1
|
Vitola I, Angulo C, Baptista-Rosas RC, Anaya-Esparza LM, Escalante-García ZY, Villarruel-López A, Silva-Jara JM. Prospects in the Use of Cannabis sativa Extracts in Nanoemulsions. BIOTECH 2024; 13:53. [PMID: 39727490 DOI: 10.3390/biotech13040053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
Cannabis sativa plants have been widely investigated for their specific compounds with medicinal properties. These bioactive compounds exert preventive and curative effects on non-communicable and infectious diseases. However, C. sativa extracts have barely been investigated, although they constitute an affordable option to treat human diseases. Nonetheless, antioxidant, antimicrobial, and immunogenicity effects have been associated with C. sativa extracts. Furthermore, innovative extraction methods in combination with nanoformulations have been proposed to increase desirable compounds' availability, distribution, and conservation, which can be aided by modern computational tools in a transdisciplinary approach. This review aims to describe available extraction and nanoformulation methods for C. sativa, as well as its known antioxidant, antimicrobial, and immunogenic activities. Critical points on the use of C. sativa extracts in nanoformulations are identified and some prospects are envisaged.
Collapse
Affiliation(s)
- Ian Vitola
- Departamento de Ingeniería Química, Universidad de Guadalajara, CUCEI, Blvd. Marcelino García Barragán 1421, Olímpica, Guadalajara 44430, Jalisco, Mexico
| | - Carlos Angulo
- Grupo de Inmunología y Vacunología, Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz 23096, Baja California Sur, Mexico
| | - Raul C Baptista-Rosas
- Departamento de Ciencias de la Salud-Enfermedad como Proceso Individual, CUTonalá, Universidad de Guadalajara, Nuevo Perif. Ote. 555, Ejido San José, Tateposco, Tonalá 45425, Jalisco, Mexico
- Hospital General de Occidente, Secretaría de Salud Jalisco, Av. Zoquipan 1050, Colonia Zoquipan, Zapopan 45170, Jalisco, Mexico
| | - Luis Miguel Anaya-Esparza
- Centro de Estudios Para la Agricultura, la Alimentación y la Crisis Climática, Centro Universitario de los Altos, Universidad de Guadalajara, Rafael Casillas Aceves 1200, Tepatitlán de Morelos 47600, Jalisco, Mexico
| | - Zazil Yadel Escalante-García
- Departamento de Ingeniería Química, Universidad de Guadalajara, CUCEI, Blvd. Marcelino García Barragán 1421, Olímpica, Guadalajara 44430, Jalisco, Mexico
| | - Angélica Villarruel-López
- Departamento de Farmacobiología, Universidad de Guadalajara, CUCEI, Blvd. Marcelino García Barragán 1421, Olímpica, Guadalajara 44430, Jalisco, Mexico
| | - Jorge Manuel Silva-Jara
- Departamento de Farmacobiología, Universidad de Guadalajara, CUCEI, Blvd. Marcelino García Barragán 1421, Olímpica, Guadalajara 44430, Jalisco, Mexico
| |
Collapse
|
2
|
Akbar R, Sun J, Bo Y, Khattak WA, Khan AA, Jin C, Zeb U, Ullah N, Abbas A, Liu W, Wang X, Khan SM, Du D. Understanding the Influence of Secondary Metabolites in Plant Invasion Strategies: A Comprehensive Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:3162. [PMID: 39599372 PMCID: PMC11597624 DOI: 10.3390/plants13223162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024]
Abstract
The invasion of non-native plant species presents a significant ecological challenge worldwide, impacting native ecosystems and biodiversity. These invasive plant species significantly affect the native ecosystem. The threat of invasive plant species having harmful effects on the natural ecosystem is a serious concern. Invasive plant species produce secondary metabolites, which not only help in growth and development but are also essential for the spread of these plant species. This review highlights the important functions of secondary metabolites in plant invasion, particularly their effect on allelopathy, defense system, interaction with micro soil biota, and competitive advantages. Secondary metabolites produced by invasive plant species play an important role by affecting allelopathic interactions and herbivory. They sometimes change the soil chemistry to make a viable condition for their proliferation. The secondary metabolites of invasive plant species inhibit the growth of native plant species by changing the resources available to them. Therefore, it is necessary to understand this complicated interaction between secondary metabolites and plant invasion. This review mainly summarizes all the known secondary metabolites of non-native plant species, emphasizing their significance for integrated weed management and research.
Collapse
Affiliation(s)
- Rasheed Akbar
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (R.A.)
- Department of Entomology, Faculty of Physical and Applied Sciences, The University of Haripur, Haripur 22062, Khyber Pakhtunkhwa, Pakistan
| | - Jianfan Sun
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (R.A.)
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yanwen Bo
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (R.A.)
| | - Wajid Ali Khattak
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Amir Abdullah Khan
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (R.A.)
| | - Cheng Jin
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (R.A.)
| | - Umar Zeb
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Najeeb Ullah
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Adeel Abbas
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (R.A.)
| | - Wei Liu
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiaoyan Wang
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Shah Masaud Khan
- Department of Horticulture, Faculty of Physical and Applied Sciences, The University of Haripur, Haripur 22062, Khyber Pakhtunkhwa, Pakistan
| | - Daolin Du
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (R.A.)
- Jingjiang College, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
3
|
Mazhar MW, Ishtiaq M, Maqbool M, Arshad A, Alshehri MA, Alhelaify SS, Alharthy OM, Shukry M, Sayed SM. Green synthesis of anethole-loaded zinc oxide nanoparticles enhances antibacterial strategies against pathogenic bacteria. Sci Rep 2024; 14:24671. [PMID: 39433801 PMCID: PMC11494018 DOI: 10.1038/s41598-024-74163-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024] Open
Abstract
The threat of antibiotic resistance is escalating, diminishing the effectiveness of numerous antibiotics due to the rapid development of resistant bacteria. In response, the use of green-synthesized nanoparticle, alone or combined with antimicrobial agents, appears promising. This study explores the effectiveness of zinc oxide nanoparticles (ZnONPs) synthesized using Loranthus cordifolius leaf extracts and subsequently coated with anethole. The fabrication of these nanoparticles was confirmed via UV-Vis, FTIR and TEM analyses, ensuring the nanoparticles were produced as intended. Utilizing a nanoprecipitation process that excludes evaporation and drying, a high drug loading capacity of 16.59% was accomplished. The encapsulation efficiency for anethole was recorded at 88.23 ± 4.98%. Antibacterial efficacy was assessed by com paring the green-synthesized ZnONPs (average size: 14.47 nm), anethole-loaded ZnONPs (average size: 14,75 nm), and commercially sourced ZnONPs. The ZnONPs with anethole demonstrated superior inhibition against all tested bacterial strains, including Gram-negative species like Pseudomonas aeruginosa and Escherichia coli, and Gram-positive species like Bacillus subtilis and Staphylococcus aureus, outperforming the commercially available ZnONPs. Additionally, anethole-coated ZnONPs showed the greatest inhibition of Gyr-B activity (IC50 = 0.78 ± 0.2 M), better than both green-synthesized and commercially available ZnONPs. These findings emphasize the enhanced antimicrobial properties of ZnONPs, particularly when combined with green synthesis and anethole loading, highlighting their potential in various biomedical applications.
Collapse
Affiliation(s)
- Muhammad Waqas Mazhar
- Department of Botany, Mirpur University of Science and Technology, Mirpur, 10250, Pakistan
| | - Muhammad Ishtiaq
- Department of Botany, Mirpur University of Science and Technology, Mirpur, 10250, Pakistan
- Department of Botany, Climate Change Research Centre, Herbarium and Biodiversity Conservation, Azad Jammu and Kashmir University of Bhimber (AJKUoB), Bhimber-10040 (AJK), Bhimber, Pakistan
| | - Mehwish Maqbool
- Department of Botany, Mirpur University of Science and Technology, Mirpur, 10250, Pakistan
| | - Anila Arshad
- Key Laboratory of Modern Agricultural Equipment and Technology, School of Agricultural Engineering (Jiangsu University), , Ministry of Education, Jiangsu University, Zhenjiang, 212013, PR China
| | - Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Seham Sater Alhelaify
- Department of Biotechnology, Faculty of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ohud Muslat Alharthy
- Department of Biotechnology, Faculty of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Samy M Sayed
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo Universiy, Giza, 12613, Egypt.
| |
Collapse
|
4
|
Mrani SA, Zejli H, Azzouni D, Fadili D, Alanazi MM, Hassane SOS, Sabbahi R, Kabra A, Moussaoui AE, Hammouti B, Taleb M. Chemical Composition, Antioxidant, Antibacterial, and Hemolytic Properties of Ylang-Ylang ( Cananga odorata) Essential Oil: Potential Therapeutic Applications in Dermatology. Pharmaceuticals (Basel) 2024; 17:1376. [PMID: 39459015 PMCID: PMC11510078 DOI: 10.3390/ph17101376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/12/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: This study investigates the chemical composition, antioxidant, antibacterial, and hemolytic properties of ylang-ylang (Cananga odorata) essential oil, with a focus on its potential therapeutic applications for dermatological diseases and the importance of transforming such bioactive properties into a stable, safe, and effective formulation. Methods/Rsults: Essential oils were extracted from flowers harvested in northern Grande Comore using hydro distillation at three different distillation times to examine the impact on yield and quality. Gas chromatographic analysis identified a complex mixture of compounds, including linalool, geranyl acetate, and benzyl benzoate. Antioxidant activity was assessed using DPPH, FRAP, TAC, and beta-carotene bleaching inhibition assays, revealing significant radical scavenging capabilities, with DPPH IC50 varying between 1.57 and 3.5 mg/mL. Antibacterial activity was tested against Escherichia coli, Staphylococcus aureus, Bacillus subtilis, and Pseudomonas aeruginosa, showing promising inhibition zones and minimum inhibitory concentrations. Hemolytic tests indicated varying degrees of red blood cell damage, emphasizing the need for careful concentration management in therapeutic applications. Molecular docking studies highlighted potential therapeutic targets for dermatological conditions, identifying high binding affinities for specific compounds against proteins involved in acne, eczema, and psoriasis. Conclusions: This comprehensive analysis underscores the potential of ylang-ylang essential oil (YEOs) as a natural alternative for antimicrobial treatments and dermatological applications, with its success dependent on optimized extraction methods and precise formulation to reduce cytotoxic effects. A formulation approach is crucial to ensure controlled release, improve bioavailability, and minimize skin irritation.
Collapse
Affiliation(s)
- Soukaina Alaoui Mrani
- Laboratory of Engineering, Electrochemistry, Modelling and Environment, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Hind Zejli
- Laboratory of Engineering, Electrochemistry, Modelling and Environment, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Dounia Azzouni
- Laboratory of Engineering, Electrochemistry, Modelling and Environment, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Driss Fadili
- Laboratory of Chemical Physics, Materials and Environment, Faculty of Science and Technology, Moulay Ismaïl University of Meknes, Errachidia 52003, Morocco
| | - Mohammed M. Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Rachid Sabbahi
- Research Team in Science and Technology, Higher School of Technology, University of Ibn Zohr, Laayoune 70000, Morocco
| | - Atul Kabra
- University Institute of Pharma Sciences, Chandigarh University, Mohali 140307, India
| | - Abdelfattah El Moussaoui
- Plant Biotechnology Team, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan 93002, Morocco
| | - Belkheir Hammouti
- Polytechnic School, Euro-Mediterranean University of Fez, Fez 30100, Morocco
| | - Mustapha Taleb
- Laboratory of Engineering, Electrochemistry, Modelling and Environment, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| |
Collapse
|
5
|
Keshavarz F, Soltanshahi M, Khosravani F, Bakhshiyan F, Ghanbari A, Hassanzadeh S, Amirpour M, Ghalamfarsa G. Thymol-loaded liposomes effectively induced apoptosis and decreased EGFR expression in colorectal cancer cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5157-5165. [PMID: 38240780 DOI: 10.1007/s00210-024-02945-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/09/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common and deadly cancers worldwide. Different factors, such as environmental and genetic factors and lifestyle, affect it. Owing to the presence of phenolic, alkaloid, antioxidant, and terpenoid compounds, herbal compounds can be effective in the treatment of various cancers. Thymol is a natural monoterpene phenol that is abundant in some plants and exerts several biological effects. The aim of this study was to investigate the apoptotic, anti-proliferative effect and EGFR gene expression under the influence of thymol-loaded nanoliposome in SW84 and SW111 cell lines derived from colorectal cancer. MATERIALS AND METHODS The lipid thin-film hydration method was used to synthesize thymol-loaded liposomes, and their characterization was performed using TEM, DLS, and HPLC analyses. SW84 and SW1111 cells were treated with thymol- and thymol-loaded liposomes at different doses, the inhibition of cell proliferation was evaluated using an MTT assay, the rate of apoptosis induction was assessed using flow cytometry, and EGFR gene expression was measured using real-time PCR. RESULTS The nanoparticles produced were spherical, uniform, and 200 ± 10 nm in size. HPLC analysis showed that approximately 98% thymol was loaded into the nanoliposome. The results of the MTT assay showed that thymol and thymol-nanoliposomes decreased the proliferation of SW84 and SW1111 cells in a concentration-dependent manner. The IC50 of thymol and thymol-nanoliposomes were 18 and 14.2 µg/ml for the SW48 cell line (P = 0.04) and 10.5 and 6.4 µg/ml for the SW1116 cell line (P = 0.001). Thymol-nanoliposomes significantly inhibited the proliferation of cancer cells compared to free thymol. Flow cytometry showed an increase in the percentage of apoptotic cells, especially in the thymol-nanoliposome group in the treated cells. Real-time PCR results also showed that thymol and thymol-nanoliposome both caused a decrease in the expression of EGFR genes in both cell lines, but this effect of decreasing gene expression was significantly higher in the thymol-nanoliposome group. CONCLUSIONS Our results showed that thymol-nanoliposomes reduced proliferation, increased apoptosis, and decreased EGFR expression in colorectal cancer-derived cell lines.
