicit Enhanced Antibacterial Activity. ACS NANO 2024; 18:4478-4494. [PMID: 38266175 DOI: 10.1021/acsnano.3c11179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
The waning pipeline of the useful antibacterial arsenal has necessitated the urgent development of more effective antibacterial strategies with distinct mechanisms to rival the continuing emergence of resistant pathogens, particularly Gram-negative bacteria, due to their explicit drug-impermeable, two-membrane-sandwiched cell wall envelope. Herein, we have developed multicomponent coassembled nanoparticles with strong bactericidal activity and simultaneous bacterial cell envelope targeting using a peptide coassembly strategy. Compared to the single-component self-assembled nanoparticle counterparts or cocktail mixtures of these at a similar concentration, coassembled multicomponent nanoparticles showed higher bacterial killing efficiency against Acinetobacter baumannii, Pseudomonas aeruginosa, and Escherichia coli by several orders of magnitude (about 100-1,000,000-fold increase). Comprehensive confocal and electron microscopy suggest that the superior antibacterial activity of the coassembled nanoparticles proceeds via multiple complementary mechanisms of action, including membrane destabilization, disruption, and cell wall hydrolysis, actions that were not observed with the single nanoparticle counterparts. To understand the fundamental working mechanisms behind the improved performance of coassembled nanoparticles, we utilized a "dilution effect" system where the antibacterial components are intermolecularly mixed and coassembled with a non-antibacterial protein in the nanoparticles. We suggest that coassembled nanoparticles mediate enhanced bacterial killing activity by attributes such as optimized local concentration, high avidity, cooperativity, and synergy. The nanoparticles showed no cytotoxic or hemolytic activity against tested eukaryotic cells and erythrocytes. Collectively, these findings reveal potential strategies for disrupting the impermeable barrier that Gram-negative pathogens leverage to restrict antibacterial access and may serve as a platform technology for potential nano-antibacterial design to strengthen the declining antibiotic arsenal.
Collapse
Affiliation(s)
- Christian K O Dzuvor
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Hsin-Hui Shen
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University Clayton, Victoria 3800, Australia
| | - Victoria S Haritos
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Lizhong He
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
14
|
Oh M, Cevallos-Urena A, Kim BS. Bacteriophages PECP14, PECP20, and their endolysins as effective biocontrol agents for Escherichia coli O157:H7 and other foodborne pathogens. Int J Food Microbiol 2024; 409:110460. [PMID: 37925886 DOI: 10.1016/j.ijfoodmicro.2023.110460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
Escherichia coli O157:H7 is a notorious foodborne pathogen known to cause severe illnesses such as hemolytic colitis and hemolytic uremic syndrome, with fresh produce consumption being implicated in recent outbreaks. The inappropriate use of antimicrobials to combat pathogens has led to the emergence and rapid dissemination of antimicrobial-resistant microorganisms including pathogenic E. coli, presenting a significant risk to humans. Here, we isolated two E. coli O157:H7 infecting bacteriophages, PECP14 and PECP20, from irrigation water and city sewage, respectively, as alternatives to antimicrobials. Both phages were stable for at least 16 h in a broad range of pH (pH 3-11) and temperature (4-40 °C) conditions and have a double-stranded DNA chromosome. PECP14 and PECP20, classified under the Epseptimavirus and Mosigvirus genera, respectively, exhibit specificity in targeting different host receptors, BtuB protein and lipopolysaccharide. Interestingly, these phages demonstrate the ability to infect not only E. coli O157:H7 but also other foodborne enteric pathogens like Shigella sonnei and S. flexneri. Upon mixing phages with their respective host bacteria, rapid adsorption (at least 68 % adsorption within 10 min) and substantial bacterial lysis were observed. The efficacy of phage treatment was further validated through the reduction of E. coli O157:H7 on radish sprouts. Moreover, purified endolysins, LysPECP14 and LysPECP20, derived from each phage exhibited remarkable bacteriolytic activity against E. coli O157:H7 cells pretreated with EDTA. In particular, the activity of LysPECP20 was also noticeable against Listeria monocytogenes and Bacillus cereus, suggesting its potential for broader antimicrobial applications in food industry. The combined results showed that the phages PECP14, PECP20, and their endolysins could be used for biological control of E. coli O157:H7 in various circumstances, from production, harvesting, and storage stages to processing and distribution steps of agricultural products.
