1
|
Xu P, Zhang D, Zhuo W, Zhou L, Du Y, Zhang P, Ma L, Wang Y. Characterization of a Highly Virulent Klebsiella michiganensis Strain Isolated from a Preterm Infant with Sepsis. Infect Drug Resist 2024; 17:4973-4983. [PMID: 39539743 PMCID: PMC11559207 DOI: 10.2147/idr.s481750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Purpose Klebsiella michiganensis is an opportunistic pathogen that causes an increasing number of serious infections. This study aimed to investigate the etiology of the severe clinical symptoms of sepsis in preterm infants and the characterization of K. michiganensis isolates. Patients and Methods Whole-genome sequencing (WGS) was performed on three strains isolated from an infected preterm infant. Additionally, the genomic sequences of 534 K. michiganensis strains were obtained from the NCBI database. To gain deeper insights into these strains, we utilized the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Clusters of Orthologous Groups (COG), and Pathogen Host Interactions (PHI) database annotation tools for comprehensive gene function analyses. Moreover, the multilocus sequence typing (MLST), EasyCGtree, and virulence factor database (VFDB) were employed to determine the sequence types (STs), construct phylogenetic trees, and identify potential virulence factors. Results Sequence analysis found that the three isolated strains had identical sequence characteristics and did not correspond to any of the known ST types. Virulence factor analysis revealed that the three strains harbored mrkABCDFHIJ, fimABCDEFGHIK, entABCDEFS, fepABCD, and capsule genes. These virulence factors are likely to play crucial roles in enhancing adhesion and metabolic capabilities, resisting phagocytosis (inducing immune cell damage), and ultimately contributing to prolonged bacteremia. The phylogenetic tree and comparative genomics of virulence factors showed the genetic and virulence factor diversity of the currently reported K. michiganensis strains. Conclusion We identified a novel strain of K. michiganensis that exhibits high virulence and leads to severe septicemia phenotypes in preterm infants. Furthermore, comparative genomic analysis of previously reported K. michiganensis strains revealed the existence of three clades. This comprehensive analysis provides novel insights into the genetic relationships and virulence factor profiles of diverse strains of K. michiganensis. In future, it will be necessary to investigate the concept of the high virulence of K. michiganensis to determine the treatment method.
Collapse
Affiliation(s)
- Panpan Xu
- Children’s Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Di Zhang
- Department of Neonatology, Children’s Hospital, Capital Institute of Pediatrics, Beijing, People’s Republic of China
| | - Wanqing Zhuo
- School of Life Sciences, Peking University, Beijing, People’s Republic of China
| | - Lin Zhou
- Department of Clinical Laboratory, Children’s Hospital Affiliated to Capital Institute of Pediatrics, Beijing, People’s Republic of China
| | - Yue Du
- Department of Neonatology, Children’s Hospital, Capital Institute of Pediatrics, Beijing, People’s Republic of China
| | - Peipei Zhang
- Children’s Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Lijuan Ma
- Department of Clinical Laboratory, Children’s Hospital Affiliated to Capital Institute of Pediatrics, Beijing, People’s Republic of China
| | - Yajuan Wang
- Department of Neonatology, Children’s Hospital, Capital Institute of Pediatrics, Beijing, People’s Republic of China
| |
Collapse
|
2
|
Venâncio de Godoy BL, do Valle Barroso M, Fontoura de Azeredo Lourenção Y, de Andrade LK, Tosta Rodrigues VG, Atuí C, do Valle AC, Ferreira TP, Nogueira MCL, Casella T. KPC-2-producing Enterobacterales from ready-to-eat food to hospitalized patients. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 121:105596. [PMID: 38643959 DOI: 10.1016/j.meegid.2024.105596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/28/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Foodstuffs are a well-documented source of multidrug-resistant bacteria, and hospitalized patients are usually susceptible to hospital infections owing to their immune status. Therefore, this study aimed to investigate the presence of beta-lactamase-producing Enterobacterales in ready-to-eat foods consumed by hospitalized patients. For this purpose, 51 vegetable and meat samples were collected over 2 months and analyzed. Enterobacterales isolates were identified and subjected to antimicrobial susceptibility testing, followed by beta-lactamase gene screening, pH tolerance assays, and whole-genome sequencing (WGS). Isolates harboring genes encoding extended-spectrum beta-lactamases, cephalosporinases, or carbapenemases were detected, and all isolates tolerated pH levels similar to those in the human gastrointestinal tract. The blaKPC-2 carriers were characterized by WGS and lineages closely related to those causing human infections were identified. These results showed that dietary intake is an alternative route for the transmission of antimicrobial-resistant bacteria, which must be considered when designing effective strategies for infection control.