Collapse
Affiliation(s)
- Fatemeh Keshavarz
- Department of Immunology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Soltanshahi
- Department of Immunology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Khosravani
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Farzaneh Bakhshiyan
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Amir Ghanbari
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Sajad Hassanzadeh
- Department of Internal Medicine, School of Medicine, Yasuj University of Medical Sciences, Shahid Dr. Ghorban Ali Jalil Street, Yasuj, Iran
| | - Mozhgan Amirpour
- Department of Hematology and Blood Banking, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghasem Ghalamfarsa
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| |
Collapse
|
6
|
Nikkhah M, Habibi Najafi MB, Hashemi M. A novel antifungal nanoemulsion based on reuterin-assisted synergistic essential oils: Preparation and in vitro/in vivo characterization. Int J Food Microbiol 2024; 418:110735. [PMID: 38761714 DOI: 10.1016/j.ijfoodmicro.2024.110735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/28/2024] [Accepted: 05/03/2024] [Indexed: 05/20/2024]
Abstract
This research aimed to develop, optimize, and evaluate a new antifungal nanoemulsion system based on the crude reuterin-synergistic essential oils (EOs) hybrid to overcome the EOs application limits. At first, the antifungal effects of the Lactobacillus plantarum and Lactobacillus reuteri cell-free extracts (CFE) were tested against the Botrytis cinerea, Penicillium expansum, and Alternaria alternata as indicator fungus using broth microdilution method. The L. reuteri CFE with the MIC of 125 μL/mL for B. cinerea and 250 μL/mL for P. expansum and A. alternata showed more inhibitory effects than L. plantarum. Next, reuterin as a significant antibacterial compound in the L. reuteri CFE was induced in glycerol-containing culture media. To reach a nanoemulsion with maximum antifungal activity and stability, the reuterin concentration, Tween 80 %, and ultrasound time were optimized using response surface methodology (RSM) with a volumetric constant ratio of 5 % v/v oil phase including triple synergistic EOs (thyme, cinnamon, and rosemary) at MIC concentrations. Based on the Box-Behnken Design, the maximum antifungal effect was observed in the treatment with 40 mM reuterin, 1 % Tween 80, and 3 min of ultrasound. The growth inhibitory diameter zones of B. cinerea, P. expansum, and A. alternata were estimated 6.15, 4.25, and 4.35 cm in optimum nanoemulsion, respectively. Also, the minimum average particle size diameter (16.3 nm) was observed in nanoemulsion with reuterin 40 mM, Tween 80 5 %, and 3 min of ultrasound treatment. Zeta potential was relatively high within -30 mV range in all designed nanoemulsions which indicates the nanoemulsion's stability. Also, the prepared nanoemulsions, despite initial particle size showed good stability in a 90-d storage period at 25 °C. In vivo assay, showed a significant improvement in the protection of apple fruit treated with reuterin-EOs nanoemulsions against fungal spoilage compared to free reuterin nanoemulsion. Treatment of apples with nanoemulsion containing 40 mM reuterin showed a maximum inhibitory effect on B. cinerea (5.1 mm lesion diameter compared to 29.2 mm for control fruit) within 7 d at 25 °C. In summary, the present study demonstrated that reuterin-synergistic EOs hybrid with boosted antifungal activities can be considered as a biopreservative for food applications.
Collapse
Affiliation(s)
- Mehdi Nikkhah
- Department of Microbial Biotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), 3135933151 Karaj, Iran; Institute of Agricultural Education & Extension (IATE), Agricultural Research, Education and Extension Organization (AREEO), 1457896681 Tehran, Iran
| | - Mohammad B Habibi Najafi
- Ferdowsi University of Mashhad, Faculty of Agriculture, Department of Food Science and Technology, P.O. Box 91775-1163, Mashhad, Iran
| | - Maryam Hashemi
- Department of Microbial Biotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), 3135933151 Karaj, Iran.
| |
Collapse
|
7
|
Borges JC, de Almeida Campos LA, Kretzschmar EAM, Cavalcanti IMF. Incorporation of essential oils in polymeric films for biomedical applications. Int J Biol Macromol 2024; 269:132108. [PMID: 38710258 DOI: 10.1016/j.ijbiomac.2024.132108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/18/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Natural and synthetic biodegradable polymers are widely used to obtain more sustainable films with biological, physicochemical, and mechanical properties for biomedical purposes. The incorporation of essential oils (EOs) in polymeric films can optimize the biological activities of these EOs, protect them from degradation, and serve as a prototype for new biotechnological products. This article aims to discuss updates over the last 10 years on incorporating EOs into natural and synthetic biodegradable polymer films for biomedical applications. Chitosan, alginates, cellulose, and proteins such as gelatine, silk, and zein are among the natural polymers most commonly used to prepare biodegradable films for release EOs. In addition to these, the most cited synthetic biodegradable polymers are poly(L-lactide) (PLA), poly(vinyl alcohol) (PVA), and poly(ε-caprolactone) (PCL). The EOs of clove, cinnamon, tea tree, eucalyptus, frankincense, lavender, thyme and oregano incorporated into polymeric films have been the most studied EOs in recent years in the biomedical field. Biomedical applications include antimicrobial activity against pathogenic bacteria and fungi, anticancer activity, potential for tissue engineering and regeneration with scaffolds and wound healing as dressings. Thus, this article reports on the importance of incorporating EOs into biodegradable polymer films, making these systems especially attractive for various biomedical applications.
Collapse
Affiliation(s)
- Joyce Cordeiro Borges
- Federal University of Pernambuco (UFPE), Keizo Asami Institute (iLIKA), Recife, Pernambuco, Brazil
| | | | | | - Isabella Macário Ferro Cavalcanti
- Federal University of Pernambuco (UFPE), Keizo Asami Institute (iLIKA), Recife, Pernambuco, Brazil; Federal University of Pernambuco (UFPE), Laboratory of Microbiology and Immunology, Academic Center of Vitória (CAV), Vitória de Santo Antão, Pernambuco, Brazil.
| |
Collapse
|
8
|
Tița O, Constantinescu MA, Rusu L, Tița MA. Natural Polymers as Carriers for Encapsulation of Volatile Oils: Applications and Perspectives in Food Products. Polymers (Basel) 2024; 16:1026. [PMID: 38674945 PMCID: PMC11054478 DOI: 10.3390/polym16081026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/30/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The technique of encapsulating different materials into matrices that can both protect and release their contents under specific circumstances is known as encapsulation. It serves the primary function of shielding delicate components from outside influences, including heat, light, and humidity. This can be accomplished by a variety of procedures that, depending on the method and materials selected, result in the creation of particles with various structures. The materials used for encapsulation in food applications must be of high quality, acceptable for human consumption, and stable during processing and storage. The most suitable natural polymers for food applications are carbohydrates, proteins, or mixtures thereof. Volatile oils are end products of plant metabolism, accumulated and stored in various plant organs, cells, or secretory tissues. These are natural and are characterized by the scent of the aromatic plants they come from. Because of their antibacterial and antioxidant qualities, they are being utilized more and more in the food and pharmaceutical industries. Since volatile oils are highly sensitive to environmental changes, they must be stored under specific conditions after being extracted from a variety of plant sources. A promising method for increasing the applicability of volatile oils is their encapsulation into colloidal particles by natural polymers such as carbohydrates and proteins. Encapsulation hides the unfavorable taste of nutrients while shielding delicate dietary ingredients from the effects of heat, moisture, oxygen, and pH. This technique results in improved stability for volatile oils that are often sensitive to environmental factors and offers the possibility of using them in an aqueous system even if they are insoluble in water. This paper aims to provide an overview of the current advances in volatile oil encapsulation technologies and presents a variety of natural polymers used in the food industry for encapsulation. Also, a distinct section is created to highlight the current advances in dairy products enriched with encapsulated volatile oils.
Collapse
Affiliation(s)
- Ovidiu Tița
- Department of Agricultural Sciences and Food Engineering, Lucian Blaga University of Sibiu, Doctor Ion Rațiu No. 7, 550012 Sibiu, Romania; (O.T.); (M.A.T.)
| | - Maria Adelina Constantinescu
- Department of Agricultural Sciences and Food Engineering, Lucian Blaga University of Sibiu, Doctor Ion Rațiu No. 7, 550012 Sibiu, Romania; (O.T.); (M.A.T.)
| | - Lăcrămioara Rusu
- Department of Chemical Engineering and Food, Vasile Alecsandri University of Bacău, 600115 Bacău, Romania
| | - Mihaela Adriana Tița
- Department of Agricultural Sciences and Food Engineering, Lucian Blaga University of Sibiu, Doctor Ion Rațiu No. 7, 550012 Sibiu, Romania; (O.T.); (M.A.T.)
| |
Collapse
|
9
|
Lingamgunta S, Xiao Y, Choi H, Christie G, Fruk L. Microwave-enhanced antibacterial activity of polydopamine-silver hybrid nanoparticles. RSC Adv 2024; 14:8331-8340. [PMID: 38469191 PMCID: PMC10926840 DOI: 10.1039/d3ra07543e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/26/2024] [Indexed: 03/13/2024] Open
Abstract
The ever-increasing risks posed by antibiotic-resistant bacteria have stimulated considerable interest in the development of novel antimicrobial strategies, including the use of nanomaterials that can be activated on demand and result in irreversible damage to pathogens. Microwave electric field-assisted bactericidal effects on representative Gram-negative and Gram-positive bacterial strains were achieved in the presence of hybrid polydopamine-silver nanoparticles (PDA-Ag NPs) under low-power microwave irradiation using a resonant cavity (1.3 W, 2.45 GHz). A 3-log reduction in the viability of bacterial populations was observed within 30 minutes which was attributed to the attachment of PDA-Ag NPs and associated membrane disruption in conjunction with the production of intra-bacterial reactive oxygen species (ROS). A synergistic effect between PDA and Ag has been demonstrated whereby PDA acts both as an Ag NP carrier and a microwave enhancer. These properties together with the remarkable adhesivity of PDA are opening a route to design of antibacterial adhesives and surface coatings for prevention of biofilm formation.
Collapse
Affiliation(s)
- Swetha Lingamgunta
- Department of Chemical Engineering and Biotechnology, University of Cambridge Cambridge UK
| | - Yao Xiao
- Department of Chemical Engineering and Biotechnology, University of Cambridge Cambridge UK
| | | | - Graham Christie
- Department of Chemical Engineering and Biotechnology, University of Cambridge Cambridge UK
| | - Ljiljana Fruk
- Department of Chemical Engineering and Biotechnology, University of Cambridge Cambridge UK
| |
Collapse
|
10
|
Weisany W, Yousefi S, Soufiani SP, Pashang D, McClements DJ, Ghasemlou M. Mesoporous silica nanoparticles: A versatile platform for encapsulation and delivery of essential oils for food applications. Adv Colloid Interface Sci 2024; 325:103116. [PMID: 38430728 DOI: 10.1016/j.cis.2024.103116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 03/05/2024]
Abstract
Essential oils (EOs) are biologically active and volatile substances that have found widespread applications in the food, cosmetics, and pharmaceutical industries. However, there are some challenges to their commercial utilization due to their high volatility, susceptibility to degradation, and hydrophobicity. In their free form, EOs can quickly evaporate, as well as undergo degradation reactions like oxidation, isomerization, dehydrogenation, or polymerization when exposed to light, heat, or air. Encapsulating EOs within mesoporous silica nanoparticles (MSNPs) could overcome these limitations and thereby broaden their usage. MSNPs may endow protection and slow-release properties to EOs, thereby extending their stability, enhancing their efficacy, and improving their dispersion in aqueous environments. This review explores and compares the design and development of different MSNP-based nanoplatforms to encapsulate, protect, and release EOs. Initially, a brief overview of the various types of available MSNPs, their properties, and their synthesis methods is given to better understand their roles as carriers for EOs. Several encapsulation technologies are then examined, including solvent-based and solvent-free methods. The suitability of each technology for EO encapsulation, as well as its impact on their stability and release, is discussed in detail. Opportunities and challenges for using EO-loaded MSNPs as preservatives, flavor enhancers, and antimicrobial agents in the food industry are then highlighted. Overall, this review aims to bridge a knowledge gap by providing a thorough understanding of EO encapsulation within MSNPs, which should facilitate the application of this technology in the food industry.