Collapse
Affiliation(s)
- Minjin Oh
- Department of Food Science and Biotechnology, ELTEC College of Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Ana Cevallos-Urena
- Department of Food Science and Biotechnology, ELTEC College of Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Byoung Sik Kim
- Department of Food Science and Biotechnology, ELTEC College of Engineering, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
15
|
Santos MG, Nunes da Silva M, Vasconcelos MW, Carvalho SMP. Scientific and technological advances in the development of sustainable disease management tools: a case study on kiwifruit bacterial canker. FRONTIERS IN PLANT SCIENCE 2024; 14:1306420. [PMID: 38273947 PMCID: PMC10808555 DOI: 10.3389/fpls.2023.1306420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/21/2023] [Indexed: 01/27/2024]
Abstract
Plant disease outbreaks are increasing in a world facing climate change and globalized markets, representing a serious threat to food security. Kiwifruit Bacterial Canker (KBC), caused by the bacterium Pseudomonas syringae pv. actinidiae (Psa), was selected as a case study for being an example of a pandemic disease that severely impacted crop production, leading to huge economic losses, and for the effort that has been made to control this disease. This review provides an in-depth and critical analysis on the scientific progress made for developing alternative tools for sustainable KBC management. Their status in terms of technological maturity is discussed and a set of opportunities and threats are also presented. The gradual replacement of susceptible kiwifruit cultivars, with more tolerant ones, significantly reduced KBC incidence and was a major milestone for Psa containment - which highlights the importance of plant breeding. Nonetheless, this is a very laborious process. Moreover, the potential threat of Psa evolving to more virulent biovars, or resistant lineages to existing control methods, strengthens the need of keep on exploring effective and more environmentally friendly tools for KBC management. Currently, plant elicitors and beneficial fungi and bacteria are already being used in the field with some degree of success. Precision agriculture technologies, for improving early disease detection and preventing pathogen dispersal, are also being developed and optimized. These include hyperspectral technologies and forecast models for Psa risk assessment, with the latter being slightly more advanced in terms of technological maturity. Additionally, plant protection products based on innovative formulations with molecules with antibacterial activity against Psa (e.g., essential oils, phages and antimicrobial peptides) have been validated primarily in laboratory trials and with few compounds already reaching field application. The lessons learned with this pandemic disease, and the acquired scientific and technological knowledge, can be of importance for sustainably managing other plant diseases and handling future pandemic outbreaks.
Collapse
Affiliation(s)
- Miguel G. Santos
- GreenUPorto—Sustainable Agrifood Production Research Centre/Inov4Agro, DGAOT, Faculty of Sciences of the University of Porto, Vairão, Portugal
| | - Marta Nunes da Silva
- GreenUPorto—Sustainable Agrifood Production Research Centre/Inov4Agro, DGAOT, Faculty of Sciences of the University of Porto, Vairão, Portugal
- Universidade Católica Portuguesa, CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Marta W. Vasconcelos
- Universidade Católica Portuguesa, CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Susana M. P. Carvalho
- GreenUPorto—Sustainable Agrifood Production Research Centre/Inov4Agro, DGAOT, Faculty of Sciences of the University of Porto, Vairão, Portugal
| |
Collapse
|
16
|
Johnston W, Ware A, Kuiters WF, Delaney C, Brown JL, Hagen S, Corcoran D, Cummings M, Ramage G, Kean R. In vitro bacterial vaginosis biofilm community manipulation using endolysin therapy. Biofilm 2023; 5:100101. [PMID: 36655001 PMCID: PMC9841237 DOI: 10.1016/j.bioflm.2022.100101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Bacterial vaginosis (BV) affects approximately 26% of women of childbearing age globally, presenting with 3-5 times increased risk of miscarriage and two-fold risk of pre-term birth. Antibiotics (metronidazole and clindamycin) are typically employed to treat BV; however the success rate is low due to the formation of recalcitrant polymicrobial biofilms. As a novel therapeutic, promising results have been obtained in vitro using Gardnerella endolysins, although to date their efficacy has only been demonstrated against simple biofilm models. In this study, a four-species biofilm was developed consisting of Gardnerella vaginalis, Fannyhessea vaginae, Prevotella bivia and Mobiluncus curtisii. Biofilms were grown in NYC III broth and treated using antibiotics and an anti-Gardnerella endolysin (CCB7.1) for 24 h. Biofilm composition, viability and structure were assessed using colony counts, live/dead qPCR and scanning electron microscopy. All species colonised biofilms to varying degrees, with G. vaginalis being the most abundant. Biofilm composition remained largely unchanged when challenged with escalated concentrations of conventional antibiotics. A Gardnerella-targeted endolysin candidate (CCB7.1) showed efficacy against several Gardnerella species planktonically, and significantly reduced viable G. vaginalis within polymicrobial biofilms at 1 to 4X pMIC (p < 0.05 vs. vehicle control). Collectively, this study highlights the resilience of biofilm-embedded pathogens against the currently used antibiotics and provides a polymicrobial model that allows for more effective pre-clinical screening of BV therapies. The Gardnerella-specific endolysin CCB7.1 demonstrated significant activity against G. vaginalis within polymicrobial biofilms, altering the overall community dynamic and composition.
