1
|
Dakwa R, Mozirandi W, Mukanganyama S. Antibacterial activity of Azanza garckeana extracts (Malvaceae) in vitro and their potential use in respiratory infections. Microb Pathog 2025; 198:107170. [PMID: 39613234 DOI: 10.1016/j.micpath.2024.107170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
The ESKAPE pathogens, namely Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species, pose a significant threat to individuals with compromised immune system, including children, people with underlying illnesses and patients primarily infected with viruses. Significant mortality rates have been documented as a consequence of severe pneumonia resulting from bacterial respiratory tract infections. Azanza garckeana has been reported to possess antibacterial and anti-inflammatory activities. This study aimed to determine the antibacterial activity of A. garckeana leaf and bark extracts against P. aeruginosa, K. pneumoniae, A. baumannii, and S. aureus. The broth microdilution method was used to evaluate antibacterial activity. The most active extracts were subjected to phytochemical analysis to identify types of bioactive compounds present using gas chromatograph mass spectrometry (GC‒MS). The effect of the extracts on the integrity of the bacterial membrane was performed using nucleic acid and protein leakage assay. Acetone bark extract was assessed for its potential antibiofilm activity using K. pneumoniae. The toxicity profiling of the most potent extracts was performed using sheep erythrocytes and mouse peritoneal cells. The hexane bark extract exhibited greater potency by inhibiting the growth of S. aureus and A. baumannii at a concentration of 200 μg/mL. GC-MS identified the presence of important bioactive compounds including, β-carotene, 9-hexadecen-1-ol, (Z)-, hexadecanoic acid, methyl ester, and 2,4-di-tert-butylphenol. Acetone bark extract exhibited antibacterial activity through disruption of bacterial membrane integrity, observed through significant nucleic acid and protein leakage. The acetone bark extract displayed promising antibiofilm activity against K. pneumoniae. Importantly, the extracts showed minimal toxicity, demonstrating less than 30 % haemolytic activity in sheep erythrocytes and were not toxic to the mouse peritoneal cells, instead boosting their growth. These findings suggest that A. garckeana may serve as a potential source of antibacterial lead agents for the management of respiratory infections.
Collapse
Affiliation(s)
- Ruvarashe Dakwa
- Department of Biotechnology and Biochemistry, University of Zimbabwe, Harare, Zimbabwe
| | - Winnie Mozirandi
- Department of Biotechnology, Chinhoyi University of Technology, Chinhoyi, Zimbabwe
| | - Stanley Mukanganyama
- Department of Therapeutics, Natural Products Unit, African Institute of Biomedical Science and Technology (AiBST), Wilkins Hospital Block C, Corner J, Tongogara and R. Tangwena road, Harare, Zimbabwe.
| |
Collapse
|
2
|
Elhrech H, Aguerd O, El Kourchi C, Gallo M, Naviglio D, Chamkhi I, Bouyahya A. Comprehensive Review of Olea europaea: A Holistic Exploration into Its Botanical Marvels, Phytochemical Riches, Therapeutic Potentials, and Safety Profile. Biomolecules 2024; 14:722. [PMID: 38927125 PMCID: PMC11201932 DOI: 10.3390/biom14060722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Human health is now inextricably linked to lifestyle choices, which can either protect or predispose people to serious illnesses. The Mediterranean diet, characterized by the consumption of various medicinal plants and their byproducts, plays a significant role in protecting against ailments such as oxidative stress, cancer, and diabetes. To uncover the secrets of this natural treasure, this review seeks to consolidate diverse data concerning the pharmacology, toxicology, phytochemistry, and botany of Olea europaea L. (O. europaea). Its aim is to explore the potential therapeutic applications and propose avenues for future research. Through web literature searches (using Google Scholar, PubMed, Web of Science, and Scopus), all information currently available on O. europaea was acquired. Worldwide, ethnomedical usage of O. europaea has been reported, indicating its effectiveness in treating a range of illnesses. Phytochemical studies have identified a range of compounds, including flavanones, iridoids, secoiridoids, flavonoids, triterpenes, biophenols, benzoic acid derivatives, among others. These components exhibit diverse pharmacological activities both in vitro and in vivo, such as antidiabetic, antibacterial, antifungal, antioxidant, anticancer, and wound-healing properties. O. europaea serves as a valuable source of conventional medicine for treating various conditions. The findings from pharmacological and phytochemical investigations presented in this review enhance our understanding of its therapeutic potential and support its potential future use in modern medicine.