Collapse
Affiliation(s)
- Weria Weisany
- Department of Agriculture and Food Science, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Shima Yousefi
- Department of Agriculture and Food Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Solmaz Pourbarghi Soufiani
- Department of Agriculture and Food Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Danial Pashang
- Department of Agriculture and Food Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - David Julian McClements
- Biopolymers & Colloids Research Laboratory, Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Mehran Ghasemlou
- School of Science, STEM College, RMIT University, Melbourne, VIC 3083, Australia; Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, VIC 3216, Australia.
| |
Collapse
|
11
|
Pandey S, Kumari S, Manohar Aeshala L, Singh S. Investigating temperature variability on antioxidative behavior of synthesized cerium oxide nanoparticle for potential biomedical application. J Biomater Appl 2024; 38:866-874. [PMID: 38173143 DOI: 10.1177/08853282231226037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Cerium oxide nanoparticles (CNP) have garnered significant attention due to their versatile redox properties and wound-healing applications. The antioxidative nature of CNP is due to its ability to be oxidized and reduced, followed by the capture or release of oxygen which is used for scavenging reactive oxygen species (ROS). Herein, CNP is produced through a wet chemistry approach and its tunable redox property is tested across a range of temperatures. The synthesized CNP was observed to reveal the signature peak at 245 nm indicating a high Ce+3/Ce+4 ratio. Towards evaluating the redox antioxidative behavior, CNPs were subjected to a comprehensive analysis for superoxide dismutase mimetic analysis with riboflavin-mediated nitroblue tetrazolium scavenging assay. The results demonstrated that the redox activity of cerium oxide nanoparticles was strongly influenced by the different temperature ranges. Superoxide dismutase mimetic activity was observed to be reduced with a decrease in temperature as we moved from 4°C (80% activity) to -80°C (47% activity) at 1 mM conc of CNP. Similarly, the SOD mimetic activity increased with an increase in temperature from 40°C (72% activity) to 70°C (94% activity). Further, CNP was found to inhibit E. coli (gram+ve) and Enterobacter (gram-ve) beyond 70% simultaneously at 1 mM conc, indicating its potential application as a remarkable antimicrobial agent. CNP also inhibited the alpha-amylase activity up to the 60% at 1 mM conc suggesting its potential application in antidiabetic wound healing therapy. Overall, the CNP finds its application in mitigating the oxidative stress-related disorder exhibited by its high antioxidative, antimicrobial, and antidiabetic behavior.
Collapse
Affiliation(s)
- Shivam Pandey
- Amity Institute of Biotechnology, Amity University Chhattisgarh, Raipur, India
| | - Sneha Kumari
- Amity Institute of Biotechnology, Amity University Chhattisgarh, Raipur, India
| | - Leela Manohar Aeshala
- Department of Chemical Engineering, National Institute of Technology Warangal, Telangana, India
| | - Sushant Singh
- Amity Institute of Biotechnology, Amity University Chhattisgarh, Raipur, India
| |
Collapse
|
12
|
Rahman MM, Kotturi H, Nikfarjam S, Bhargava K, Ahsan N, Khandaker M. Antimicrobial Activity of Polycaprolactone Nanofiber Coated with Lavender and Neem Oil Nanoemulsions against Airborne Bacteria. MEMBRANES 2024; 14:36. [PMID: 38392663 PMCID: PMC10890609 DOI: 10.3390/membranes14020036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024]
Abstract
The development of efficient, eco-friendly antimicrobial agents for air purification and disinfection addresses public health issues connected to preventing airborne pathogens. Herein, the antimicrobial activity of a nanoemulsion (control, 5%, 10%, and 15%) containing neem and lavender oils with polycaprolactone (PCL) was investigated against airborne bacteria, including Escherichia coli, Bacillus subtilis, and Staphylococcus aureus. Various parameters such as the physicochemical properties of the nanoemulsion, pH, droplet size, the polydispersity index (PDI), the minimum inhibitory concentration (MIC), the minimum bacterial concentration (MBC), and the color measurement of the emulsion have been evaluated and optimized. Our results showed that the antimicrobial activity of PCL combined with neem and lavender oil was found to be the highest MIC and MBC against all tested bacteria. The droplet sizes for lavender oil are 21.86-115.15 nm, the droplet sizes for neem oil are 23.92-119.15 nm, and their combination is 25.97-50.22 nm. The range of pH and viscosity of nanoemulsions of various concentrations was found to be 5.8 to 6.6 pH and 0.372 to 2.101 cP. This study highlights the potential of nanotechnology in harnessing the antimicrobial properties of natural essential oils, paving the way for innovative and sustainable solutions in the fight against bacterial contamination.
Collapse
Affiliation(s)
- Md Mahfuzur Rahman
- Department of Human Environmental Sciences, University of Central Oklahoma, Edmond, OK 73034, USA
| | - Hari Kotturi
- Department of Biology, University of Central Oklahoma, Edmond, OK 73034, USA
| | - Sadegh Nikfarjam
- Department of Biology, University of Central Oklahoma, Edmond, OK 73034, USA
| | - Kanika Bhargava
- Department of Human Environmental Sciences, University of Central Oklahoma, Edmond, OK 73034, USA
| | - Nagib Ahsan
- Department of Chemistry and Biochemistry, The University of Oklahoma, Norman, OK 73019, USA
- Mass Spectrometry, Proteomics and Metabolomics Core Facility, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK 73019, USA
| | - Morshed Khandaker
- Nanobiology Laboratory, School of Engineering, University of Central Oklahoma, Edmond, OK 73034, USA
| |
Collapse
|
13
|
Romero-Montero A, Melgoza-Ramírez LJ, Ruíz-Aguirre JA, Chávez-Santoscoy A, Magaña JJ, Cortés H, Leyva-Gómez G, Del Prado-Audelo ML. Essential-Oils-Loaded Biopolymeric Nanoparticles as Strategies for Microbial and Biofilm Control: A Current Status. Int J Mol Sci 2023; 25:82. [PMID: 38203252 PMCID: PMC10778842 DOI: 10.3390/ijms25010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024] Open
Abstract
The emergence of bacterial strains displaying resistance to the currently available antibiotics is a critical global concern. These resilient bacteria can form biofilms that play a pivotal role in the failure of bacterial infection treatments as antibiotics struggle to penetrate all biofilm regions. Consequently, eradicating bacteria residing within biofilms becomes considerably more challenging than their planktonic counterparts, leading to persistent and chronic infections. Among various approaches explored, essential oils loaded in nanoparticles based on biopolymers have emerged, promising strategies that enhance bioavailability and biological activities, minimize side effects, and control release through regulated pharmacokinetics. Different available reviews analyze nanosystems and essential oils; however, usually, their main goal is the analysis of their antimicrobial properties, and progress in biofilm combat is rarely discussed, or it is not the primary objective. This review aims to provide a global vision of biofilm conformation and describes mechanisms of action attributed to each EO. Furthermore, we present a comprehensive overview of the latest developments in biopolymeric nanoparticles research, especially in chitosan- and zein-based nanosystems, targeting multidrug-resistant bacteria in both their sessile and biofilm forms, which will help to design precise strategies for combating biofilms.
Collapse
Affiliation(s)
- Alejandra Romero-Montero
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.R.-M.); (G.L.-G.)
| | - Luis Javier Melgoza-Ramírez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Mexico City 14380, Mexico; (L.J.M.-R.); (J.A.R.-A.); (J.J.M.)
| | - Jesús Augusto Ruíz-Aguirre
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Mexico City 14380, Mexico; (L.J.M.-R.); (J.A.R.-A.); (J.J.M.)
| | - Alejandra Chávez-Santoscoy
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Monterrey, Ave. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico;
| | - Jonathan Javier Magaña
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Mexico City 14380, Mexico; (L.J.M.-R.); (J.A.R.-A.); (J.J.M.)
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico;
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico;
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.R.-M.); (G.L.-G.)
| | - María Luisa Del Prado-Audelo
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Mexico City 14380, Mexico; (L.J.M.-R.); (J.A.R.-A.); (J.J.M.)
| |
Collapse
|
14
|
Akhlaq A, Ashraf M, Ovais Omer M, Altaf I. Synergistic antibacterial activity of carvacrol loaded chitosan nanoparticles with Topoisomerase inhibitors and genotoxicity evaluation. Saudi J Biol Sci 2023; 30:103765. [PMID: 37609545 PMCID: PMC10440572 DOI: 10.1016/j.sjbs.2023.103765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/25/2023] [Accepted: 07/29/2023] [Indexed: 08/24/2023] Open
Abstract
The increasing prevalence of antibiotic resistant bacteria is a significant healthcare crisis with substantial socioeconomic impact on global community. The development of new antibiotics is both costly and time-consuming prompting the exploration of alternative solutions such as nanotechnology which represents opportunities for targeted drug delivery and reduced MIC. However, concerns have arisen regarding genotoxic effects of nanoparticles on human health necessitating an evaluation of nanoparticle induced DNA damage. This study aimed to investigate the antibacterial potential of already prepared, characterized chitosan nanoparticles loaded with carvacrol and their potential synergism with Topoisomerase II inhibitors against S. aureus, E. coli and S. typhi using agar well diffusion, microdilution and checkerboard method. Genotoxicity was assessed through comet assay. Results showed that both alone and drug combinations of varying concentrations exhibited greater zones of inhibition at higher concentrations. Carvacrol nanoparticles combined with ciprofloxacin and doxorubicin significantly reduced MIC compared to the drugs used alone. The MIC50 values for ciprofloxacin were 35.8 µg/ml, 48.74 µg/ml, 35.57 µg/ml while doxorubicin showed MIC50 values of 20.79 µg/ml, 34.35 µg/ml, 25.32 µg/ml against S. aureus, E. coli and S. typhi respectively. The FICI of ciprofloxacin and doxorubicin with carvacrol nanoparticles found ≤ 0.5 Such as 0.44, 0.44,0.48 for ciprofloxacin and 0.45, 0.45, 0.46 for doxorubicin against S. aureus, E. coli and S. typhi respectively revealed the synergistic effect. The analysis of comet assay output images showed alteration of DNA at high concentrations. Our results suggested that carvacrol nanoparticles in combination with Topoisomerase inhibitors may prevent and control the emergence of resistant bacteria with reduced dose.
Collapse
Affiliation(s)
- Amina Akhlaq
- Department of Pharma-cology and Toxicology, University of Veterinary and Animal Sciences, Syed Abdul Qadir Jillani (Out Fall) Road, Lahore 54000, Pakistan
| | - Muhammad Ashraf
- Department of Pharma-cology and Toxicology, University of Veterinary and Animal Sciences, Syed Abdul Qadir Jillani (Out Fall) Road, Lahore 54000, Pakistan
| | - Muhammad Ovais Omer
- Department of Pharma-cology and Toxicology, University of Veterinary and Animal Sciences, Syed Abdul Qadir Jillani (Out Fall) Road, Lahore 54000, Pakistan
| | - Imran Altaf
- Institute of Microbiology, University of Veterinaryand Animal Sciences, Syed Abdul Qadir Jillani (Out Fall) Road, Lahore 54000, Pakistan
| |
Collapse
|
15
|
Solís-Cruz GY, Alvarez-Roman R, Rivas-Galindo VM, Galindo-Rodríguez SA, Silva-Mares DA, Marino-Martínez IA, Escobar-Saucedo M, Pérez-López LA. Formulation and optimization of polymeric nanoparticles loaded with riolozatrione: a promising nanoformulation with potential antiherpetic activity. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2023; 73:457-473. [PMID: 37708959 DOI: 10.2478/acph-2023-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/04/2023] [Indexed: 09/16/2023]
Abstract
Riolozatrione (RZ) is a diterpenoid compound isolated from a dichloromethane extract of the Jatropha dioica root. This compound has been shown to possess moderate antiherpetic activity in vitro. However, because of the poor solubility of this compound in aqueous vehicles, generating a stable formulation for potential use in the treatment of infection is challenging. The aim of this work was to optimize and physio-chemically characterize Eudragit® L100-55-based polymeric nanoparticles (NPs) loaded with RZ (NPR) for in vitro antiherpetic application. The NPs formulation was initially optimized using the dichloromethane extract of J. dioica, the major component of which was RZ. The optimized NPR formulation was stable, with a size of 263 nm, polydispersity index < 0.2, the zeta potential of -37 mV, and RZ encapsulation efficiency of 89 %. The NPR showed sustained release of RZ for 48 h with release percentages of 95 and 97 % at neutral and slightly acidic pH, respectively. Regarding in vitro antiherpetic activity, the optimized NPR showed a selectivity index for HSV-1 of ≈16 and for HSV-2 of 13.