Collapse
Affiliation(s)
- William Johnston
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Cowcaddens Road, Glasgow, G4 0BA, United Kingdom
- Glasgow Biofilm Research Network, United Kingdom
| | - Alicia Ware
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Cowcaddens Road, Glasgow, G4 0BA, United Kingdom
- Glasgow Biofilm Research Network, United Kingdom
| | - Willemijn Frederique Kuiters
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Cowcaddens Road, Glasgow, G4 0BA, United Kingdom
| | - Christopher Delaney
- Glasgow Biofilm Research Network, United Kingdom
- Oral Sciences Research Group, University of Glasgow, 378 Sauchiehall Street, G2 3JZ, Glasgow, United Kingdom
| | - Jason Lee Brown
- Glasgow Biofilm Research Network, United Kingdom
- Oral Sciences Research Group, University of Glasgow, 378 Sauchiehall Street, G2 3JZ, Glasgow, United Kingdom
| | - Suzanne Hagen
- Midwifery and Allied Health Professions Research Unit, Glasgow Caledonian University, Cowcaddens Road, Glasgow, G4 0BA, United Kingdom
| | - David Corcoran
- CC Biotech Ltd, Imperial Translation and Innovation Hub, 84 Wood Lane, London, W12 0BZ, United Kingdom
| | - Matthew Cummings
- CC Biotech Ltd, Imperial Translation and Innovation Hub, 84 Wood Lane, London, W12 0BZ, United Kingdom
| | - Gordon Ramage
- Glasgow Biofilm Research Network, United Kingdom
- Oral Sciences Research Group, University of Glasgow, 378 Sauchiehall Street, G2 3JZ, Glasgow, United Kingdom
| | - Ryan Kean
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Cowcaddens Road, Glasgow, G4 0BA, United Kingdom
- Glasgow Biofilm Research Network, United Kingdom
| |
Collapse
|
17
|
Zermeño-Cervantes LA, Martínez-Díaz SF, Venancio-Landeros AA, Cardona-Félix CS. Evaluating the efficacy of endolysins and membrane permeabilizers against Vibrio parahaemolyticus in marine conditions. Res Microbiol 2023; 174:104104. [PMID: 37422006 DOI: 10.1016/j.resmic.2023.104104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 05/31/2023] [Accepted: 06/29/2023] [Indexed: 07/10/2023]
Abstract
Endolysins have garnered significant attention as a potential alternative to antibiotics in aquaculture, mainly for combating Vibrio spp., Gram-negative pathogens responsible for infectious outbreaks. However, endolysin effectiveness against Gram-negative bacteria is limited due to the outer membrane's poor permeability. The combat against marine pathogens poses an additional challenge of finding endolysins that retain their activity in high ionic strength conditions. Thus, this study aimed to demonstrate that certain endolysins retain muralytic activity in seawater and also evaluated outer membrane permeabilizers as endolysin adjuvants. The effectiveness of KZ144 and LysPA26 endolysins, along with EDTA and oregano essential oil, was evaluated against Vibrio parahaemolyticus ATCC-17802 in natural seawater. Results revealed the muralytic activity of both endolysins in seawater. However, the endolysins appeared to counteract the permeabilizers' effect during the initial bactericidal assays. Further investigations revealed that the observed effect was not antagonistic. After the permeabilizer action, V. parahaemolyticus likely used endolysins as a growth substrate. Endolysins may not play an indifferent role if they fail to exert a bactericidal effect. Instead, they can serve as a substrate for fast-growing bacteria, such as V. parahaemolyticus, increasing bacterial density. It should be considered a potential drawback of endolysins' proteinaceous nature as bactericidal agents.
Collapse
Affiliation(s)
- Lina Angélica Zermeño-Cervantes
- Instituto Politécnico Nacional-CICIMAR, Av. Instituto Politécnico Nacional S/N, Col. Playa Palo de Santa Rita, La Paz, B. C. S., CP. 23096, México.
| | - Sergio Francisco Martínez-Díaz
- Instituto Politécnico Nacional-CICIMAR, Av. Instituto Politécnico Nacional S/N, Col. Playa Palo de Santa Rita, La Paz, B. C. S., CP. 23096, México.
| | - Alberto Antony Venancio-Landeros
- Instituto Politécnico Nacional-CICIMAR, Av. Instituto Politécnico Nacional S/N, Col. Playa Palo de Santa Rita, La Paz, B. C. S., CP. 23096, México.
| | - César Salvador Cardona-Félix
- CONACyT-Instituto Politécnico Nacional-CICIMAR, Av. Instituto Politécnico Nacional S/N, Col. Playa Palo de Santa Rita, La Paz, B. C. S., CP. 23096, México.