Collapse
Affiliation(s)
- Bianca Lara Venâncio de Godoy
- Faculdade de Medicina de São José do Rio Preto, Centro de Investigação de Microrganismos, São José do Rio Preto, SP, Brazil
| | - Marlon do Valle Barroso
- Faculdade de Medicina de São José do Rio Preto, Centro de Investigação de Microrganismos, São José do Rio Preto, SP, Brazil
| | | | - Letícia Kellen de Andrade
- Faculdade de Medicina de São José do Rio Preto, Centro de Investigação de Microrganismos, São José do Rio Preto, SP, Brazil
| | | | - Caroline Atuí
- Centro Universitário de São José do Rio Preto, São José do Rio Preto, SP, Brazil
| | | | - Taís Paulino Ferreira
- Universidade Estadual Paulista "Júlio de Mesquita Filho", São José do Rio Preto, SP, Brazil
| | - Mara Corrêa Lelles Nogueira
- Faculdade de Medicina de São José do Rio Preto, Centro de Investigação de Microrganismos, São José do Rio Preto, SP, Brazil
| | - Tiago Casella
- Faculdade de Medicina de São José do Rio Preto, Centro de Investigação de Microrganismos, São José do Rio Preto, SP, Brazil.
| |
Collapse
|
3
|
Jiang T, Li G, Huang L, Ding D, Ruan Z, Yan J. Genomic and Phylogenetic Analysis of a Multidrug-Resistant blaNDM-carrying Klebsiella michiganensis in China. Infect Drug Resist 2023; 16:3109-3116. [PMID: 37228660 PMCID: PMC10202706 DOI: 10.2147/idr.s409544] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Objective Klebsiella michiganensis is an emerging hospital-acquired bacterial pathogen. However, there is a dearth of knowledge on the antimicrobial resistance and transmission of K. michiganensis. Here, we characterized the microbiological and genomic features of a carbapenem-resistant K. michiganensis strain harboring the blaNDM-1 gene in China. Methods K. michiganensis strain 2563 was recovered from the sputum sample of a hospitalized patient with pulmonary infection. Whole-genome sequencing of K. michiganensis strain 2563 was conducted using both the short-read Illumina and long-read MinION platforms to thoroughly characterize the genetic context of blaNDM-carrying plasmid in K. michiganensis 2563. Furthermore, BacWGSTdb server was utilized to perform in silico multilocus sequence typing (MLST), identify antimicrobial resistance genes, and conduct genomic epidemiological analyses of the closely related isolates deposited in the public database. Results K. michiganensis 2563 was resistant to piperacillin, aztreonam, meropenem, imipenem, amoxicillin-clavulanic acid, ampicillin, cefotaxime, cefazolin, ampicillin/sulbactam, cefepime, piperacillin-tazobactam, and ceftazidime. It belonged to sequence type (ST) 43, and the blaNDM-1 gene was found to be located on the plasmid p2563_NDM (54,035 bp). This plasmid showed remarkable similarity to other blaNDM-1-encoding plasmids found in various Enterobacterium species in the public database. The occurrence of global ST43 K. michiganensis was primarily sporadic, and the closest relative of K. michiganensis 2563 was another ST43 isolate 12,084 recovered from China in 2013, which differed by 171 SNPs. Conclusion Our study reports the genome characteristics of a carbapenem-resistant K. michiganensis strain carrying the blaNDM-1 gene in China, highlighting the need for ongoing surveillance of this pathogen in clinical settings.