Collapse
Affiliation(s)
- Guadalupe Y Solís-Cruz
- Autonomous University of Nuevo Leon, Faculty of Medicine, Department of Analytical Chemistry Monterrey 66460, Nuevo León, México
| | - Rocío Alvarez-Roman
- Autonomous University of Nuevo Leon, Faculty of Medicine, Department of Analytical Chemistry Monterrey 66460, Nuevo León, México
| | - Verónica M Rivas-Galindo
- Autonomous University of Nuevo Leon, Faculty of Medicine, Department of Analytical Chemistry Monterrey 66460, Nuevo León, México
| | - Sergio Arturo Galindo-Rodríguez
- Autonomous University of Nuevo Leon, Faculty of Biological Sciences, Department of Chemistry San Nicolás de los Garza, Nuevo León, México
| | - David A Silva-Mares
- Autonomous University of Nuevo Leon, Faculty of Medicine, Department of Analytical Chemistry Monterrey 66460, Nuevo León, México
| | - Iván A Marino-Martínez
- Autonomous University of Nuevo Leon, Center for Research and Development in Health Sciences Monterrey 66460, Nuevo León, México
- Autonomous University of Nuevo Leon, Faculty of Medicine, Department of Pathology, Monterrey 66460, Nuevo León, México
| | - Magdalena Escobar-Saucedo
- Autonomous University of Nuevo Leon, Faculty of Medicine, Department of Analytical Chemistry Monterrey 66460, Nuevo León, México
| | - Luis A Pérez-López
- Autonomous University of Nuevo Leon, Faculty of Medicine, Department of Analytical Chemistry Monterrey 66460, Nuevo León, México
| |
Collapse
|
16
|
Sans-Serramitjana E, Obreque M, Muñoz F, Zaror C, Mora MDLL, Viñas M, Betancourt P. Antimicrobial Activity of Selenium Nanoparticles (SeNPs) against Potentially Pathogenic Oral Microorganisms: A Scoping Review. Pharmaceutics 2023; 15:2253. [PMID: 37765222 PMCID: PMC10537110 DOI: 10.3390/pharmaceutics15092253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Biofilms are responsible for the most prevalent oral infections such as caries, periodontal disease, and pulp and periapical lesions, which affect the quality of life of people. Antibiotics have been widely used to treat these conditions as therapeutic and prophylactic compounds. However, due to the emergence of microbial resistance to antibiotics, there is an urgent need to develop and evaluate new antimicrobial agents. This scoping review offers an extensive and detailed synthesis of the potential role of selenium nanoparticles (SeNPs) in combating oral pathogens responsible for causing infectious diseases. A systematic search was conducted up until May 2022, encompassing the MEDLINE, Embase, Scopus, and Lilacs databases. We included studies focused on evaluating the antimicrobial efficacy of SeNPs on planktonic and biofilm forms and their side effects in in vitro studies. The selection process and data extraction were carried out by two researchers independently. A qualitative synthesis of the results was performed. A total of twenty-two articles were considered eligible for this scoping review. Most of the studies reported relevant antimicrobial efficacy against C. albicans, S. mutans, E. faecalis, and P. gingivalis, as well as effective antioxidant activity and limited toxicity. Further research is mandatory to critically assess the effectiveness of this alternative treatment in ex vivo and in vivo settings, with detailed information about SeNPs concentrations employed, their physicochemical properties, and the experimental conditions to provide enough evidence to address the construction and development of well-designed and safe protocols.
Collapse
Affiliation(s)
- Eulàlia Sans-Serramitjana
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Biotechnological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco 4811230, Chile;
| | - Macarena Obreque
- Center for Research in Dental Sciences (CICO), Endodontic Laboratory, Faculty of Dentistry, Universidad de La Frontera, Temuco 4811230, Chile; (M.O.); (F.M.)
| | - Fernanda Muñoz
- Center for Research in Dental Sciences (CICO), Endodontic Laboratory, Faculty of Dentistry, Universidad de La Frontera, Temuco 4811230, Chile; (M.O.); (F.M.)
| | - Carlos Zaror
- Department of Pediatric Dentistry and Orthodontics, Faculty of Dentistry, Universidad de La Frontera, Manuel Montt #112, Temuco 4811230, Chile;
- Center for Research in Epidemiology, Economics and Oral Public Health (CIEESPO), Faculty of Dentistry, Universidad de La Frontera, Temuco 4811230, Chile
| | - María de La Luz Mora
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Biotechnological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco 4811230, Chile;
| | - Miguel Viñas
- Laboratory of Molecular Microbiology & Antimicrobials, Department of Pathology & Experimental Therapeutics, Faculty of Medicine & Health Sciences, University of Barcelona, 08907 Barcelona, Spain;
| | - Pablo Betancourt
- Center for Research in Dental Sciences (CICO), Endodontic Laboratory, Faculty of Dentistry, Universidad de La Frontera, Temuco 4811230, Chile; (M.O.); (F.M.)
- Department of Integral Adultos, Faculty of Dentistry, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
17
|
Akram MW, Hoque MMU, Miah MS, Shahid MA, Hossain MF, Mahmud SH. Fabrication and characterization of antimicrobial wound dressing nanofibrous materials by PVA-betel leaf extract. Heliyon 2023; 9:e17961. [PMID: 37483766 PMCID: PMC10359877 DOI: 10.1016/j.heliyon.2023.e17961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023] Open
Abstract
This present study involves the formation and investigation of the characteristics of a fabricated mat from a PVA-betel leaf mixture. Under ideal processing parameters, nanofibrous mat is synthesized from the PVA-betel leaf blended solution by using the electrospinning technique. Afterwards, the produced nanofibrous mat is assessed for its thermal, antibacterial, morphological, moisture management and chemical interaction behavior using thermogravimetric analysis (TGA), antibacterial assay, scanning electron microscope (SEM), moisture management tester (MMT) and Fourier-transform infrared spectroscopy (FTIR) respectively. The antibacterial action against Staphylococcus aureus and Escherichia coli bacteria has been assessed using the agar diffusion technique, which reveals the creation of zones of inhibition with a value of about 20 mm. Besides, the fabricated nanomat reveals an average diameter of 183.4 nm with improved moisture and thermal characteristics. Furthermore, the generated nanofibrous mat has all the necessary components, as evidenced by the distinctive peaks in the FTIR spectra. Hence, the recently developed nanofibrous mat exhibits promising potential as a suitable material for wound dressing applications.
Collapse
Affiliation(s)
- Md. Washim Akram
- Department of Textile Engineering, National Institute of Textile Engineering & Research (NITER), Nayarhat, Savar, Dhaka, Bangladesh
- Department of Textile Engineering, Dhaka University of Engineering & Technology (DUET), Gazipur, Dhaka, Bangladesh
| | - Mohammad Mohsin Ul Hoque
- Department of Textile Engineering, National Institute of Textile Engineering & Research (NITER), Nayarhat, Savar, Dhaka, Bangladesh
| | - Md. Sumon Miah
- Department of Textile Engineering, Dhaka University of Engineering & Technology (DUET), Gazipur, Dhaka, Bangladesh
| | - Md. Abdus Shahid
- Department of Textile Engineering, Dhaka University of Engineering & Technology (DUET), Gazipur, Dhaka, Bangladesh
| | - Md. Firoz Hossain
- Department of Textile Engineering, Dhaka University of Engineering & Technology (DUET), Gazipur, Dhaka, Bangladesh
| | - Sayed Hasan Mahmud
- Department of Textile Engineering, National Institute of Textile Engineering & Research (NITER), Nayarhat, Savar, Dhaka, Bangladesh
| |
Collapse
|
18
|
Romo-Castillo M, Flores-Bautista VA, Guzmán-Gutiérrez SL, Reyes-Chilpa R, León-Santiago M, Luna-Pineda VM. Synergy of Plant Essential Oils in Antibiotic Therapy to Combat Klebsiella pneumoniae Infections. Pharmaceuticals (Basel) 2023; 16:839. [PMID: 37375786 DOI: 10.3390/ph16060839] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Increased antibiotic resistance presents a health problem worldwide. The World Health Organization published a list of pathogens considered a priority for designing new treatments. Klebsiella pneumoniae (Kp) is a top-priority microorganism, highlighting the strains that produce carbapenemases. Developing new efficient therapies or complementing existing treatments is a priority, and essential oils (EOs) provide an alternative. EOs could act as antibiotic adjuvants and enhance antibiotic activity. Employing standard methodologies, the antibacterial activity of the EOs and their synergic effect with antibiotics were detected. A string test was used to identify the impact of the EOs over the hypermucoviscosity phenotype presented by Kp strains, and Gas Chromatography-Mass Spectrometry analysis identified EOs and the composition of EOs. The potential of EOs for designing synergistic therapies with antibiotics to combat the infection of KPC diseases was demonstrated. In addition, the alteration of the hypermucoviscosity phenotype was shown as the principal mechanism of a synergic action between EOs and antibiotics. The differential composition of the EOs lets us identify some molecules that will be analyzed. Synergic activity of EOs and antibiotics can provide a solid platform for combating multiresistant pathogens that represent a severe health sector problem, such as Kp infections.
Collapse
Affiliation(s)
- Mariana Romo-Castillo
- CONAHCYT/HIMFG, Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Victor Andrés Flores-Bautista
- Facultad de Estudios Superiores Zaragoza Campus II, Universidad Nacional Autónoma de México, Mexico City 09230, Mexico
| | - Silvia Laura Guzmán-Gutiérrez
- CONAHCYT/Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Ricardo Reyes-Chilpa
- Instituto de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Mayra León-Santiago
- Instituto de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Victor Manuel Luna-Pineda
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| |
Collapse
|
19
|
Romanescu M, Oprean C, Lombrea A, Badescu B, Teodor A, Constantin GD, Andor M, Folescu R, Muntean D, Danciu C, Dalleur O, Batrina SL, Cretu O, Buda VO. Current State of Knowledge Regarding WHO High Priority Pathogens-Resistance Mechanisms and Proposed Solutions through Candidates Such as Essential Oils: A Systematic Review. Int J Mol Sci 2023; 24:9727. [PMID: 37298678 PMCID: PMC10253476 DOI: 10.3390/ijms24119727] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Combating antimicrobial resistance (AMR) is among the 10 global health issues identified by the World Health Organization (WHO) in 2021. While AMR is a naturally occurring process, the inappropriate use of antibiotics in different settings and legislative gaps has led to its rapid progression. As a result, AMR has grown into a serious global menace that impacts not only humans but also animals and, ultimately, the entire environment. Thus, effective prophylactic measures, as well as more potent and non-toxic antimicrobial agents, are pressingly needed. The antimicrobial activity of essential oils (EOs) is supported by consistent research in the field. Although EOs have been used for centuries, they are newcomers when it comes to managing infections in clinical settings; it is mainly because methodological settings are largely non-overlapping and there are insufficient data regarding EOs' in vivo activity and toxicity. This review considers the concept of AMR and its main determinants, the modality by which the issue has been globally addressed and the potential of EOs as alternative or auxiliary therapy. The focus is shifted towards the pathogenesis, mechanism of resistance and activity of several EOs against the six high priority pathogens listed by WHO in 2017, for which new therapeutic solutions are pressingly required.
Collapse
Affiliation(s)
- Mirabela Romanescu
- Doctoral School, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.R.); (A.L.); (B.B.); (A.T.); (G.D.C.)
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.A.); (R.F.); (D.M.)
| | - Camelia Oprean
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania
- OncoGen Centre, County Hospital ‘Pius Branzeu’, Blvd. Liviu Rebreanu 156, 300723 Timisoara, Romania
| | - Adelina Lombrea
- Doctoral School, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.R.); (A.L.); (B.B.); (A.T.); (G.D.C.)
| | - Bianca Badescu
- Doctoral School, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.R.); (A.L.); (B.B.); (A.T.); (G.D.C.)
| | - Ana Teodor
- Doctoral School, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.R.); (A.L.); (B.B.); (A.T.); (G.D.C.)
| | - George D. Constantin
- Doctoral School, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.R.); (A.L.); (B.B.); (A.T.); (G.D.C.)
| | - Minodora Andor
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.A.); (R.F.); (D.M.)
| | - Roxana Folescu
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.A.); (R.F.); (D.M.)
| | - Delia Muntean
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.A.); (R.F.); (D.M.)