Collapse
Affiliation(s)
- Hamza Elhrech
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco; (H.E.); (O.A.)
| | - Oumayma Aguerd
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco; (H.E.); (O.A.)
| | - Chaimae El Kourchi
- Laboratory of Materials, Nanotechnology and Environment, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco;
| | - Monica Gallo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Daniele Naviglio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 4, 80126 Naples, Italy;
| | - Imane Chamkhi
- Geo-Biodiversity and Natural Patrimony Laboratory (GeoBio), Geophysics, Natural Patrimony, Research Center (GEOPAC), Scientific Institute, Mohammed V University in Rabat, Rabat 10106, Morocco;
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco; (H.E.); (O.A.)
| |
Collapse
|
3
|
de Oliveira NM, Machado J, Chéu MH, Lopes L, Barroso MF, Silva A, Sousa S, Domingues VF, Grosso C. Potential Therapeutic Properties of Olea europaea Leaves from Selected Cultivars Based on Their Mineral and Organic Profiles. Pharmaceuticals (Basel) 2024; 17:274. [PMID: 38543060 PMCID: PMC10975974 DOI: 10.3390/ph17030274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 01/04/2025] Open
Abstract
Olive leaves are consumed as an extract or as a whole herbal powder with several potential therapeutic benefits attributed to polyphenols, tocopherol's isomers, and flavonoids, among others. This study assessed the potential variance in the functional features presented by olive leaves from three different Portuguese cultivars-Cobrançosa, Madural, and Verdeal-randomly mix-cultivated in the geographical area of Vale de Salgueiros. Inorganic analysis determined their mineral profiles while an organic analysis measured their total phenolic and flavonoid content, and scanned their phenolic and tocopherol and fatty acid composition. The extracts' biological activity was tested by determining their antimicrobial and antioxidant power as well as their ability to inhibit acetylcholinesterase, butyrylcholinesterase, MAO-A/B, and angiotensin-I-converting enzyme. The inorganic profiles showed them to be an inexpensive source able to address different mineral deficiencies. All cultivars appear to have potential for use as possible antioxidants and future alternative antibiotics against some multidrug-resistant microorganisms, with caution regarding the arsenic content in the Verdeal cultivar. Madural's extract displayed properties to be considered a natural multitarget treatment for Alzheimer's and Parkinson's diseases, depression, and cardiometabolic and dual activity for blood pressure modulation. This work indicates that randomly cultivating different cultivars significantly modifies the leaves' composition while keeping their multifaceted therapeutic value.