Collapse
Affiliation(s)
- Tian Jiang
- Department of Clinical Laboratory, The Affiliated Wenling Hospital, Wenzhou Medical University, Wenling, People’s Republic of China
| | - Guoli Li
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Linyao Huang
- Department of Clinical Laboratory, The Affiliated Wenling Hospital, Wenzhou Medical University, Wenling, People’s Republic of China
| | - Ding Ding
- Department of Clinical Laboratory, The Affiliated Wenling Hospital, Wenzhou Medical University, Wenling, People’s Republic of China
| | - Zhi Ruan
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Jianxin Yan
- Department of Clinical Laboratory, The Affiliated Wenling Hospital, Wenzhou Medical University, Wenling, People’s Republic of China
| |
Collapse
|
4
|
Zhang N, Liu X, Qi L, Chen J, Qin S, Jin M, Yang X, Liu F, Guo J, Liu J, Wang C, Chen Y. A clinical KPC-producing Klebsiella michiganensis strain carrying IncFII/IncFIA (HI1)/IncFIB (K) multiple replicon plasmid. Front Microbiol 2023; 13:1086296. [PMID: 36687642 PMCID: PMC9845883 DOI: 10.3389/fmicb.2022.1086296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/09/2022] [Indexed: 01/05/2023] Open
Abstract
Klebsiella michiganensis is an increasingly important bacterial pathogen causing nosocomial infections in clinical patients. In this study, we described the molecular and genomic characteristics of a carbapenem-resistant K. michiganensis strain KM166 cultured from a one-month premature baby's blood sample. KM166 showed lower biofilm forming ability in optical density (OD) than K. pneumoniae NTUH-K2044 (0.271 ± 0.027 vs. 0.595 ± 0.054, p = 0.001), and the median lethal dose (0.684 lg CFU/mL) was lower than K. pneumoniae strain NTUH-K2044 (6.679 lg CFU/mL). A IncFII/IncFIA(HI1)/IncFIB(K) multiple replicon plasmid in KM166 was identified carrying three replicon types. It has low homology to Escherichia coli pMRY09-581ECO_1 and the highest homology similarity to the INcFIA/INcFII(p14)-type plasmid in K. michiganensis strain fxq plasmid pB_KPC, suggesting that this multiple replicon plasmid was unlikely to have been transmitted from E. coli and probably a transfer of repFIB replicon genes from other K. michiganensis strains into the INcFIA/INcFII(p14)-type plasmid of KM166 had occurred. Mapping of the gene environment revealed that bla KPC-2 in KM166 plasmid 3 had high identity and same Tn3-tnpR-IS481-bla KPC-2-klcA_1 genomic context structure with K. pneumoniae strain JKP55, plasmid pKPC-J5501, and bla KPC-2-carrying plasmid proved to be autonomously transferred under the help of mobile genetic elements into Escherichia coli 600 by plasmid conjugation experiment. In conclusion, we have characterized a K. michiganensis strain carrying multi-replicon IncFII/IncFIA(HI1)/IncFIB(K) plasmid and bla KPC-2-carrying IncFII(p14)/IncFIA plasmid in this study, which provided insights about the evolutionary diversity of plasmids carried by K. michiganensis.