- Multidisciplinary Research Center on Antimicrobial Resistance, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Corina Danciu
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Olivia Dalleur
- Louvain Drug Research Institute, Université Catholique de Louvain, Avenue Emmanuel Mounier 73, 1200 Brussels, Belgium
| | - Stefan Laurentiu Batrina
- Faculty of Agriculture, University of Life Sciences “King Mihai I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania
| | - Octavian Cretu
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.A.); (R.F.); (D.M.)
| | - Valentina Oana Buda
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
- Ineu City Hospital, 2 Republicii Street, 315300 Ineu, Romania
| |
Collapse
|
20
|
Zahidova F, Yildiz S, Özdemir A, Gülfen M, Yemiş GP. Modification of poly(L-lactic acid)-based films and evaluation of physical and antibacterial properties by using multivariate data analysis. Int J Biol Macromol 2023; 241:124583. [PMID: 37100330 DOI: 10.1016/j.ijbiomac.2023.124583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/04/2023] [Accepted: 04/20/2023] [Indexed: 04/28/2023]
Abstract
The aim of this study is to prepare new packaging materials with improved physical and antimicrobial properties that prevent the growth of microorganisms. Poly(L-lactic acid) (PLA) based packaging films were prepared by the solvent-casting method using spruce resin (SR), epoxidized soybean oil, an essential oil mixture (calendula and clove oil), and silver nanoparticles (AgNPs). The AgNPs were synthesized by the polyphenol reduction method, using spruce resin dissolved in methylene chloride. The prepared films were tested for antibacterial activity and physical properties, such as tensile strength (TS), elongation at break (EB), elastic modulus (EM), water vapor permeability (WVP), and UV-C blocking effect. The addition of SR decreased the water vapor permeation (WVP) of the films, whereas the addition of essential oils (EOs) increased this property due to their higher polarity. The morphological, thermal, and structural properties were characterized using SEM, UV-Visible spectroscopy, FTIR, and DSC. The agar disc well method showed that SR, AgNPs, and EOs imparted antibacterial activity to the PLA-based films against Staphylococcus aureus and Escherichia coli. Multivariate data analysis tools, such as principal component and hierarchical cluster analysis, were used to discriminate PLA-based films by simultaneously evaluating their physical and antibacterial properties.
Collapse
Affiliation(s)
- Fidan Zahidova
- Department of Chemistry, Faculty of Arts & Science, Sakarya University, 54187, Sakarya, Turkey
| | - Semanur Yildiz
- Food Engineering Department, Faculty of Engineering, Sakarya University, 54187, Sakarya, Turkey
| | - Abdil Özdemir
- Department of Chemistry, Faculty of Arts & Science, Sakarya University, 54187, Sakarya, Turkey.
| | - Mustafa Gülfen
- Department of Chemistry, Faculty of Arts & Science, Sakarya University, 54187, Sakarya, Turkey
| | - Gökçe Polat Yemiş
- Food Engineering Department, Faculty of Engineering, Sakarya University, 54187, Sakarya, Turkey
| |
Collapse
|
21
|
Dini I, Mancusi A. Food Peptides for the Nutricosmetic Industry. Antioxidants (Basel) 2023; 12:antiox12040788. [PMID: 37107162 PMCID: PMC10135249 DOI: 10.3390/antiox12040788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
In recent years, numerous reports have described bioactive peptides (biopeptides)/hydrolysates produced from various food sources. Biopeptides are considered interesting for industrial application since they show numerous functional properties (e.g., anti-aging, antioxidant, anti-inflammatory, and antimicrobial properties) and technological properties (e.g., solubility, emulsifying, and foaming). Moreover, they have fewer side effects than synthetic drugs. Nevertheless, some challenges must be overcome before their administration via the oral route. The gastric, pancreatic, and small intestinal enzymes and acidic stomach conditions can affect their bioavailability and the levels that can reach the site of action. Some delivery systems have been studied to avoid these problems (e.g., microemulsions, liposomes, solid lipid particles). This paper summarizes the results of studies conducted on biopeptides isolated from plants, marine organisms, animals, and biowaste by-products, discusses their potential application in the nutricosmetic industry, and considers potential delivery systems that could maintain their bioactivity. Our results show that food peptides are environmentally sustainable products that can be used as antioxidant, antimicrobial, anti-aging, and anti-inflammatory agents in nutricosmetic formulations. Biopeptide production from biowaste requires expertise in analytical procedures and good manufacturing practice. It is hoped that new analytical procedures can be developed to simplify large-scale production and that the authorities adopt and regulate use of appropriate testing standards to guarantee the population's safety.
Collapse
Affiliation(s)
- Irene Dini
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Andrea Mancusi
- Department of Food Microbiology, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici, Italy
| |
Collapse
|
22
|
Negi P, Singh A, Pundir S, Parashar A, Upadhyay N, Agarwal S, Chauhan R, Tambuwala MM. Essential oil and nanocarrier-based formulations approaches for vaginal candidiasis. Ther Deliv 2023; 14:207-225. [PMID: 37191049 DOI: 10.4155/tde-2022-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
An exclusive site for local drug delivery is the vagina, especially for vaginal infections. The fungus Candida albicans causes vaginal infection known as vulvovaginal candidiasis, a highly prevalent and recurrent gynaecological disease among women. Vaginal candidiasis affects over 75% of women at a certain point in their life and has a recurrence rate of 40-50%. Medicinal plants provide some very effective phytoconstituents which when delivered as nanosystems have enhanced therapeutic action and efficacy by alteration in their characteristics. Antifungal drugs are used to treat these conditions, alternative medicine is required for prophylaxis and improved prognosis. The current review focuses on the research carried out on various nanocarrier-based approaches and essential oil-based formulations for vaginal candidiasis.
Collapse
Affiliation(s)
- Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan, 173 212, India
| | - Akriti Singh
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan, 173 212, India
| | - Swati Pundir
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan, 173 212, India
| | - Arun Parashar
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan, 173 212, India
| | - Navneet Upadhyay
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan, 173 212, India
| | - Shweta Agarwal
- L.R Institute of Pharmacy, Oachghat, Solan, 173212, India
| | - Raveen Chauhan
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan, 173 212, India
| | - Murtaza M Tambuwala
- School of Pharmacy & Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, Northern Ireland, BT52 1SA, UK
| |
Collapse
|
23
|
Singh G, Arora H, P H, Sharma S. Development of clove oil based nanoencapsulated biopesticide employing mesoporous nanosilica synthesized from paddy straw via bioinspired sol-gel route. ENVIRONMENTAL RESEARCH 2023; 220:115208. [PMID: 36603658 DOI: 10.1016/j.envres.2022.115208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 12/23/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Paddy straw (PS) burning is a concerning issue in South Asian countries, clamoring for exploring alternative management strategies. Being a rich source of silica, PS can be a potential nanosilica (SiNPs) source. The current study reports a pioneering approach for green synthesis of high-purity mesoporous SiNPs by sol-gel method using the aqueous extract of Sapindus mukorossi seed pericarp as a stabilizer. The mesoporous nature of SiNPs was harnessed as a carrier for the essential oil to develop the carrier-based formulation. SiNPs were characterized using XRD, EDX, FTIR, FE-SEM, TEM, AFM, DLS, water contact angle, and BET analysis. The synthesized SiNPs possessed a spheroid morphology with an average particle size of 20.34 ± 2.64 nm. XRD results confirmed its amorphous nature. The mesoporous nature of SiNPs was confirmed using BET analysis which showed a cumulative pore volume of 2.059 cm3/g and a high surface area of 746.32 m2/g. The SiNPs were further loaded with clove essential oil (CEO), and the encapsulation of CEO was assessed using UV-Vis, FTIR, and BET analysis. The in-vitro antifungal activity of CEO and CEO-loaded SiNPs (CEO-SiNPs) was evaluated using the agar plate assay. UV-Vis results depicted 62.64% encapsulation of CEO in SiNPs. The antifungal efficacy of CEO-SiNPs against F. oxysporum exhibited minimum inhibitory concentration (MIC), i.e., 125 mg/L, while the MIC of CEO was found to be 250 mg/L. The study delivers new insights into the holistic utilization of PS and propitious contribution toward the circular economy and Sustainable Development Goals (SDGs).
Collapse
Affiliation(s)
- Garima Singh
- Centre for Rural Development & Technology, Indian Institute of Technology (IIT), New Delhi, 110016, India
| | - Himanshu Arora
- Centre for Rural Development & Technology, Indian Institute of Technology (IIT), New Delhi, 110016, India
| | - Hariprasad P
- Centre for Rural Development & Technology, Indian Institute of Technology (IIT), New Delhi, 110016, India
| | - Satyawati Sharma
- Centre for Rural Development & Technology, Indian Institute of Technology (IIT), New Delhi, 110016, India.
| |
Collapse
|
24
|
Siahkamari S, Daneshfar A. Synthesis of a new magnetic metal organic framework based on nickel for extraction of carvacrol and thymol in thymus and savory samples and analyzed with gas chromatography. RSC Adv 2023; 13:7664-7672. [PMID: 36908535 PMCID: PMC9993065 DOI: 10.1039/d2ra07367f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/22/2023] [Indexed: 03/11/2023] Open
Abstract
The present research aims at reporting a new sorbent, a magnetic nano scale metal-organic framework (MOF), based on nickel acetate and 6-phenyl-1,3,5-triazine-2,4-diamine. The prepared sorbent was used to extract carvacrol and thymol using an ultrasonic-assisted dispersive micro solid phase extraction (UA-DμSPE) method. The structure of the metal organic framework was studied by applying scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), energy dispersive spectrometry (EDS), and vibrating sample magnetometer (VSM). The effects of various parameters such as ionic strength of sample solution, amount of sorbent (mg), volume of eluent solvent (μL), vortex and ultrasonic times (min) were optimized. Under optimal conditions, the analytes resulted in determination coefficients (R 2) of 0.9985 and 0.9967 in the concentration range 0.01-2 μg mL-1, and in limits of detection of 0.0025 and 0.0028 μg mL-1. Significantly, this method can be successfully applied in order to determine the target analytes in spiked real samples. Notably, the relative mean recoveries range from 94.5 to 105.7%.
Collapse
Affiliation(s)
- Somaye Siahkamari
- Department of Chemistry, Faculty of Science, Ilam University P.O. Box 69315516 Ilam Iran
| | - Ali Daneshfar
- Department of Chemistry, Faculty of Science, Ilam University P.O. Box 69315516 Ilam Iran .,Department of Chemistry, Faculty of Science, Lorestan University Khoramabad Iran
| |
Collapse
|
25
|
Taglienti A, Donati L, Dragone I, Ferretti L, Gentili A, Araniti F, Sapienza F, Astolfi R, Fiorentino S, Vecchiarelli V, Papalini C, Ragno R, Bertin S. In Vivo Antiphytoviral and Aphid Repellency Activity of Essential Oils and Hydrosols from Mentha suaveolens and Foeniculum vulgare to Control Zucchini Yellow Mosaic Virus and Its Vector Aphis gossypii. PLANTS (BASEL, SWITZERLAND) 2023; 12:1078. [PMID: 36903936 PMCID: PMC10005592 DOI: 10.3390/plants12051078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
In recent years, natural compounds have gained attention in many fields due to their wide-range biological activity. In particular, essential oils and their associated hydrosols are being screened to control plant pests, exerting antiviral, antimycotic and antiparasitic actions. They are more quickly and cheaply produced and are generally considered safer for the environment and non-target organisms than conventional pesticides. In this study, we report the evaluation of the biological activity of two essential oils and their corresponding hydrosols obtained from Mentha suaveolens and Foeniculum vulgare in the control of zucchini yellow mosaic virus and its vector, Aphis gossypii, in Cucurbita pepo plants. The control of the virus was ascertained with treatments applied either concurrently with or after virus infection; choice tests were performed to verify repellency activity against the aphid vector. The results indicated that treatments could decrease virus titer as measured using real-time RT-PCR, while the experiments on the vector showed that the compounds effectively repelled aphids. The extracts were also chemically characterized using gas chromatography-mass spectrometry. Mentha suaveolens and Foeniculum vulgare hydrosol extracts mainly comprised fenchone and decanenitrile, respectively, while essential oils analysis returned a more complex composition, as expected.
