1
|
Shoara AA, Slavkovic S, Neves MAD, Bhoria P, Prifti V, Chen P, Donaldson LW, Beckett AN, Johnson PE, Ni H. Structural analyses of apolipoprotein A-IV polymorphisms Q360H and T347S elucidate the inhibitory effect against thrombosis. J Biol Chem 2025; 301:108392. [PMID: 40074081 DOI: 10.1016/j.jbc.2025.108392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/20/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Apolipoprotein A-IV (apoA-IV) is an abundant lipid-binding protein in blood plasma. We previously reported that apoA-IV, as an endogenous inhibitor, competitively binds platelet αIIbβ3 integrin from its N-terminal residues, reducing the potential risk of thrombosis. This study aims to investigate how the apoA-IVQ360H and apoA-IVT347S mutations affect the structure and function of apoA-IV. These mutations are linked to increased risk of cardiovascular diseases because of multiple single-nucleotide polymorphisms in the C-terminal region of apoA-IV. We postulate that the structural hindrance caused by the C-terminal motifs may impede the binding of apoA-IV to platelets at its N-terminal binding site. However, the mechanistic impact of Q360H and T347S polymorphisms on this intermolecular interaction and their potential contribution to the development of cardiovascular disease have not been adequately investigated. To address this, recombinant forms of human apoA-IVWT, apoA-IVQ360H, and apoA-IVT347S variants were produced, and the structural stability, dimerization, and molecular dynamics of the C terminus were examined utilizing biophysical techniques, including fluorescence anisotropy, fluorescence spectrophotometry, circular dichroism, and biolayer interferometry methods. Our results showed a decreased fraction of α-helix structure in apoA-IVQ360H and apoA-IVT347S compared with the WT, and the inhibitory effect of dimerized apoA-IV on platelet aggregation was reduced in apoA-IVQ360H and apoA-IVT347S variants. Binding kinetics of examined apoA-IV polymorphisms to platelet αIIbβ3 suggest a potential mechanism for increased risk of cardiovascular diseases in individuals with apoA-IVQ360H and apoA-IVT347S polymorphisms.
Collapse
Affiliation(s)
- Aron A Shoara
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada; Centre for Innovation, Canadian Blood Services, Toronto, Ontario, Canada; Royal Canadian Medical Service, Canadian Armed Forces, Ottawa, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Toronto Platelet Immunobiology Group, University of Toronto, Toronto, Ontario, Canada
| | - Sladjana Slavkovic
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada; Centre for Innovation, Canadian Blood Services, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Miguel A D Neves
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada; Centre for Innovation, Canadian Blood Services, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Preeti Bhoria
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada; Toronto Platelet Immunobiology Group, University of Toronto, Toronto, Ontario, Canada
| | - Viktor Prifti
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada; Toronto Platelet Immunobiology Group, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Pingguo Chen
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada; Centre for Innovation, Canadian Blood Services, Toronto, Ontario, Canada; Toronto Platelet Immunobiology Group, University of Toronto, Toronto, Ontario, Canada
| | | | - Andrew N Beckett
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada; Centre for Innovation, Canadian Blood Services, Toronto, Ontario, Canada; Royal Canadian Medical Service, Canadian Armed Forces, Ottawa, Ontario, Canada
| | - Philip E Johnson
- Department of Chemistry, York University, Toronto, Ontario, Canada.
| | - Heyu Ni
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada; Centre for Innovation, Canadian Blood Services, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Toronto Platelet Immunobiology Group, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Khan N, Graham T, Franciszkiewicz K, Bloch S, Nejman-Faleńczyk B, Wegrzyn A, Donaldson LW. The NMR structure of the Orf63 lytic developmental protein from lambda bacteriophage. Sci Rep 2024; 14:3793. [PMID: 38360900 PMCID: PMC10869804 DOI: 10.1038/s41598-024-54508-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/13/2024] [Indexed: 02/17/2024] Open
Abstract
The orf63 gene resides in a region of the lambda bacteriophage genome between the exo and xis genes and is among the earliest genes transcribed during infection. In lambda phage and Shiga toxin (Stx) producing phages found in enterohemorrhagic Escherichia coli (EHEC) associated with food poisoning, Orf63 expression reduces the host survival and hastens the period between infection and lysis thereby giving it pro-lytic qualities. The NMR structure of dimeric Orf63 reveals a fold consisting of two helices and one strand that all make extensive intermolecular contacts. Structure-based data mining failed to identify any Orf63 homolog beyond the family of temperate bacteriophages. A machine learning approach was used to design an amphipathic helical ligand that bound a hydrophobic cleft on Orf63 with micromolar affinity. This approach may open a new path towards designing therapeutics that antagonize the contributions of Stx phages in EHEC outbreaks.