Collapse
Affiliation(s)
- Natália M. de Oliveira
- ICBAS, Laboratory of Applied Physiology, School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
- CBScin, Centre of Biosciences in Integrative Health, 4250-105 Porto, Portugal
| | - Jorge Machado
- ICBAS, Laboratory of Applied Physiology, School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
- CBScin, Centre of Biosciences in Integrative Health, 4250-105 Porto, Portugal
| | - Maria Helena Chéu
- Insight: Piaget Research Center for Ecological Human Development, Instituto Piaget—ISEIT, Estrada do Alto Gaio, 3515-776 Lordosa Viseu, Portugal
| | - Lara Lopes
- ICBAS, Laboratory of Applied Physiology, School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
- CBScin, Centre of Biosciences in Integrative Health, 4250-105 Porto, Portugal
| | - M. Fátima Barroso
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - Aurora Silva
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - Sara Sousa
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - Valentina F. Domingues
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - Clara Grosso
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| |
Collapse
|
4
|
Chen X, Qiao T, Mao Z, Jia G, Zhao H, Liu G, Huang Z. Caffeic acid improves intestinal barrier functions by regulating colonic bacteria and tight junction protein expression and alleviating inflammation in weaning piglets. Anim Biotechnol 2023; 34:3693-3699. [PMID: 37067399 DOI: 10.1080/10495398.2023.2200441] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
The experiment investigated the effect of caffeic acid on bacteria, short-chain fatty acids (SCFA), and the expression of tight junction protein and inflammation related genes in the colon of weaning piglets. Thirty-six weaning piglets were allocated to three treatment groups, which were fed with a basal diet, a basal diet supplemented with 250 mg/kg or 500 mg/kg caffeic acid for 28 days. The results showed that caffeic acid treatment increased the contents of acetate acid, propionate acid and total SCFA. Moreover, real-time quantitative PCR showed that the number of Bifidobacterium (p < 0.05) and Lactobacillus (p < 0.05) were increased and the number of Escherichia coli (p < 0.05) was decreased by caffeic acid in colonic mucosa. Real-time quantitative PCR also showed that the mRNA levels of zonula occludens-1 (p < 0.01), claudin-1 (p < 0.01), occludin (p < 0.01), mucin 1 (MUC1) (p < 0.01), MUC2 (p < 0.01), interleukin 4 (IL-4) (p < 0.01) and IL-10 (p < 0.05) were increased, while the mRNA expression levels of histone deacetylases (p < 0.01), IL-1 (p < 0.01), IL-6 (p < 0.01) and tumor necrosis factor-α (TNF-α) (p < 0.01) were decreased, by caffeic acid in colonic mucosa. These results suggested that caffeic acid could improve intestinal barrier function in weaned pigs, which might be mediated by regulating colonic bacteria and tight junction protein expression and alleviating inflammation.
Collapse
Affiliation(s)
- Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Tianlei Qiao
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Zhengyu Mao
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Gang Jia
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Hua Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Guangmang Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| |
Collapse
|
5
|
Sidhic J, George S, Alfarhan A, Rajagopal R, Olatunji OJ, Narayanankutty A. Phytochemical Composition and Antioxidant and Anti-Inflammatory Activities of Humboldtia sanjappae Sasidh. & Sujanapal, an Endemic Medicinal Plant to the Western Ghats. Molecules 2023; 28:6875. [PMID: 37836717 PMCID: PMC10574196 DOI: 10.3390/molecules28196875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/11/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Ethnomedicinal plants are important sources of drug candidates, and many of these plants, especially in the Western Ghats, are underexplored. Humboldtia, a genus within the Fabaceae family, thrives in the biodiversity of the Western Ghats, Kerala, India, and holds significant ethnobotanical importance. However, many Humboldtia species remain understudied in terms of their biological efficacy, while some lack scientific validation for their traditional uses. However, Humboldtia sanjappae, an underexplored plant, was investigated for the phytochemical composition of the plant, and its antioxidant, enzyme-inhibitory, anti-inflammatory, and antibacterial activities were assessed. The LC-MS analysis indicated the presence of several bioactive substances, such as Naringenin, Luteolin, and Pomiferin. The results revealed that the ethanol extract of H. sanjappae exhibited significant in vitro DPPH scavenging activity (6.53 ± 1.49 µg/mL). Additionally, it demonstrated noteworthy FRAP (Ferric Reducing Antioxidant Power) activity (8.46 ± 1.38 µg/mL). Moreover, the ethanol extract of H. sanjappae exhibited notable efficacy in inhibiting the activities of α-amylase (47.60 ± 0.19µg/mL) and β-glucosidase (32.09 ± 0.54 µg/mL). The pre-treatment with the extract decreased the LPS-stimulated release of cytokines in the Raw 264.7 macrophages, demonstrating the anti-inflammatory potential. Further, the antibacterial properties were also evident in both Gram-positive and Gram-negative bacteria. The observed high zone of inhibition in the disc diffusion assay and MIC values were also promising. H. sanjappae displays significant anti-inflammatory, antioxidant, antidiabetic, and antibacterial properties, likely attributable to its rich composition of various biological compounds such as Naringenin, Luteolin, Epicatechin, Maritemin, and Pomiferin. Serving as a promising reservoir of these beneficial molecules, the potential of H. sanjappae as a valuable source for bioactive ingredients within the realms of nutraceutical and pharmaceutical industries is underscored, showcasing its potential for diverse applications.