Collapse
Affiliation(s)
- Anna Taglienti
- Research Centre for Plant Protection and Certification, Council for Agricultural Research and Economics, 00156 Rome, Italy
| | - Livia Donati
- Research Centre for Plant Protection and Certification, Council for Agricultural Research and Economics, 00156 Rome, Italy
| | - Immacolata Dragone
- Research Centre for Plant Protection and Certification, Council for Agricultural Research and Economics, 00156 Rome, Italy
| | - Luca Ferretti
- Research Centre for Plant Protection and Certification, Council for Agricultural Research and Economics, 00156 Rome, Italy
| | - Andrea Gentili
- Research Centre for Plant Protection and Certification, Council for Agricultural Research and Economics, 00156 Rome, Italy
| | - Fabrizio Araniti
- Department of Agricultural and Environmental Science, University of Milan, 20122 Milan, Italy
| | - Filippo Sapienza
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University of Rome, 00185 Rome, Italy
| | - Roberta Astolfi
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University of Rome, 00185 Rome, Italy
| | - Simona Fiorentino
- Centro Appenninico del Terminillo “Carlo Jucci”, Perugia University, 02100 Rieti, Italy
| | - Valerio Vecchiarelli
- Centro Appenninico del Terminillo “Carlo Jucci”, Perugia University, 02100 Rieti, Italy
| | - Claudia Papalini
- ARSIAL Regional Agency for the Development and Innovation of Agriculture of Lazio, 00162 Rome, Italy
| | - Rino Ragno
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University of Rome, 00185 Rome, Italy
| | - Sabrina Bertin
- Research Centre for Plant Protection and Certification, Council for Agricultural Research and Economics, 00156 Rome, Italy
| |
Collapse
|
26
|
Rodrigues VM, Oliveira WN, Pereira DT, Alencar ÉN, Porto DL, Aragão CFS, Moreira SMG, Rocha HAO, Amaral-Machado L, Egito EST. Copaiba Oil-Loaded Polymeric Nanocapsules: Production and In Vitro Biosafety Evaluation on Lung Cells as a Pre-Formulation Step to Produce Phytotherapeutic Medicine. Pharmaceutics 2023; 15:pharmaceutics15010161. [PMID: 36678788 PMCID: PMC9861736 DOI: 10.3390/pharmaceutics15010161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
Copaiba oil has been largely used due to its therapeutic properties. Nanocapsules were revealed to be a great nanosystem to carry natural oils due to their ability to improve the bioaccessibility and the bioavailability of lipophilic compounds. The aim of this study was to produce and characterize copaiba oil nanocapsules (CopNc) and to evaluate their hemocompatibility, cytotoxicity, and genotoxicity. Copaiba oil was chemically characterized by GC-MS and FTIR. CopNc was produced using the nanoprecipitation method. The physicochemical stability, toxicity, and biocompatibility of the systems, in vitro, were then evaluated. Β-bisabolene, cis-α-bergamotene, caryophyllene, and caryophyllene oxide were identified as the major copaiba oil components. CopNc showed a particle size of 215 ± 10 nm, a polydispersity index of 0.15 ± 0.01, and a zeta potential of -18 ± 1. These parameters remained unchanged over 30 days at 25 ± 2 °C. The encapsulation efficiency of CopNc was 54 ± 2%. CopNc neither induced hemolysis in erythrocytes, nor cytotoxic and genotoxic in lung cells at the range of concentrations from 50 to 200 μg·mL-1. In conclusion, CopNc showed suitable stability and physicochemical properties. Moreover, this formulation presented a remarkable safety profile on lung cells. These results may pave the way to further use CopNc for the development of phytotherapeutic medicine intended for pulmonary delivery of copaiba oil.
Collapse
Affiliation(s)
- Victor M. Rodrigues
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, Brazil
| | - Wógenes N. Oliveira
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, Brazil
| | - Daniel T. Pereira
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, Brazil
| | - Éverton N. Alencar
- Graduate Program in Pharmaceutical Nanotechnology, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, Brazil
| | - Dayanne L. Porto
- Pharmacy Department, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, Brazil
| | - Cícero F. S. Aragão
- Graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, Brazil
| | - Susana M. G. Moreira
- Department of Cellular and Molecular Biology, Biosciences Center, Federal University of Rio Grande do Norte (UFRN), Natal 59078-900, Brazil
| | - Hugo A. O. Rocha
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, Brazil
- Laboratory of Natural Polymers Biotechnology, Federal University of Rio Grande do Norte (UFRN), Natal 59078-900, Brazil
| | - Lucas Amaral-Machado
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, Brazil
| | - Eryvaldo S. T. Egito
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, Brazil
- Graduate Program in Pharmaceutical Nanotechnology, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, Brazil
- Correspondence: or ; Tel.: +55-(84)-994318816
| |
Collapse
|
27
|
Perez L, Hafidi Z, Pinazo A, García MT, Martín-Pastor M, de Sousa FFO. Zein Nanoparticles Containing Arginine-Phenylalanine-Based Surfactants: Stability, Antimicrobial and Hemolytic Activity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:200. [PMID: 36616110 PMCID: PMC9824401 DOI: 10.3390/nano13010200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Although cationic surfactants have a remarkable antimicrobial activity, they present an intrinsic toxicity that discourages their usage. In this work novel zein nanoparticles loaded with arginine-phenylalanine-based surfactants are presented. The nanoparticles were loaded with two single polar head (LAM and PNHC12) and two with double amino acid polar head surfactants, arginine-phenylalanine (C12PAM, PANHC12). The formulations were characterized and their stability checked up to 365 days. Furthermore, the antimicrobial and hemolytic activities were investigated. Finally, NMR and molecular docking studies were carried out to elucidate the possible interaction mechanisms of surfactant-zein. The nanoparticles were obtained with satisfactory size, zeta potential and dispersibility. The surfactants containing arginine-phenylalanine residues were found to be more stable. The nanoencapsulation maintained the antimicrobial activities unaltered in comparison to the surfactants' solutions. These results are in agreement with the NMR and docking findings, suggesting that zein interacts with the surfactants by the aromatic rings of phenylalanine. As a result, the cationic charges and part of the aliphatic chains are freely available to attack the bacteria and fungi, while not available to disrupt the cellular membranes. This approach opens new possibilities for using cationic surfactants and benefits from their extraordinary antimicrobial responses for several applications.
Collapse
Affiliation(s)
- Lourdes Perez
- Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| | - Zakaria Hafidi
- Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| | - Aurora Pinazo
- Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| | - Maria Teresa García
- Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| | - Manuel Martín-Pastor
- Unidad de Resonancia Magnética, Área de Infraestructuras de Investigación, Universidad de Santiago de Compostela, Santiago de Compostela, 15782 A Coruña, Spain
| | | |
Collapse
|
28
|
Ramirez CAB, Carriero MM, Leomil FSC, Moro de Sousa RL, de Miranda A, Mertins O, Mathews PD. Complexation of a Polypeptide-Polyelectrolytes Bioparticle as a Biomaterial of Antibacterial Activity. Pharmaceutics 2022; 14:2746. [PMID: 36559240 PMCID: PMC9786851 DOI: 10.3390/pharmaceutics14122746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
The development of biomaterials to enable application of antimicrobial peptides represents a strategy of high and current interest. In this study, a bioparticle was produced by the complexation between an antimicrobial polypeptide and the biocompatible and biodegradable polysaccharides chitosan-N-arginine and alginate, giving rise to a colloidal polyelectrolytic complex of pH-responsive properties. The inclusion of the polypeptide in the bioparticle structure largely increases the binding sites of complexation during the bioparticles production, leading to its effective incorporation. After lyophilization, detailed evaluation of colloidal structure of redispersed bioparticles evidenced nano or microparticles with size, polydispersity and zeta potential dependent on pH and ionic strength, and the dependence was not withdrawn with the polypeptide inclusion. Significant increase of pore edge tension in giant vesicles evidenced effective interaction of the polypeptide-bioparticle with lipid model membrane. Antibacterial activity against Aeromonas dhakensis was effective at 0.1% and equal for the isolated polypeptide and the same complexed in bioparticle, which opens perspectives to the composite material as an applicable antibacterial system.
Collapse
Affiliation(s)
- Carlos A. B. Ramirez
- Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo (UNIFESP), Sao Paulo 04023-062, Brazil
| | - Mateus M. Carriero
- Department of Veterinary Medicine, University of Sao Paulo (USP), Pirassununga 13635-900, Brazil
| | - Fernanda S. C. Leomil
- Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo (UNIFESP), Sao Paulo 04023-062, Brazil
| | - Ricardo L. Moro de Sousa
- Department of Veterinary Medicine, University of Sao Paulo (USP), Pirassununga 13635-900, Brazil
| | - Antonio de Miranda
- Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo (UNIFESP), Sao Paulo 04023-062, Brazil
| | - Omar Mertins
- Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo (UNIFESP), Sao Paulo 04023-062, Brazil
| | - Patrick D. Mathews
- Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo (UNIFESP), Sao Paulo 04023-062, Brazil
| |
Collapse
|
29
|
Essential Oils Encapsulated in Zeolite Structures as Delivery Systems (EODS): An Overview. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238525. [PMID: 36500617 PMCID: PMC9740572 DOI: 10.3390/molecules27238525] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Essential oils (EO) obtained from plants have proven industrial applications in the manufacturing of perfumes and cosmetics, in the production and flavoring of foods and beverages, as therapeutic agents in aromatherapy, and as the active principles or excipients of medicines and pharmaceutics due to their olfactory, physical-chemical, and biological characteristics. On behalf of the new paradigm of a more natural and sustainable lifestyle, EO are rather appealing due to their physical, chemical, and physiological actions in human beings. However, EO are unstable and susceptible to degradation or loss. To tackle this aspect, the encapsulation of EO in microporous structures as zeolites is an attractive solution, since these host materials are cheap and non-toxic to biological environments. This overview provides basic information regarding essential oils, including their recognized benefits and functional properties. Current progress regarding EO encapsulation in zeolite structures is also discussed, highlighting some representative examples of essential oil delivery systems (EODS) based on zeolites for healthcare applications or aromatherapy.
Collapse
|
30
|
Bernardo LR, Braga ARC. Sakuranetin State of the Art: Physical Properties, Biological Effects, and Biotechnological Trends. Ind Biotechnol (New Rochelle N Y) 2022. [DOI: 10.1089/ind.2022.0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
| | - Anna Rafaela Cavalcante Braga
- Department of Biosciences, Universidade Federal de São Paulo (UNIFESP), Santos, SP, Brazil
- Department of Chemical Engineering, Universidade Federal de São Paulo (UNIFESP), Diadema, SP, Brazil
| |
Collapse
|
31
|
Nemattalab M, Rohani M, Evazalipour M, Hesari Z. Formulation of Cinnamon (Cinnamomum verum) oil loaded solid lipid nanoparticles and evaluation of its antibacterial activity against Multi-drug Resistant Escherichia coli. BMC Complement Med Ther 2022; 22:289. [PMID: 36352402 PMCID: PMC9647953 DOI: 10.1186/s12906-022-03775-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022] Open
Abstract
Today, the increment in microbial resistance has guided the researches focus into new antimicrobial compounds or transmission systems. Escherichia coli (E. coli) is an opportunistic pathogen, producing a biofilm responsible for a wide range of nosocomial infections which are often difficult to eradicate with available antibiotics. On the other hand, Cinnamomum verum (cinnamon oil) (CO) is widely used as a natural antibacterial agent and Solid lipid nanoparticles (SLNs) are promising carriers for antibacterial compounds due to their lipophilic nature and ease of transmission through the bacterial cell wall. In this study, nanoparticles containing cinnamon oil (CO-SLN) were prepared by dual emulsion method and evaluated in terms of particle size, shape, entrapment efficiency (EE), transmission electron microscopy (TEM), oil release kinetics, and cell compatibility. The antibacterial activity of CO-SLN and CO against 10 drug-resistant E. coli strains was investigated. The anti-biofilm activity of CO-SLN on the selected pathogen was also investigated. Nanoparticles with an average size of 337.6 nm, and zeta potential of -26.6 mV were fabricated and their round shape was confirmed by TEM images. The antibacterial effects of CO-SLN and CO were reported with MIC Value of 60–75 µg/mL and 155–165 µg/mL and MBC value of 220–235 µg/ml and 540–560 µg/ml, respectively. On the other hand, CO-SLN with 1/2 MIC concentration had the greatest inhibition of biofilm formation in 24 h of incubation (55.25%). The data presented indicate that the MIC of CO-SLN has significantly reduced and it seems that SLN has facilitated and promoted CO transmission through the cell membrane.
Collapse
|
32
|
Dynamic Salmonella Enteritidis biofilms development under different flow conditions and their removal using nanoencapsulated thymol. Biofilm 2022; 4:100094. [DOI: 10.1016/j.bioflm.2022.100094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022] Open
|
33
|
Che J, Chen K, Song J, Tu Y, Reymick OO, Chen X, Tao N. Fabrication of γ-cyclodextrin-Based metal-organic frameworks as a carrier of cinnamaldehyde and its application in fresh-cut cantaloupes. Curr Res Food Sci 2022; 5:2114-2124. [PMID: 36387598 PMCID: PMC9647341 DOI: 10.1016/j.crfs.2022.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/15/2022] [Accepted: 10/23/2022] [Indexed: 11/05/2022] Open
Abstract
Cinnamaldehyde (CA) is a promising antimicrobial agent for the preservation of fruits and vegetables due to its excellent antibacterial activity. The application is however, limited by its unstable and volatile properties. A biocompatible carbon dots hybrid γ-cyclodextrin-based metal organic framework (CD/MOF) was developed by the seed-mediated method to improve the encapsulation and sustained continuous release of CA. CD/MOF-0.5 exhibited a CA loading efficiency of 28.42% and a sustained release duration time of more than 15 days at 8 oC. The release kinetics results showed that the release behavior of CD/MOF-0.5 fitted well with the Korsmeyer-Peppas release kinetics model, indicating that its sustained release is mainly controlled by diffusion. Both the Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy analyses revealed that CD/MOF-0.5 and CA molecules were linked by hydrogen bonds. Due to the high sustained release performance, CA-loaded CD/MOF-0.5 considerably inhibited the growth of Escherichia coli, hence preventing the spoilage of fresh-cut cantaloupes. CD/MOF-0.5/CA treatment also maintained the qualities of the fresh-cut cantaloupes, prolonging their edibility to five days. This work provides a promising strategy for the prevention of spoilage in food industry.