| |
Collapse
|
18
|
Son B, Kim Y, Yu B, Kong M. Isolation and Characterization of a Weizmannia coagulans Bacteriophage Youna2 and Its Endolysin PlyYouna2. J Microbiol Biotechnol 2023; 33:1050-1056. [PMID: 37218442 PMCID: PMC10468668 DOI: 10.4014/jmb.2303.03021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023]
Abstract
Weizmannia coagulans (formerly Bacillus coagulans) is Gram-positive, and spore-forming bacteria causing food spoilage, especially in acidic canned food products. To control W. coagulans, we isolated a bacteriophage Youna2 from a sewage sludge sample. Morphological analysis revealed that phage Youna2 belongs to the Siphoviridae family with a non-contractile and flexible tail. Youna2 has 52,903 bp double-stranded DNA containing 61 open reading frames. There are no lysogeny-related genes, suggesting that Youna2 is a virulent phage. plyYouna2, a putative endolysin gene was identified in the genome of Youna2 and predicted to be composed of a N-acetylmuramoyl-L-alanine amidase domain (PF01520) at the N-terminus and unknown function DUF5776 domain (PF19087) at the C-terminus. While phage Youna2 has a narrow host range, infecting only certain strains of W. coagulans, PlyYouna2 exhibited a broad antimicrobial spectrum beyond the Bacillus genus. Interestingly, PlyYouna2 can lyse Gram-negative bacteria such as Escherichia coli, Yersinia enterocolitica, Pseudomonas putida and Cronobacter sakazakii without other additives to destabilize bacterial outer membrane. To the best of our knowledge, Youna2 is the first W. coagulans-infecting phage and we speculate its endolysin PlyYouna2 can provide the basis for the development of a novel biocontrol agent against various foodborne pathogens.
Collapse
Affiliation(s)
- Bokyung Son
- Department of Food Biotechnology, Dong-A University, Busan 49315, Republic of Korea
| | - Youna Kim
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Booyoung Yu
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Minsuk Kong
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| |
Collapse
|
19
|
Kim J, Wang J, Ahn J. Combined antimicrobial effect of phage-derived endolysin and depolymerase against biofilm-forming Salmonella Typhimurium. BIOFOULING 2023; 39:763-774. [PMID: 37795651 DOI: 10.1080/08927014.2023.2265817] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
This study was designed to evaluate the antimicrobial activity of phage-derived endolysin (LysPB32) and depolymerase (DpolP22) against planktonic and biofilm cells of Salmonella Typhimurium (STKCCM). Compared to the control, the numbers of STKCCM were reduced by 4.3 and 5.9 log, respectively, at LysPB32 and LysPB32 + DpolP22 in the presence of polymyxin B (PMB) after 48-h incubation at 37 °C. LysPB32 + DpolP22 decreased the relative fitness (0.8) and the cross-resistance of STKCCM to chloramphenicol (CHL), cephalothin (CEP), ciprofloxacin (CIP), and tetracycline (TET) in the presence of PMB. The MICtrt/MICcon ratios of CHL, CEP, CIP, PMB, and TET were between 0.25 and 0.50 for LysPB32 + DpolP22 in the presence of PMB. These results suggest that the application of phage-encoded enzymes with antibiotics can be a promising approach for controlling biofilm formation on medical and food-processing equipment. This is noteworthy in that the application of LysPB32 + DpolP22 could increase antibiotic susceptibility and decrease cross-resistance to other antibiotics.
Collapse
Affiliation(s)
- Junhwan Kim
- Department of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Jun Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Juhee Ahn
- Department of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
- Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
20
|
Petrzik K. Peptidoglycan Endopeptidase from Novel Adaiavirus Bacteriophage Lyses Pseudomonas aeruginosa Strains as Well as Arthrobacter globiformis and A. pascens Bacteria. Microorganisms 2023; 11:1888. [PMID: 37630448 PMCID: PMC10458142 DOI: 10.3390/microorganisms11081888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
A novel virus lytic for Pseudomonas aeruginosa has been purified. Its viral particles have a siphoviral morphology with a head 60 nm in diameter and a noncontractile tail 184 nm long. The dsDNA genome consists of 16,449 bp, has cohesive 3' termini, and encodes 28 putative proteins in a single strain. The peptidoglycan endopeptidase encoded by ORF 16 was found to be the lytic enzyme of this virus. The recombinant, purified enzyme was active up to 55 °C in the pH range 6-9 against all tested isolates of P. aeruginosa, but, surprisingly, also against the distant Gram-positive micrococci Arthrobacter globiformis and A. pascens. Both this virus and its endolysin are further candidates for possible treatment against P. aeruginosa and probably also other bacteria.