Collapse
Affiliation(s)
- Na Zhang
- School of Public Health, China Medical University, Shenyang, Liaoning province, China,Department of Emergency Response, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Xiong Liu
- Department of Information, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Lihua Qi
- Department of Clinical Laboratory, Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jiali Chen
- School of Public Health, China Medical University, Shenyang, Liaoning province, China,Department of Emergency Response, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Shiyu Qin
- Department of Emergency Response, Chinese PLA Center for Disease Control and Prevention, Beijing, China,College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China
| | - Meiling Jin
- School of Public Health, China Medical University, Shenyang, Liaoning province, China,Department of Emergency Response, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Xiaojing Yang
- School of Public Health, China Medical University, Shenyang, Liaoning province, China,Department of Emergency Response, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Fangni Liu
- School of Public Health, China Medical University, Shenyang, Liaoning province, China,Department of Emergency Response, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Jinpeng Guo
- Department of Emergency Response, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Jie Liu
- Department of Clinical Laboratory, Seventh Medical Center of Chinese PLA General Hospital, Beijing, China,Jie Liu,
| | - Changjun Wang
- School of Public Health, China Medical University, Shenyang, Liaoning province, China,Department of Emergency Response, Chinese PLA Center for Disease Control and Prevention, Beijing, China,College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China,Changjun Wang,
| | - Yong Chen
- Department of Emergency Response, Chinese PLA Center for Disease Control and Prevention, Beijing, China,*Correspondence: Yong Chen,
| |
Collapse
|
5
|
Chen H, Tao S, Li N, Wang F, Wang L, Tang Y, Liang W. Functional comparison of anti-restriction and anti-methylation activities of ArdA, KlcA, and KlcAHS from Klebsiella pneumoniae. Front Cell Infect Microbiol 2022; 12:916547. [PMID: 35967855 PMCID: PMC9366191 DOI: 10.3389/fcimb.2022.916547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Anti-restriction proteins are typically encoded by plasmids, conjugative transposons, or phages to improve their chances of entering a new bacterial host with a type I DNA restriction and modification (RM) system. The invading DNA is normally destroyed by the RM system. The anti-restriction proteins ArdA, KlcA, and their homologues are usually encoded on plasmid of carbapenemase-resistant Klebsiella pneumoniae. We found that the plasmid sequence and restriction proteins affected horizontal gene transfer, and confirmed the anti-restriction and anti-methylation activities of ArdA and KlcA during transformation and transduction. Among the three anti-restriction proteins, ArdA shows stronger anti-restriction and anti-methylation effects, and KlcAHS was weaker. KlcA shows anti-methylation only during transformation. Understanding the molecular mechanism underlying the clinical dissemination of K. pneumoniae and other clinically resistant strains from the perspective of restrictive and anti-restrictive systems will provide basic theoretical support for the prevention and control of multidrug-resistant bacteria, and new strategies for delaying or even controlling the clinical dissemination of resistant strains in the future.
Collapse
Affiliation(s)
- Huimin Chen
- Medical School of Jiangsu University, Zhenjiang, China
| | - Shuan Tao
- Medical School of Jiangsu University, Zhenjiang, China
| | - Na Li
- Department of Laboratory Medicine, Bengbu Medical College, Bengbu, China
| | - Fang Wang
- Department of Central Laboratory, Lianyungang Second People Hospital, Lianyungang, China
| | - Lei Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yu Tang
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Wei Liang, ; Yu Tang,
| | - Wei Liang
- Lianyungang Clinical College of Jiangsu University, Lianyungang, China
- *Correspondence: Wei Liang, ; Yu Tang,
| |
Collapse
|
6
|