Collapse
Affiliation(s)
- Jinxin Che
- School of Chemical Engineering, Xiangtan University, Xiangtan, 411105, PR China
- Postdoctoral Station of Chemical Engineering and Technology, Xiangtan University, Xiangtan, 411105, Hunan Province, PR China
| | - Keqin Chen
- School of Chemical Engineering, Xiangtan University, Xiangtan, 411105, PR China
| | - Jaorao Song
- School of Chemical Engineering, Xiangtan University, Xiangtan, 411105, PR China
| | - Ying Tu
- School of Chemical Engineering, Xiangtan University, Xiangtan, 411105, PR China
| | | | - Xiumei Chen
- School of Chemical Engineering, Xiangtan University, Xiangtan, 411105, PR China
- Postdoctoral Station of Chemical Engineering and Technology, Xiangtan University, Xiangtan, 411105, Hunan Province, PR China
| | - Nengguo Tao
- School of Chemical Engineering, Xiangtan University, Xiangtan, 411105, PR China
| |
Collapse
|
34
|
Gheorghita D, Grosu E, Robu A, Ditu LM, Deleanu IM, Gradisteanu Pircalabioru G, Raiciu AD, Bita AI, Antoniac A, Antoniac VI. Essential Oils as Antimicrobial Active Substances in Wound Dressings. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15196923. [PMID: 36234263 PMCID: PMC9570933 DOI: 10.3390/ma15196923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 05/13/2023]
Abstract
Wound dressings for skin lesions, such as bedsores or pressure ulcers, are widely used for many patients, both during hospitalization and in subsequent treatment at home. To improve the treatment and shorten the healing time and, therefore, the cost, numerous types of wound dressings have been developed by manufacturers. Considering certain inconveniences related to the intolerance of some patients to antibiotics and the antimicrobial, antioxidant, and curative properties of certain essential oils, we conducted research by incorporating these oils, based on polyvinyl alcohol/ polyvinyl pyrrolidone (PVA/PVP) biopolymers, into dressings. The objective of this study was to study the potential of a polymeric matrix for wound healing, with polyvinyl alcohol as the main material and polyvinyl pyrrolidone and hydroxypropyl methylcellulose (HPMC) as secondary materials, together with additives (plasticizers poly(ethylene glycol) (PEG) and glycerol), stabilizers (Zn stearate), antioxidants (vitamin A and vitamin E), and four types of essential oils (fennel, peppermint, pine, and thyme essential oils). For all the studied samples, the combining compatibility, antimicrobial, and cytotoxicity properties were investigated. The obtained results demonstrated a uniform morphology for almost all the samples and adequate barrier properties for contact with suppurating wounds. The results show that the obtained samples containing essential oils have a good inhibitory effect on, or antimicrobial properties against, Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 29212, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, and Candida albicans ATCC 10231. The MTT assay showed that the tested samples were not toxic and did not lead to cell death. The results showed that the essential oils used provide an effective solution as active substances in wound dressings.
Collapse
Affiliation(s)
- Daniela Gheorghita
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, 060042 Bucharest, Romania
| | - Elena Grosu
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, 060042 Bucharest, Romania
| | - Alina Robu
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, 060042 Bucharest, Romania
| | - Lia Mara Ditu
- Faculty of Biology, University of Bucharest, 1-3 Intr. Portocalelor Street, 060101 Bucharest, Romania
| | - Iuliana Mihaela Deleanu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| | - Gratiela Gradisteanu Pircalabioru
- Research Institute of the University of Bucharest, 90 Sos. Panduri, 050663 Bucharest, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei Street, 050094 Bucharest, Romania
| | - Anca-Daniela Raiciu
- Faculty of Pharmacy, Titu Maiorescu University, 22 Dambovnicului Street, 040441 Bucharest, Romania
- S.C. Hofigal Import Export S.A., 2 Intrarea Serelor Street, 042124 Bucharest, Romania
| | - Ana-Iulia Bita
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, 060042 Bucharest, Romania
- Correspondence:
| | - Aurora Antoniac
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, 060042 Bucharest, Romania
| | - Vasile Iulian Antoniac
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei Street, 050094 Bucharest, Romania
| |
Collapse
|
35
|
Rocha ALF, de Aguiar Nunes RZ, Matos RS, da Fonseca Filho HD, de Araújo Bezerra J, Lima AR, Guimarães FEG, Pamplona AMSR, Majolo C, de Souza MG, Campelo PH, Ţălu Ş, Bagnato VS, Inada NM, Sanches EA. Alternative Controlling Agent of Theobroma grandiflorum Pests: Nanoscale Surface and Fractal Analysis of Gelatin/PCL Loaded Particles Containing Lippia origanoides Essential Oil. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2712. [PMID: 35957144 PMCID: PMC9370742 DOI: 10.3390/nano12152712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
A new systematic structural study was performed using the Atomic Force Microscopy (AFM) reporting statistical parameters of polymeric particles based on gelatin and poly-ε-caprolactone (PCL) containing essential oil from Lippia origanoides. The developed biocides are efficient alternative controlling agents of Conotrachelus humeropictus and Moniliophtora perniciosa, the main pests of Theobroma grandiflorum. Our results showed that the particles morphology can be successfully controlled by advanced stereometric parameters, pointing to an appropriate concentration of encapsulated essential oil according to the particle surface characteristics. For this reason, the absolute concentration of 1000 µg·mL-1 (P1000 system) was encapsulated, resulting in the most suitable surface microtexture, allowing a faster and more efficient essential oil release. Loaded particles presented zeta potential around (-54.3 ± 2.3) mV at pH = 8, and particle size distribution ranging from 113 to 442 nm. The hydrodynamic diameter of 90% of the particle population was found to be up to (405 ± 31) nm in the P1000 system. The essential oil release was evaluated up to 80 h, with maximum release concentrations of 63% and 95% for P500 and P1000, respectively. The best fit for the release profiles was obtained using the Korsmeyer-Peppas mathematical model. Loaded particles resulted in 100% mortality of C. humeropictus up to 48 h. The antifungal tests against M. perniciosa resulted in a minimum inhibitory concentration of 250 µg·mL-1, and the P1000 system produced growth inhibition up to 7 days. The developed system has potential as alternative controlling agent, due to its physical stability, particle surface microtexture, as well as pronounced bioactivity of the encapsulated essential oil.
Collapse
Affiliation(s)
- Ana Luisa Farias Rocha
- Laboratory of Nanostructured Polymers (NANOPOL), Federal University of Amazonas (UFAM), Manaus 69067-005, AM, Brazil
- Graduate Program in Materials Science and Engineering (PPGCEM), Federal University of Amazonas (UFAM), Manaus 69067-005, AM, Brazil
| | - Ronald Zico de Aguiar Nunes
- Laboratory of Nanostructured Polymers (NANOPOL), Federal University of Amazonas (UFAM), Manaus 69067-005, AM, Brazil
| | - Robert Saraiva Matos
- Amazonian Materials Group, Federal University of Amapá (UNIFAP), Macapá 68903-419, AP, Brazil
| | - Henrique Duarte da Fonseca Filho
- Graduate Program in Materials Science and Engineering (PPGCEM), Federal University of Amazonas (UFAM), Manaus 69067-005, AM, Brazil
- Laboratory of Nanomaterials Synthesis and Nanoscopy (LSNN), Federal University of Amazonas (UFAM), Manaus 69067-005, AM, Brazil
| | - Jaqueline de Araújo Bezerra
- Analytical Center, Federal Institute of Education, Science and Technology of Amazonas (IFAM), Manaus 69020-120, AM, Brazil
| | - Alessandra Ramos Lima
- São Carlos Institute of Physics (IFSC), University of São Paulo (USP), São Carlos 13563-120, SP, Brazil
| | | | | | - Cláudia Majolo
- EMBRAPA Western Amazon, Manaus AM-010 Km 29, Manaus 69010-970, AM, Brazil
| | | | - Pedro Henrique Campelo
- Department of Food Technology, Federal University of Viçosa (UFV), Viçosa 36570-900, MG, Brazil
| | - Ştefan Ţălu
- The Directorate of Research, Development and Innovation Management (DMCDI), Technical University of Cluj-Napoca, 15 Constantin Daicoviciu St., 400020 Cluj-Napoca, Cluj County, Romania
| | - Vanderlei Salvador Bagnato
- São Carlos Institute of Physics (IFSC), University of São Paulo (USP), São Carlos 13563-120, SP, Brazil
- Hagler Institute for Advanced Studies, Texas A&M University, College Station, TX 77843, USA
| | - Natalia Mayumi Inada
- São Carlos Institute of Physics (IFSC), University of São Paulo (USP), São Carlos 13563-120, SP, Brazil
| | - Edgar Aparecido Sanches
- Laboratory of Nanostructured Polymers (NANOPOL), Federal University of Amazonas (UFAM), Manaus 69067-005, AM, Brazil
- Graduate Program in Materials Science and Engineering (PPGCEM), Federal University of Amazonas (UFAM), Manaus 69067-005, AM, Brazil
| |
Collapse
|
36
|
Azevedo SG, Rocha ALF, de Aguiar Nunes RZ, da Costa Pinto C, Ţălu Ş, da Fonseca Filho HD, de Araújo Bezerra J, Lima AR, Guimarães FEG, Campelo PH, Bagnato VS, Inada NM, Sanches EA. Pulsatile Controlled Release and Stability Evaluation of Polymeric Particles Containing Piper nigrum Essential Oil and Preservatives. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5415. [PMID: 35955350 PMCID: PMC9369902 DOI: 10.3390/ma15155415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/27/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Considerable efforts have been spent on environmentally friendly particles for the encapsulation of essential oils. Polymeric particles were developed to encapsulate the essential oil from Piper nigrum based on gelatin and poly-ε-caprolactone (PCL) carriers. Gas Chromatography ((Flame Ionization Detection (GC/FID) and Mass Spectrometry (GC/MS)), Atomic Force Microscopy (AFM), Nanoparticle Tracking Analysis (NTA), Confocal Laser Scanning Microscopy (CLSM), Attenuated Total Reflectance-Fourier-transform Infrared Spectroscopy (ATR-FTIR), and Ultraviolet-Visible (UV-VIS) spectroscopy were used for the full colloidal system characterization. The essential oil was mainly composed of β-caryophyllene (~35%). The stability of the encapsulated systems was evaluated by Encapsulation Efficiency (EE%), electrical conductivity, turbidity, pH, and organoleptic properties (color and odor) after adding different preservatives. The mixture of phenoxyethanol/isotialzoni-3-one (PNE system) resulted in enhanced stability of approximately 120 and 210 days under constant handling and shelf-life tests, respectively. The developed polymeric system presented a similar controlled release in acidic, neutral, or basic pH, and the release curves suggested a pulsatile release mechanism due to a complexation of essential oil in the PCL matrix. Our results showed that the developed system has potential as an alternative stable product and as a controlling agent, due to the pronounced bioactivity of the encapsulated essential oil.
Collapse
Affiliation(s)
- Sidney Gomes Azevedo
- Laboratory of Nanostructured Polymers (NANOPOL), Federal University of Amazonas (UFAM), Manaus 69067-005, AM, Brazil
- Graduate Program in Chemistry (PPGQ), Federal University of Amazonas (UFAM), Manaus 69067-005, AM, Brazil
| | - Ana Luisa Farias Rocha
- Laboratory of Nanostructured Polymers (NANOPOL), Federal University of Amazonas (UFAM), Manaus 69067-005, AM, Brazil
- Graduate Program in Materials Science and Engineering (PPGCEM), Federal University of Amazonas (UFAM), Manaus 69067-005, AM, Brazil
| | - Ronald Zico de Aguiar Nunes
- Laboratory of Nanostructured Polymers (NANOPOL), Federal University of Amazonas (UFAM), Manaus 69067-005, AM, Brazil
| | - Camila da Costa Pinto
- Graduate Program in Physics (PPGFIS), Federal University of Amazonas (UFAM), Manaus 69067-005, AM, Brazil
| | - Ştefan Ţălu
- The Directorate of Research, Development and Innovation Management (DMCDI), Technical University of Cluj-Napoca, 15 Constantin Daicoviciu St., 400020 Cluj-Napoca, Cluj County, Romania
| | - Henrique Duarte da Fonseca Filho
- Graduate Program in Materials Science and Engineering (PPGCEM), Federal University of Amazonas (UFAM), Manaus 69067-005, AM, Brazil
- Graduate Program in Physics (PPGFIS), Federal University of Amazonas (UFAM), Manaus 69067-005, AM, Brazil
- Laboratory of Nanomaterials Synthesis and Nanoscopy (LSNN), Federal University of Amazonas (UFAM), Manaus 69067-005, AM, Brazil
| | - Jaqueline de Araújo Bezerra
- Analytical Center, Federal Institute of Education, Science and Technology of Amazonas (IFAM), Manaus 69020-120, AM, Brazil
| | - Alessandra Ramos Lima
- São Carlos Institute of Physics (IFSC), University of São Paulo (USP), São Carlos 13563-120, SP, Brazil
| | | | - Pedro Henrique Campelo
- Department of Food Technology, Federal University of Viçosa (UFV), Viçosa 36570-900, MG, Brazil
| | - Vanderlei Salvador Bagnato
- São Carlos Institute of Physics (IFSC), University of São Paulo (USP), São Carlos 13563-120, SP, Brazil
- Hagler Institute for Advanced Studies, Texas A&M University, College Station, TX 77843-3572, USA
| | - Natalia Mayumi Inada
- São Carlos Institute of Physics (IFSC), University of São Paulo (USP), São Carlos 13563-120, SP, Brazil
| | - Edgar Aparecido Sanches
- Laboratory of Nanostructured Polymers (NANOPOL), Federal University of Amazonas (UFAM), Manaus 69067-005, AM, Brazil
- Graduate Program in Chemistry (PPGQ), Federal University of Amazonas (UFAM), Manaus 69067-005, AM, Brazil
- Graduate Program in Materials Science and Engineering (PPGCEM), Federal University of Amazonas (UFAM), Manaus 69067-005, AM, Brazil
- Graduate Program in Physics (PPGFIS), Federal University of Amazonas (UFAM), Manaus 69067-005, AM, Brazil
| |
Collapse
|
37
|
Essential Oil-Based Nanoparticles as Antimicrobial Agents in the Food Industry. Microorganisms 2022; 10:microorganisms10081504. [PMID: 35893562 PMCID: PMC9331367 DOI: 10.3390/microorganisms10081504] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 02/01/2023] Open
Abstract
The use of essential oils (EO) loaded with nanoparticles is the most promising alternative to increase food quality and safety. Interesting works describe the antimicrobial properties of EO for pathogen control in natural and processed foods for human health and animal production, also contributing to sustainability. Their association with different nanosystems allows novel developments in the micronutrition, health promotion, and pathogen control fields, preventing the aggravation of bacterial microevolution and combating antibiotic resistance. Benefits to the environment are also provided, as they are biodegradable and biocompatible. However, such compounds have some physicochemical properties that prevent commercial use. This review focuses on recent developments in antimicrobial EO-based nanoparticles and their application in different food matrices.