Collapse
Affiliation(s)
- Jameema Sidhic
- Phytochemistry and Pharmacology Division, PG & Research Department of Botany, St. Joseph’s College (Autonomous), Calicut 673008, India
| | - Satheesh George
- Phytochemistry and Pharmacology Division, PG & Research Department of Botany, St. Joseph’s College (Autonomous), Calicut 673008, India
| | - Ahmed Alfarhan
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.); (R.R.)
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.); (R.R.)
| | | | - Arunaksharan Narayanankutty
- Division of Cell and Molecular Biology, PG & Research Department of Zoology, St. Joseph’s College (Autonomous), Calicut 673008, India
| |
Collapse
|
6
|
Cornebise C, Perus M, Hermetet F, Valls-Fonayet J, Richard T, Aires V, Delmas D. Red Wine Extract Prevents Oxidative Stress and Inflammation in ARPE-19 Retinal Cells. Cells 2023; 12:1408. [PMID: 37408242 DOI: 10.3390/cells12101408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 07/07/2023] Open
Abstract
Age-related macular degeneration (AMD) is one of the most commonly occurring ocular diseases worldwide. This degenerative condition affects the retina and leads to the loss of central vision. The current treatments are focused on the late stage of the disease, but recent studies have highlighted the importance and benefits of preventive treatments and how good dietary habits can reduce the risk of progression to an advanced form of the disease. In this context, we studied whether resveratrol (RSV) or a polyphenolic cocktail, red wine extract (RWE), are able to prevent the initiating events of AMD (i.e., oxidative stress and inflammation) in human ARPE-19 retinal pigment epithelial (RPE) cells and macrophages. This study highlights that RWE and RSV can prevent hydrogen peroxide (H2O2) or 2,2'-Azobis(2-methylpropionamidine) dihydrochloride (AAPH)-induced oxidative stress and can subsequently prevent DNA damage via the inhibition of the ATM (ataxia telangiectasia-mutated)/Chk2 (checkpoint kinase 2) or Chk1 signaling pathways, respectively. Moreover, ELISA assays show that RWE and RSV can prevent the secretion of proinflammatory cytokines in RPE cells and in human macrophages. Interestingly, RWE exhibits a greater protective impact compared to RSV alone, even though RSV was more concentrated when used alone than in the red wine extract. Our results suggest that RWE and RSV may have potential interest as preventive nutritional supplementations against AMD.