Collapse
Affiliation(s)
- Karel Petrzik
- Institute of Plant Molecular Biology, Biology Centre of the Czech Academy of Sciences, Branisovska 1160/31, 370 05 Ceske Budejovice, Czech Republic
| |
Collapse
|
21
|
Jędrusiak A, Fortuna W, Majewska J, Górski A, Jończyk-Matysiak E. Phage Interactions with the Nervous System in Health and Disease. Cells 2023; 12:1720. [PMID: 37443756 PMCID: PMC10341288 DOI: 10.3390/cells12131720] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
The central nervous system manages all of our activities (e.g., direct thinking and decision-making processes). It receives information from the environment and responds to environmental stimuli. Bacterial viruses (bacteriophages, phages) are the most numerous structures occurring in the biosphere and are also found in the human organism. Therefore, understanding how phages may influence this system is of great importance and is the purpose of this review. We have focused on the effect of natural bacteriophages in the central nervous system, linking them to those present in the gut microbiota, creating the gut-brain axis network, as well as their interdependence. Importantly, based on the current knowledge in the field of phage application (e.g., intranasal) in the treatment of bacterial diseases associated with the brain and nervous system, bacteriophages may have significant therapeutic potential. Moreover, it was indicated that bacteriophages may influence cognitive processing. In addition, phages (via phage display technology) appear promising as a targeted therapeutic tool in the treatment of, among other things, brain cancers. The information collected and reviewed in this work indicates that phages and their impact on the nervous system is a fascinating and, so far, underexplored field. Therefore, the aim of this review is not only to summarize currently available information on the association of phages with the nervous system, but also to stimulate future studies that could pave the way for novel therapeutic approaches potentially useful in treating bacterial and non-bacterial neural diseases.
Collapse
Affiliation(s)
- Adam Jędrusiak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (A.J.); (J.M.); (A.G.)
| | - Wojciech Fortuna
- Department of Neurosurgery, Wroclaw Medical University, Borowska 213, 54-427 Wroclaw, Poland;
- Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Joanna Majewska
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (A.J.); (J.M.); (A.G.)
| | - Andrzej Górski
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (A.J.); (J.M.); (A.G.)
- Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
- Infant Jesus Hospital, The Medical University of Warsaw, 02-006 Warsaw, Poland
| | - Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (A.J.); (J.M.); (A.G.)
| |
Collapse
|
22
|
Lopez MES, Gontijo MTP, Cardoso RR, Batalha LS, Eller MR, Bazzolli DMS, Vidigal PMP, Mendonça RCS. Complete genome analysis of Tequatrovirus ufvareg1, a Tequatrovirus species inhibiting Escherichia coli O157:H7. Front Cell Infect Microbiol 2023; 13:1178248. [PMID: 37274318 PMCID: PMC10236363 DOI: 10.3389/fcimb.2023.1178248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/27/2023] [Indexed: 06/06/2023] Open
Abstract
Introduction Bacteriophages infecting human pathogens have been considered potential biocontrol agents, and studying their genetic content is essential to their safe use in the food industry. Tequatrovirus ufvareg1 is a bacteriophage named UFV-AREG1, isolated from cowshed wastewater and previously tested for its ability to inhibit Escherichia coli O157:H7. Methods T. ufvareg1 was previously isolated using E. coli O157:H7 (ATCC 43895) as a bacterial host. The same strain was used for bacteriophage propagation and the one-step growth curve. The genome of the T. ufvareg1 was sequenced using 305 Illumina HiSeq, and the genome comparison was calculated by VIRIDIC and VIPTree. Results Here, we characterize its genome and compare it to other Tequatrovirus. T. ufvareg1 virions have an icosahedral head (114 x 86 nm) and a contracted tail (117 x 23 nm), with a latent period of 25 min, and an average burst size was 18 phage particles per infected E. coli cell. The genome of the bacteriophage T. ufvareg1 contains 268 coding DNA sequences (CDS) and ten tRNA genes distributed in both negative and positive strains. T. ufvareg1 genome also contains 40 promoters on its regulatory regions and two rho-independent terminators. T. ufvareg1 shares an average intergenomic similarity (VIRIDC) of 88.77% and an average genomic similarity score (VipTree) of 88.91% with eight four reference genomes for Tequatrovirus available in the NCBI RefSeq database. The pan-genomic analysis confirmed the high conservation of Tequatrovirus genomes. Among all CDS annotated in the T. ufvareg1 genome, there are 123 core genes, 38 softcore genes, 94 shell genes, and 13 cloud genes. None of 268 CDS was classified as being exclusive of T. ufvareg1. Conclusion The results in this paper, combined with other previously published findings, indicate that T. ufvareg1 bacteriophage is a potential candidate for food protection against E. coli O157:H7 in foods.