Collapse
Affiliation(s)
- Naushaba Khan
- Department of Biology, York University, Toronto, ON, M3J1P3, Canada
| | - Tavawn Graham
- Department of Biology, York University, Toronto, ON, M3J1P3, Canada
| | | | - Sylwia Bloch
- Department of Molecular Biology, University of Gdańsk, 80-308, Gdańsk, Poland
| | | | - Alicja Wegrzyn
- Phage Therapy Center, University Center for Applied and Interdisciplinary Research, University of Gdańsk, 80-822, Gdańsk, Poland
| | - Logan W Donaldson
- Department of Biology, York University, Toronto, ON, M3J1P3, Canada.
| |
Collapse
|
3
|
Bloch S, Nejman-Faleńczyk B, Licznerska K, Dydecka A, Topka-Bielecka G, Necel A, Węgrzyn A, Węgrzyn G. Complex effects of the exo-xis region of the Shiga toxin-converting bacteriophage Φ24 B genome on the phage development and the Escherichia coli host physiology. J Appl Genet 2024; 65:191-211. [PMID: 37968427 PMCID: PMC10789677 DOI: 10.1007/s13353-023-00799-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/17/2023]
Abstract
Lambdoid bacteriophages are excellent models in studies on molecular aspects of virus-host interactions. However, some of them carry genes encoding toxins which are responsible for virulence of pathogenic strains of bacteria. Shiga toxin-converting bacteriophages (Stx phages) encode Shiga toxins that cause virulence of enterohemorrhagic Escherichia coli (EHEC), and their effective production depends on Stx prophage induction. The exo-xis region of the lambdoid phage genome consists of genes which are dispensable for the phage multiplication under laboratory conditions; however, they might modulate the virus development. Nevertheless, their exact effects on the phage and host physiology remained unclear. Here, we present results of complex studies on the role of the exo-xis region of bacteriophage Φ24B, one of Stx2b phages. Transcriptomic analyses, together with proteomic and metabolomic studies, provided the basis for understanding the functions of the exo-xis region. Genes from this region promoted lytic development of the phage over lysogenization. Moreover, expression of the host genes coding for DnaK, DnaJ, GrpE, and GroELS chaperones was impaired in the cells infected with the Δexo-xis phage mutant, relative to the wild-type virus, corroborating the conclusion about lytic development promotion by the exo-xis region. Proteomic and metabolomic analyses indicated also modulation of gad and nrf operons, and levels of amino acids and acylcarnitines, respectively. In conclusion, the exo-xis region controls phage propagation and host metabolism by influencing expression of different phage and bacterial genes, directing the virus to the lytic rather than lysogenic developmental mode.
Collapse
Affiliation(s)
- Sylwia Bloch
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | | | | | | | | | - Agnieszka Necel
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Alicja Węgrzyn
- Phage Therapy Center, University Center for Applied and Interdisciplinary Research, University of Gdansk, Gdansk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland.
| |
Collapse
|
4
|
Goddard C, Nejman-Faleńczyk B, Donaldson LW. The NMR structure of the Ea22 lysogenic developmental protein from lambda bacteriophage. Sci Rep 2024; 14:2685. [PMID: 38302537 PMCID: PMC10834534 DOI: 10.1038/s41598-024-52996-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/25/2024] [Indexed: 02/03/2024] Open
Abstract
The ea22 gene resides in a relatively uncharacterized region of the lambda bacteriophage genome between the exo and xis genes and is among the earliest genes transcribed upon infection. In lambda and Shiga toxin-producing phages found in enterohemorrhagic E. coli (EHEC) associated with food poisoning, Ea22 favors a lysogenic over lytic developmental state. The Ea22 protein may be considered in terms of three domains: a short amino-terminal domain, a coiled-coiled domain, and a carboxy-terminal domain (CTD). While the full-length protein is tetrameric, the CTD is dimeric when expressed individually. Here, we report the NMR solution structure of the Ea22 CTD that is described by a mixed alpha-beta fold with a dimer interface reinforced by salt bridges. A conserved mobile loop may serve as a ligand for an unknown host protein that works with Ea22 to promote bacterial survival and the formation of new lysogens. From sequence and structural comparisons, the CTD distinguishes lambda Ea22 from homologs encoded by Shiga toxin-producing bacteriophages.
Collapse
Affiliation(s)
- Cameron Goddard
- Department of Biology, York University, Toronto, ON, M3J1P3, Canada
| | | | - Logan W Donaldson
- Department of Biology, York University, Toronto, ON, M3J1P3, Canada.
| |
Collapse
|