Collapse
Affiliation(s)
- Clarisse Cornebise
- UFR des Sciences de Santé, Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231-Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, 21000 Dijon, France
| | - Maude Perus
- UFR des Sciences de Santé, Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231-Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, 21000 Dijon, France
| | - François Hermetet
- UFR des Sciences de Santé, Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231-Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, 21000 Dijon, France
| | - Josep Valls-Fonayet
- Université de Bordeaux, Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, 33140 Villenave d'Ornon, France
| | - Tristan Richard
- Université de Bordeaux, Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, 33140 Villenave d'Ornon, France
| | - Virginie Aires
- UFR des Sciences de Santé, Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231-Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, 21000 Dijon, France
| | - Dominique Delmas
- UFR des Sciences de Santé, Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231-Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, 21000 Dijon, France
- Centre de Lutte Contre le Cancer Georges François Leclerc Center, 21000 Dijon, France
| |
Collapse
|
7
|
Andersone A, Janceva S, Lauberte L, Ramata-Stunda A, Nikolajeva V, Zaharova N, Rieksts G, Telysheva G. Anti-Inflammatory, Anti-Bacterial, and Anti-Fungal Activity of Oligomeric Proanthocyanidins and Extracts Obtained from Lignocellulosic Agricultural Waste. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020863. [PMID: 36677921 PMCID: PMC9861313 DOI: 10.3390/molecules28020863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023]
Abstract
It has now been proven that many pathogens that cause infections and inflammation gradually mutate and become resistant to antibiotics. Chemically synthesized drugs treating inflammation most often only affect symptoms, but side effects could lead to the failure of human organs' functionality. On the other hand, plant-derived natural compounds have a long-term healing effect. It was shown that sea buckthorn (SBT) twigs are a rich source of biologically active compounds, including oligomeric proanthocyanidins (PACs). This study aimed to assess the anti-pathogenic and anti-inflammatory activity of water/ethanol extracts and PACs obtained from the lignocellulosic biomass of eight SBT cultivars. The anti-pathogenic activity of extracts and PACs was studied against pathogenic bacteria Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, Bacillus cereus and fungus Candida albicans in 96-well plates by the two-fold serial broth microdilution method. The anti-bacterial activity of purified PACs was 4 and 10 times higher than for water and water/ethanol extracts, respectively, but the extracts had higher anti-fungal activity. Purified PACs showed the ability to reduce IL-8 and IL-6 secretion from poly-I:C-stimulated peripheral blood mononuclear cells. For the extracts and PACs of SBT cultivar 'Maria Bruvele' in the concentration range 0.0313-4.0 mg/mL, no toxic effect was observed.
Collapse
Affiliation(s)
- Anna Andersone
- Laboratory of Lignin Chemistry, Latvian State Institute of Wood Chemistry, LV-1006 Riga, Latvia
- Ekokompozit Ltd., Dzerbenes Street 27, LV-1006 Riga, Latvia
| | - Sarmite Janceva
- Laboratory of Lignin Chemistry, Latvian State Institute of Wood Chemistry, LV-1006 Riga, Latvia
- Correspondence: ; Tel.: +371-25148850
| | - Liga Lauberte
- Laboratory of Finished Dosage Forms, Riga Stradins University, LV-1007 Riga, Latvia
| | - Anna Ramata-Stunda
- Faculty of Biology, University of Latvia, Jelgavas Street 1, LV-1004 Riga, Latvia
| | - Vizma Nikolajeva
- Faculty of Biology, University of Latvia, Jelgavas Street 1, LV-1004 Riga, Latvia
| | - Natalija Zaharova
- Laboratory of Lignin Chemistry, Latvian State Institute of Wood Chemistry, LV-1006 Riga, Latvia
- Ekokompozit Ltd., Dzerbenes Street 27, LV-1006 Riga, Latvia
| | - Gints Rieksts
- Laboratory of Lignin Chemistry, Latvian State Institute of Wood Chemistry, LV-1006 Riga, Latvia
- Laboratory of Heat and Mass Transfer, The Institute of Physics of University of Latvia, LV-2169 Salaspils, Latvia
| | - Galina Telysheva
- Laboratory of Lignin Chemistry, Latvian State Institute of Wood Chemistry, LV-1006 Riga, Latvia
| |
Collapse
|
8
|
Perspectives for Uses of Propolis in Therapy against Infectious Diseases. Molecules 2022; 27:molecules27144594. [PMID: 35889466 PMCID: PMC9320184 DOI: 10.3390/molecules27144594] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/06/2022] [Accepted: 07/06/2022] [Indexed: 01/22/2023] Open
Abstract