Collapse
Affiliation(s)
- Maryoris Elisa Soto Lopez
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Departamento de Ingeniería de Alimentos, Universidad de Córdoba, Montería, Colombia
| | - Marco Tulio Pardini Gontijo
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Duke University, Durham, NC, United States
| | - Rodrigo Rezende Cardoso
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Laís Silva Batalha
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Monique Renon Eller
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | | |
Collapse
|
23
|
Hosokawa M, Iwai N, Arikawa K, Saeki T, Endoh T, Kamata K, Yoda T, Tsuda S, Takeyama H. Target enrichment of uncultured human oral bacteria with phage-derived molecules found by single-cell genomics. J Biosci Bioeng 2023:S1389-1723(23)00116-0. [PMID: 37188549 DOI: 10.1016/j.jbiosc.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023]
Abstract
Advances in culture-independent microbial analysis, such as metagenomics and single-cell genomics, have significantly increased our understanding of microbial lineages. While these methods have uncovered a large number of novel microbial taxa, many remain uncultured, and their function and mode of existence in the environment are still unknown. This study aims to explore the use of bacteriophage-derived molecules as probes for detecting and isolating uncultured bacteria. Here, we proposed multiplex single-cell sequencing to obtain massive uncultured oral bacterial genomes and searched prophage sequences from over 450 obtained human oral bacterial single-amplified genomes (SAGs). The focus was on the cell wall binding domain (CBD) in phage endolysin, and fluorescent protein-fused CBDs were generated based on several CBD gene sequences predicted from Streptococcus SAGs. The ability of the Streptococcus prophage-derived CBDs to detect and enrich specific Streptococcus species from human saliva while maintaining cell viability was confirmed by magnetic separation and flow cytometry. The approach to phage-derived molecule generation based on uncultured bacterial SAG is expected to improve the process of designing molecules that selectively capture or detect specific bacteria, notably from uncultured gram-positive bacteria, and will have applications in isolation and in situ detection of beneficial or pathogenic bacteria.
Collapse
Affiliation(s)
- Masahito Hosokawa
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; bitBiome, Inc., 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan; Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan; Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan; Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.
| | - Naoya Iwai
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Koji Arikawa
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; bitBiome, Inc., 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Tatsuya Saeki
- bitBiome, Inc., 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Taruho Endoh
- bitBiome, Inc., 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Kazuma Kamata
- bitBiome, Inc., 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Takuya Yoda
- bitBiome, Inc., 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Soichiro Tsuda
- bitBiome, Inc., 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Haruko Takeyama
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan; Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan; Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
24
|
Shen K, Shu M, Zhong C, Zhao Y, Bao S, Pan H, Wang S, Wu G. Characterization of a broad-spectrum endolysin rLysJNwz and its utility against Salmonella in foods. Appl Microbiol Biotechnol 2023; 107:3229-3241. [PMID: 37039849 DOI: 10.1007/s00253-023-12500-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 04/12/2023]
Abstract
Salmonella is a common foodborne pathogen worldwide. The use of bacteriophage-encoded endolysins as antimicrobial agents is a promising approach for controlling pathogenic contamination. In this context, a recombinant endolysin named rLysJNwz, consisting of a single domain falling with the L-alanogyl-D-glutamate peptidase-like family, was cloned, expressed, and characterized. The yield of rLysJNwz was about 25 mg/L. Synergy between 7.5 μg/mL rLysJNwz and 0.5 mmol/L EDTA could decrease the viable counts of Salmonella NCTC 8271 by 93.28%. A synergistic effect between rLysJNwz and polymyxin B was demonstrated, exhibiting the MIC of polymyxin B decreased by twofold. Specifically, rlysJNwz had strong thermostability at temperatures (4-95 °C) and maintained high activity at pHs from 5.0 to 11.0. rlysJNwz was a metal ion-dependent peptidase, which activated by divalent metal ions such as Zn2+, Mn2+, or Ca2+. Moreover, it was also found that the synergism of rlysJNwz and EDTA had bactericidal activities against a broad range of Gram-negative bacteria, including several multidrug-resistant bacteria. The application of rLysJNwz combined with EDTA was evaluated on contaminated eggs and lettuce for 60 min, displaying more than 86.7% and 86.5% reduction of viable Salmonella, respectively. Hence, these results suggest that rLysJNwz is a potential antibacterial agent to control Salmonella, especially antibiotic-resistant pathogen contamination in the field of food safety. KEY POINTS: • rLysJNwz shows lytic activities against a broad range of Gram-negative bacteria. • Endolysin rLysJNwz is a stable metalloenzyme and has high thermostability. • rLysJNwz and 0.5 mmol/L EDTA synergistically inactivate Salmonella on eggs and lettuce.
Collapse
Affiliation(s)
- Kaisheng Shen
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Mei Shu
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Chan Zhong
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yuanyang Zhao
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Shiwei Bao
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Hong Pan
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Shuchao Wang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Guoping Wu
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
25
|
Kim Y, Lee SM, Nong LK, Kim J, Kim SB, Kim D. Characterization of Klebsiella pneumoniae bacteriophages, KP1 and KP12, with deep learning-based structure prediction. Front Microbiol 2023; 13:990910. [PMID: 36762092 PMCID: PMC9902359 DOI: 10.3389/fmicb.2022.990910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/19/2022] [Indexed: 01/26/2023] Open
Abstract
Concerns over Klebsiella pneumoniae resistance to the last-line antibiotic treatment have prompted a reconsideration of bacteriophage therapy in public health. Biotechnological application of phages and their gene products as an alternative to antibiotics necessitates the understanding of their genomic context. This study sequenced, annotated, characterized, and compared two Klebsiella phages, KP1 and KP12. Physiological validations identified KP1 and KP12 as members of Myoviridae family. Both phages showed that their activities were stable in a wide range of pH and temperature. They exhibit a host specificity toward K. pneumoniae with a broad intraspecies host range. General features of genome size, coding density, percentage GC content, and phylogenetic analyses revealed that these bacteriophages are distantly related. Phage lytic proteins (endolysin, anti-/holin, spanin) identified by the local alignment against different databases, were subjected to further bioinformatic analyses including three-dimensional (3D) structure prediction by AlphaFold. AlphaFold models of phage lysis proteins were consistent with the published X-ray crystal structures, suggesting the presence of T4-like and P1/P2-like bacteriophage lysis proteins in KP1 and KP12, respectively. By providing the primary sequence information, this study contributes novel bacteriophages for research and development pipelines of phage therapy that ultimately, cater to the unmet clinical and industrial needs against K. pneumoniae pathogens.