Luo X, Zhang J, Yuan M, Mou S, Xu M, Hu D, Ma Q, Sun L, Li P, Song Z, Yu L, Mu K. Epidemiology of Klebsiella michiganensis Carrying Multidrug-Resistant IncHI5 Plasmids in the Southeast Coastal Area of China. Infect Drug Resist 2022; 15:1831-1843. [PMID: 35444429 PMCID: PMC9013925 DOI: 10.2147/idr.s358839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/26/2022] [Indexed: 12/18/2022] Open
Abstract
Purpose This study aimed to explore the genomic characterization of multidrug-resistant IncHI5-carrying Klebsiella michiganensis strains and detailed genomic dissection of the IncHI5 plasmids. Materials and Methods Through whole-genome sequencing, the IncHI5 plasmid pK92-qnrS was obtained from a single clinical K. michiganensis isolate K92. All complete genomes of K. michiganensis strains from the Genome database of NCBI were collected and used to construct a maximum likelihood (ML) phylogenetic tree. The epidemiology and geographic distribution of all the K. michiganensis strains were conducted. An extensive comparison of the seven IncHI5 plasmids of K. michiganensis (one from this study, six from GenBank) was applied. Results This study revealed that all K. michiganensis strains carrying IncHI5 plasmids from different clonal groups were located in the southeast coastal area of China. The backbone regions of IncHI5 plasmids were composed of replicon (repHI5B and repFIB), partition (parABC), and conjugal transfer (tra1/tra2). The main accessory resistant regions of IncHI5 could be divided into two categories, Tn1696-related region and Tn6535-related region. These seven IncHI5 plasmids carried multiple drug-resistance genes which were all mediated by the mobile genetic elements (MGEs). Conclusion Data presented here help to provide an overall in-depth understanding of epidemiology and geographic distribution of IncHI5-carrying K. michiganensis and the structure and evolutionary history of IncHI5 plasmids.
Collapse
Affiliation(s)
- Xinhua Luo
- Department of Clinical Laboratory Medicine, Taizhou Municipal Hospital Affiliated with Taizhou University, Taizhou, 318000, People’s Republic of China
| | - Jin Zhang
- Department of Clinical Laboratory Medicine, Taizhou Municipal Hospital Affiliated with Taizhou University, Taizhou, 318000, People’s Republic of China
| | - Min Yuan
- State Key Laboratory for Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People’s Republic of China
| | - Sihua Mou
- Department of Clinical Laboratory Medicine, Taizhou Municipal Hospital Affiliated with Taizhou University, Taizhou, 318000, People’s Republic of China
| | - Mengqiao Xu
- Department of Clinical Laboratory Medicine, Taizhou Municipal Hospital Affiliated with Taizhou University, Taizhou, 318000, People’s Republic of China
| | - Dakang Hu
- Department of Clinical Laboratory Medicine, Taizhou Municipal Hospital Affiliated with Taizhou University, Taizhou, 318000, People’s Republic of China
| | - Qinfei Ma
- Department of Clinical Laboratory Medicine, Taizhou Municipal Hospital Affiliated with Taizhou University, Taizhou, 318000, People’s Republic of China
| | - Lingfen Sun
- Department of Clinical Laboratory Medicine, Taizhou Municipal Hospital Affiliated with Taizhou University, Taizhou, 318000, People’s Republic of China
| | - Piaopiao Li
- Department of Clinical Laboratory Medicine, Taizhou Municipal Hospital Affiliated with Taizhou University, Taizhou, 318000, People’s Republic of China
| | - Zhiwei Song
- Department of Clinical Laboratory Medicine, Taizhou Municipal Hospital Affiliated with Taizhou University, Taizhou, 318000, People’s Republic of China
| | - Lianhua Yu
- Department of Clinical Laboratory Medicine, Taizhou Municipal Hospital Affiliated with Taizhou University, Taizhou, 318000, People’s Republic of China
- Lianhua Yu, Department of Clinical Laboratory Medicine, Taizhou Municipal Hospital affiliated with Taizhou University, Taizhou, 318000, People’s Republic of China, Email
| | - Kai Mu
- Beijing Institute of Radiation Medicine, Beijing, 100850, People’s Republic of China
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing, 100850, People’s Republic of China
- Correspondence: Kai Mu, Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing, 100850, People’s Republic of China, Tel +86-010-66874794, Email
| |
Collapse
|