Collapse
|
38
|
Parada J, Díaz M, Hermosilla E, Vera J, Tortella G, Seabra AB, Quiroz A, Hormazábal E, Rubilar O. Synthesis and Antibacterial Activity of Manganese-Ferrite/Silver Nanocomposite Combined with Two Essential Oils. NANOMATERIALS 2022; 12:nano12132137. [PMID: 35807973 PMCID: PMC9268028 DOI: 10.3390/nano12132137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 12/14/2022]
Abstract
The antimicrobial activity of metal nanoparticles obtained by biogenic routes has been extensively reported. However, their combined use with other antimicrobial formulations, such as essential oils, remains scarcely explored. In this work, a manganese-ferrite/silver nanocomposite (MnFe2O4/Ag-NC) was synthesized in a two-step procedure: first, MnFe2O4 nanoparticles were produced by a coprecipitation method, followed by in situ biogenic reduction of silver ions using Galega officinalis. MnFe2O4/Ag-NC was characterized using transmission electron microscopy (TEM), scanning electron microscopy equipped with an energy dispersive X-ray analyzer (SEM-EDX), and a vibrating sample magnetometer (VSM-SQUID). The antibacterial activity if MnFe2O4/Ag-NC was evaluated against Pseudomonas syringae by determining its minimum inhibitory concentration (MIC) in the presence of two essential oils: eucalyptus oil (EO) and garlic oil (GO). The fractional inhibitory concentration (FIC) was also calculated to determine the interaction between MnFe2O4/Ag-NC and each oil. The MIC of MnFe2O4/Ag-NC was eightfold reduced with the two essential oils (from 20 to 2.5 µg mL−1). However, the interaction with EO was synergistic (FIC: 0.5), whereas the interaction with GO was additive (FIC: 0.75). Additionally, a time-kill curve analysis was performed, wherein the MIC of the combination of MnFe2O4/Ag-NC and EO provoked a rapid bactericidal effect, corroborating a strong synergism. These findings suggest that by combining MnFe2O4/Ag-NC with essential oils, the necessary ratio of the nanocomposite to control phytopathogens can be reduced, thus minimizing the environmental release of silver.
Collapse
Affiliation(s)
- Javiera Parada
- Chemical Engineering Department, Universidad de La Frontera, Temuco P.O. Box 54-D, Chile; (J.P.); (E.H.); (G.T.)
- Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Universidad de La Frontera, Temuco P.O. Box 54-D, Chile; (M.D.); (J.V.)
| | - Marcela Díaz
- Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Universidad de La Frontera, Temuco P.O. Box 54-D, Chile; (M.D.); (J.V.)
| | - Edward Hermosilla
- Chemical Engineering Department, Universidad de La Frontera, Temuco P.O. Box 54-D, Chile; (J.P.); (E.H.); (G.T.)
- Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Universidad de La Frontera, Temuco P.O. Box 54-D, Chile; (M.D.); (J.V.)
| | - Joelis Vera
- Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Universidad de La Frontera, Temuco P.O. Box 54-D, Chile; (M.D.); (J.V.)
- Programa de Doctorado en Ciencias de la Ingeniería, Universidad de La Frontera, Temuco P.O. Box 54-D, Chile
| | - Gonzalo Tortella
- Chemical Engineering Department, Universidad de La Frontera, Temuco P.O. Box 54-D, Chile; (J.P.); (E.H.); (G.T.)
- Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Universidad de La Frontera, Temuco P.O. Box 54-D, Chile; (M.D.); (J.V.)
| | - Amedea B. Seabra
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), Santo André 09210-580, Brazil;
| | - Andrés Quiroz
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco P.O. Box 54-D, Chile; (A.Q.); (E.H.)
| | - Emilio Hormazábal
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco P.O. Box 54-D, Chile; (A.Q.); (E.H.)
| | - Olga Rubilar
- Chemical Engineering Department, Universidad de La Frontera, Temuco P.O. Box 54-D, Chile; (J.P.); (E.H.); (G.T.)
- Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Universidad de La Frontera, Temuco P.O. Box 54-D, Chile; (M.D.); (J.V.)
- Correspondence:
| |
Collapse
|
39
|
Hazime N, Belguesmia Y, Kempf I, Barras A, Drider D, Boukherroub R. Enhancing Colistin Activity against Colistin-Resistant Escherichia coli through Combination with Alginate Nanoparticles and Small Molecules. Pharmaceuticals (Basel) 2022; 15:ph15060682. [PMID: 35745601 PMCID: PMC9227550 DOI: 10.3390/ph15060682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 01/27/2023] Open
Abstract
Bacterial resistance to antibiotics has become a major public health problem worldwide, with the yearly number of deaths exceeding 700,000. To face this well-acknowledged threat, new molecules and therapeutic methods are considered. In this context, the application of nanotechnology to fight bacterial infection represents a viable approach and has experienced tremendous developments in the last decades. Escherichia coli (E. coli) is responsible for severe diarrhea, notably in the breeding sector, and especially in pig farming. The resulting infection (named colibacillosis) occurs in young piglets and could lead to important economic losses. Here, we report the design of several new formulations based on colistin loaded on alginate nanoparticles (Alg NPs) in the absence, but also in the presence, of small molecules, such as components of essential oils, polyamines, and lactic acid. These new formulations, which are made by concomitantly binding colistin and small molecules to Alg NPs, were successfully tested against E. coli 184, a strain resistant to colistin. When colistin was associated with Alg NPs, the minimal inhibition concentration (MIC) decreased from 8 to 1 µg/mL. It is notable that when menthol or lactic acid was co-loaded with colistin on Alg NPs, the MIC of colistin drastically decreased, reaching 0.31 or 0.62 µg/mL, respectively. These novel bactericidal formulations, whose innocuity towards eukaryotic HT-29 cells was established in vitro, are presumed to permeabilize the bacterial membrane and provoke the leakage of intracellular proteins. Our findings revealed the potentiating effect of the Alg NPs on colistin, but also of the small molecules mentioned above. Such ecological and economical formulations are easy to produce and could be proposed, after confirmation by in vivo and toxicology tests, as therapeutic strategies to replace fading antibiotics.
Collapse
Affiliation(s)
- Noura Hazime
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France; (N.H.); (A.B.)
- UMR Transfrontalière BioEcoAgro1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte D’Opale, ICV-Institut Charles Viollette, 59000 Lille, France; (Y.B.); (D.D.)
| | - Yanath Belguesmia
- UMR Transfrontalière BioEcoAgro1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte D’Opale, ICV-Institut Charles Viollette, 59000 Lille, France; (Y.B.); (D.D.)
| | - Isabelle Kempf
- Agence Nationale de Sécurité Sanitaire de L'Alimentation, de L'Environnement et du Travail, Laboratoire de Ploufragan-Plouzané-Niort, Unité Mycoplasmologie Bactériologie Antibiorésistance, 22440 Ploufragan, France;
| | - Alexandre Barras
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France; (N.H.); (A.B.)
| | - Djamel Drider
- UMR Transfrontalière BioEcoAgro1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte D’Opale, ICV-Institut Charles Viollette, 59000 Lille, France; (Y.B.); (D.D.)
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France; (N.H.); (A.B.)
- Correspondence:
| |
Collapse
|
40
|
Bora L, Avram S, Pavel IZ, Muntean D, Liga S, Buda V, Gurgus D, Danciu C. An Up-To-Date Review Regarding Cutaneous Benefits of Origanum vulgare L. Essential Oil. Antibiotics (Basel) 2022; 11:antibiotics11050549. [PMID: 35625193 PMCID: PMC9137521 DOI: 10.3390/antibiotics11050549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 11/16/2022] Open
Abstract
Due to the plethora of pharmacological activities reported in the literature, Origanum vulgare L. is a valuable aromatic plant for the medicine of the XXI century. Recent studies highlight that Origanum vulgare L. essential oil (OvEo) has gained attention in the dermatological field due to the cosmeceutical potential correlated with the presence of thymol and carvacrol. As a result of the fulminant expansion of bacterial resistance to antibiotics and the aggressiveness of skin infections, OvEo was extensively studied for its antimicrobial activity against Staphyloccocus spp. and Pseudomonas aeruginosa. Moreover, researchers have also assessed the anti-inflammatory activity of OvEo, suggesting its tissue remodeling and wound healing potential. Whereas OvEo comprises important biological activities that are used in a wide range of pathologies, recently, essential oils have shown great potential in the development of new therapeutic alternatives for skin disorders, such as acne, wounds or aging. Furthermore, substantial efforts have been committed to the development of modern formulations, such as microemulsions and nanoemulsions, in order to create the possibility for topical application. The review brings to the fore the most recent findings in the dermatological field regarding potential plant-based therapies involving OvEo, emphasizing the modern pharmaceutical formulation approaches and the cutaneous benefits in skin disorders.
Collapse
Affiliation(s)
- Larisa Bora
- Department of Pharmacognosy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (L.B.); (S.A.); (I.Z.P.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Stefana Avram
- Department of Pharmacognosy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (L.B.); (S.A.); (I.Z.P.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Ioana Zinuca Pavel
- Department of Pharmacognosy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (L.B.); (S.A.); (I.Z.P.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Delia Muntean
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
- Department of Microbiology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Multidisciplinary Research Center on Antimicrobial Resistance, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Correspondence: ; Tel.: +40-723-662-855
| | - Sergio Liga
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Valentina Buda
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
- Discipline of Clinical Pharmacy, Communication in Pharmacy and Pharmaceutical Care, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Daniela Gurgus
- Department of Balneology, Medical Recovery and Rheumatology, Family Discipline, Center for Preventive Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Corina Danciu
- Department of Pharmacognosy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (L.B.); (S.A.); (I.Z.P.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| |
Collapse
|
41
|
Application of Nanomaterials in the Prevention, Detection, and Treatment of Methicillin-Resistant Staphylococcus aureus (MRSA). Pharmaceutics 2022; 14:pharmaceutics14040805. [PMID: 35456638 PMCID: PMC9030647 DOI: 10.3390/pharmaceutics14040805] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 01/27/2023] Open
Abstract
Due to differences in geographic surveillance systems, chemical sanitization practices, and antibiotic stewardship (AS) implementation employed during the COVID-19 pandemic, many experts have expressed concerns regarding a future surge in global antimicrobial resistance (AMR). A potential beneficiary of these differences is the Gram-positive bacteria MRSA. MRSA is a bacterial pathogen with a high potential for mutational resistance, allowing it to engage various AMR mechanisms circumventing conventional antibiotic therapies and the host’s immune response. Coupled with a lack of novel FDA-approved antibiotics reaching the clinic, the onus is on researchers to develop alternative treatment tools to mitigate against an increase in pathogenic resistance. Mitigation strategies can take the form of synthetic or biomimetic nanomaterials/vesicles employed in vaccines, rapid diagnostics, antibiotic delivery, and nanotherapeutics. This review seeks to discuss the current potential of the aforementioned nanomaterials in detecting and treating MRSA.
Collapse
|
42
|
Mukurumbira A, Shellie R, Keast R, Palombo E, Jadhav S. Encapsulation of essential oils and their application in antimicrobial active packaging. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108883] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|