Collapse
Affiliation(s)
- Youngju Kim
- Optipharm Inc., Cheongju-si, Chungcheongbuk-do, Republic of Korea,Department of Microbiology and Molecular Biology, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Sang-Mok Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Linh Khanh Nong
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Jaehyung Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Seung Bum Kim
- Department of Microbiology and Molecular Biology, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Donghyuk Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea,*Correspondence: Donghyuk Kim,
| |
Collapse
|
26
|
Endolysins of bacteriophage vB_Sal-S-S10 can naturally lyse Salmonella enteritidis. BMC Vet Res 2022; 18:410. [PMID: 36411417 PMCID: PMC9677904 DOI: 10.1186/s12917-022-03514-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/10/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The holin-endolysin lysis system plays an essential role in the phage life cycle. Endolysins are promising alternatives to antibiotics, and have been successfully used against Gram-positive bacteria. However, a few endolysins can externally lyse Gram-negative bacteria, due to the inaccessible peptidoglycan layer covered by the envelope. RESULTS This study investigated the lysis system of a new Siphoviridae bacteriophage vB_Sal-S-S10 (S10), which, that was isolated from broiler farms, was found to be able to infect 51.4% (37/72) of tested S. enteritidis strains. Phage S10 genome had a classic holin-endolysin lysis system, except that one holin and one endolysin gene were functionally annotated. The orf 22 adjacent to the lysis cassette was identified as a new endolysin gene. Antibacterial activity assays showed that holin had an intracellular penetrating activity against S. enteritidis 35; both endolysins acted on the cell envelope of S. enteritidis 35 and showed a natural extracellular antibacterial activity, leading to a ~ 1 log titer decrease in 30 min. Protein characterization of lysin1 and lysin2 revealed that the majority of the N-terminus and the C-terminus were hydrophobic amino acids or positively charged. CONCLUSION In this study, a new Salmonella phage vB_Sal-S-S10 (S10) was characterized and showed an ideal development prospect. Phage S10 has a classic holin-endolysin lysis system, carrying an overlapping holin-lysin gene and a novel lysin gene. Both endolysins coded by lysin genes could externally lyse S. enteritidis. The natural extracellular antibacterial character of endolysins would provide necessary information for the development of engineering endolysin as the antibiotic alternative against the infection with multidrug-resistant gram-negative bacteria.
Collapse
|
27
|
A Lysozyme Murein Hydrolase with Broad-Spectrum Antibacterial Activity from Enterobacter Phage myPSH1140. Antimicrob Agents Chemother 2022; 66:e0050622. [PMID: 35950843 PMCID: PMC9487488 DOI: 10.1128/aac.00506-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Bacteriophages and bacteriophage-derived peptidoglycan hydrolases (endolysins) present promising alternatives for the treatment of infections caused by multidrug resistant Gram-negative and Gram-positive pathogens. In this study, Gp105, a putative lysozyme murein hydrolase from Enterobacter phage myPSH1140 was characterized in silico, in vitro as well as in vivo using the purified protein. Gp105 contains a T4-type lysozyme-like domain (IPR001165) and belongs to Glycoside hydrolase family 24 (IPR002196). The putative endolysin indeed had strong antibacterial activity against Gram-negative pathogens, including E. cloacae, K. pneumoniae, P. aeruginosa, S. marcescens, Citrobacter sp., and A. baumannii. Also, an in vitro peptidoglycan hydrolysis assay showed strong activity against purified peptidoglycans. This study demonstrates the potential of Gp105 to be used as an antibacterial protein to combat Gram-negative pathogens.