Propolis has gained wide popularity over the last decades in several parts of the world. In parallel, the literature about propolis composition and biological properties increased markedly. A great number of papers have demonstrated that propolis from different parts of the world is composed mainly of phenolic substances, frequently flavonoids, derived from plant resins. Propolis has a relevant role in increasing the social immunity of bee hives. Experimental evidence indicates that propolis and its components have activity against bacteria, fungi, and viruses. Mechanisms of action on bacteria, fungi, and viruses are known for several propolis components. Experiments have shown that propolis may act synergistically with antibiotics, antifungals, and antivirus drugs, permitting the administration of lower doses of drugs and higher antimicrobial effects. The current trend of growing resistance of microbial pathogens to the available drugs has encouraged the introduction of propolis in therapy against infectious diseases. Because propolis composition is widely variable, standardized propolis extracts have been produced. Successful clinical trials have included propolis extracts as medicine in dentistry and as an adjuvant in the treatment of patients against COVID-19. Present world health conditions encourage initiatives toward the spread of the niche of propolis, not only as traditional and alternative medicine but also as a relevant protagonist in anti-infectious therapy. Production of propolis and other apiary products is environmentally friendly and may contribute to alleviating the current crisis of the decline of bee populations. Propolis production has had social-economic relevance in Brazil, providing benefits to underprivileged people.
Collapse
|
9
|
Edible Xanthan/Propolis Coating and Its Effect on Physicochemical, Microbial, and Sensory Quality Indices in Mackerel Tuna ( Euthynnus affinis) Fillets during Chilled Storage. Gels 2022; 8:gels8070405. [PMID: 35877490 PMCID: PMC9315731 DOI: 10.3390/gels8070405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/31/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Worldwide aquaculture production is increasing, but with this increase comes quality and safety related problems. Hence, there is an urgent need to develop potent technologies to extend the shelf life of fish. Xanthan gum is commonly used in the food industry because of its high-water solubility, stability of its aqueous solutions in a wide pH range, and high viscosity. One of its modern food applications is its use as a gelling agent in edible coatings building. Therefore, in this study, the effect of xanthan coating containing various concentrations (0, 1, 2%; w/v) of ethanolic extract of propolis (EEP) on physicochemical, microbial, and sensory quality indices in mackerel fillets stored at 2 °C for 20 days was evaluated. The pH, peroxide value, K-value, TVB-N, TBARS, microbiological and sensory characteristics were determined every 5 days over the storage period (20 days). Samples treated with xanthan (XAN) coatings containing 1 and 2% of EEP were shown to have the highest level of physicochemical protection and maximum level of microbial inhibition (p < 0.05) compared to uncoated samples (control) over the storage period. Furthermore, the addition of EEP to XAN was more effective in notably preserving (p < 0.05) the taste and odor of coated samples compared to control.
Collapse
|
10
|
Zapletal K, Machnik G, Okopień B. Polyphenols of Antibacterial Potential - May They Help in Resolving Some Present Hurdles in Medicine? Folia Biol (Praha) 2022; 68:87-96. [PMID: 36689315 DOI: 10.14712/fb2022068030087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The phenomenon of antibiotic resistance has been recognized as one of the greatest threats to humanity. Therefore, there is an enormous need to introduce new antibiotics to the medical practice that will effectively eradicate the resistant bacterial strains threatening human health and life. One solution currently being considered as an alternative to antibiotics involves secondary metabolites of plants that can be used in modern antibacterial therapy. Polyphenols represent a broad and diversified group of plant-derived aromatic compounds. Their antibacterial potential has been recognized via specific mechanisms of action, e.g., by inhibition of bacterial biofilm formation, through synergistic effects with the action of currently used antibiotics, and by inhibition of the activity of bacterial virulence factors.
Collapse
Affiliation(s)
- K Zapletal
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - G Machnik
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - B Okopień
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|