Collapse
|
28
|
Wong KY, Megat Mazhar Khair MH, Song AAL, Masarudin MJ, Chong CM, In LLA, Teo MYM. Endolysins against Streptococci as an antibiotic alternative. Front Microbiol 2022; 13:935145. [PMID: 35983327 PMCID: PMC9378833 DOI: 10.3389/fmicb.2022.935145] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/07/2022] [Indexed: 11/21/2022] Open
Abstract
Multi-drug resistance has called for a race to uncover alternatives to existing antibiotics. Phage therapy is one of the explored alternatives, including the use of endolysins, which are phage-encoded peptidoglycan hydrolases responsible for bacterial lysis. Endolysins have been extensively researched in different fields, including medicine, food, and agricultural applications. While the target specificity of various endolysins varies greatly between species, this current review focuses specifically on streptococcal endolysins. Streptococcus spp. causes numerous infections, from the common strep throat to much more serious life-threatening infections such as pneumonia and meningitis. It is reported as a major crisis in various industries, causing systemic infections associated with high mortality and morbidity, as well as economic losses, especially in the agricultural industry. This review highlights the types of catalytic and cell wall-binding domains found in streptococcal endolysins and gives a comprehensive account of the lytic ability of both native and engineered streptococcal endolysins studied thus far, as well as its potential application across different industries. Finally, it gives an overview of the advantages and limitations of these enzyme-based antibiotics, which has caused the term enzybiotics to be conferred to it.
Collapse
Affiliation(s)
- Kuan Yee Wong
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Megat Hamzah Megat Mazhar Khair
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Adelene Ai-Lian Song
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Chou Min Chong
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Selangor, Malaysia
| | - Lionel Lian Aun In
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
- Lionel Lian Aun In,
| | - Michelle Yee Mun Teo
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
- *Correspondence: Michelle Yee Mun Teo,
| |
Collapse
|
29
|
Gontijo MTP, Teles MP, Vidigal PMP, Brocchi M. Expanding the Database of Signal-Anchor-Release Domain Endolysins Through Metagenomics. Probiotics Antimicrob Proteins 2022; 14:603-612. [PMID: 35525881 DOI: 10.1007/s12602-022-09948-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2022] [Indexed: 10/18/2022]
Abstract
Endolysins are bacteriophage-derived lytic enzymes with antimicrobial activity. The action of endolysins against Gram-negative bacteria remains a challenge due to the physical protection of the outer membrane. However, recent research has demonstrated that signal-anchor-release (SAR) endolysins permeate the outer membrane of Gram-negative bacteria. This study investigates 2628 putative endolysin genes identified in 183,298 bacteriophage genomes. Previously, bioinformatic approaches resulted in a database of 66 SAR endolysins. This manuscript almost doubles the list with 53 additional SAR endolysin candidates. Forty-eight of the putative SAR endolysins described in this study contained one muramidase catalytic domain, and five included additional cell wall-binding domains at the C-terminus. For the moment, SAR domains are found in four protein families: glycoside hydrolase family 19 (GH19), glycoside hydrolase family 24 (GH24), glycoside hydrolase family 25 (GH25), and glycoside hydrolase family 108 (GH108). These SAR lysis are clustered in eight groups based on biochemical properties and domain presence/absence. Therefore, in this study, we expand the arsenal of endolysin candidates that might act against Gram-negative bacteria and develop a consult database for antimicrobial proteins derived from bacteriophages.
Collapse
Affiliation(s)
- Marco Túlio Pardini Gontijo
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Rua Monteiro Lobato 255, Campinas, São Paulo, 13083-862, Brazil.
| | - Mateus Pereira Teles
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Rua Monteiro Lobato 255, Campinas, São Paulo, 13083-862, Brazil.,Faculdade de Farmácia, Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Rua Cândido Portinari 200, Campinas, São Paulo, 13083-862, Brazil
| | - Pedro Marcus Pereira Vidigal
- Núcleo de Análise de Biomoléculas (NuBioMol), Universidade Federal de Viçosa (UFV), Vila Gianetti, Casa 21, Campus da UFV, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Marcelo Brocchi
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Rua Monteiro Lobato 255, Campinas, São Paulo, 13083-862, Brazil
| |
Collapse
|
30
|
Identification and Characterization of a New Type of Holin-Endolysin Lysis Cassette in Acidovorax oryzae Phage AP1. Viruses 2022; 14:v14020167. [PMID: 35215761 PMCID: PMC8879335 DOI: 10.3390/v14020167] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/04/2022] [Accepted: 01/11/2022] [Indexed: 01/21/2023] Open
Abstract
Phages utilize lysis systems to allow the release of newly assembled viral particles that kill the bacterial host. This is also the case for phage AP1, which infects the rice pathogen Acidovorax oryzae. However, how lysis occurs on a molecular level is currently unknown. We performed in silico bioinformatics analyses, which indicated that the lysis cassette contains a holin (HolAP) and endolysin (LysAP), which are encoded by two adjacent genes. Recombinant expression of LysAP caused Escherichia coli lysis, while HolAP arrested growth. Co-expression of both proteins resulted in enhanced lysis activity compared to the individual proteins alone. Interestingly, LysAP contains a C-terminal region transmembrane domain, which is different from most known endolysins where a N-terminal hydrophobic region is found, with the potential to insert into the membrane. We show that the C-terminal transmembrane domain is crucial for protein localization and bacterial lysis in phage AP1. Our study characterizes the new phage lysis cassette and the mechanism to induce cell disruption, giving new insight in the understanding of phage life cycles.
Collapse
|