1
|
Tufarelli V, Ghavami N, Nosrati M, Rasouli B, Kadim IT, Suárez Ramírez L, Gorlov I, Slozhenkina M, Mosolov A, Seidavi A, Ayasan T, Laudadio V. The effects of peppermint ( Mentha piperita L.) and chicory ( Cichorium intybus L.) in comparison with a prebiotic on productive performance, blood constituents, immunity and intestinal microflora in broiler chickens. Anim Biotechnol 2023; 34:3046-3052. [PMID: 36227283 DOI: 10.1080/10495398.2022.2130798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A total of 320 one-day-old broiler chickens were used in a 42-day feeding trial to evaluate the effects of peppermint (Mentha piperita L.) and chicory (Cichorium intybus L.) in comparison with a prebiotic on-growth performance, blood constitutes, immunity and intestinal microflora. The dietary treatments were as follows: basal diet (control); control + prebiotic (Fermacto™); control + 0.1% peppermint; control + 0.1% chicory, respectively. A significant (p < 0.05) body weight gain and feed intake was found at 21 and 42 days of growth period in broilers fed diet supplemented with 0.1% chicory compared with other groups. Feeding of prebiotic or chicory led to higher (p < 0.05) feed intake. Chickens fed control diet had higher (p < 0.05) abdominal fat compared with the other groups. Serum blood constituents indicated that broilers fed prebiotic or supplemented with peppermint or chicory had reduced (p < 0.05) levels of cholesterol, triglycerides and low-density lipoprotein than control group. Immunity-related parameters showed that chicken fed chicory had lower (p < 0.05) heterophil-to-lymphocyte ratio compared with the other groups. Intestinal microflora revealed that chickens fed prebiotic or herbals had higher count of Lactobacillus and lower E. coli than control. Thus, it can be concluded that broiler dietary supplementation with prebiotic or chicory can improve performance supporting positively health status.
Collapse
Affiliation(s)
- Vincenzo Tufarelli
- Department of DETO, Section of Veterinary Science and Animal Production, University of Bari Aldo Moro, Valenzano, Bari, Italy
| | - Narjes Ghavami
- Department of Animal Science, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Mehran Nosrati
- Department of Animal Science, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Behrouz Rasouli
- Department of Animal Science, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Isam T Kadim
- Department of Biological Sciences and Chemistry, University of Nizwa, Birkat Al-Mouz, Nizwa, Sultanate of Oman
| | - Lourdes Suárez Ramírez
- Department of Animal Pathology, Animal Production, Bromatology and Food Technology, Veterinary Faculty, University of Las Palmas de Gran Canaria, Arucas, Spain
| | - Ivan Gorlov
- Volga Research Institute of Production and Processing of Meat and Dairy Products, Volgograd, Russia
| | - Marina Slozhenkina
- Volga Research Institute of Production and Processing of Meat and Dairy Products, Volgograd, Russia
| | - Alexander Mosolov
- Volga Research Institute of Production and Processing of Meat and Dairy Products, Volgograd, Russia
| | - Alireza Seidavi
- Department of Animal Science, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Tugay Ayasan
- Kadirli Academy of Applied Sciences, Osmaniye Korkut Ata University, Osmaniye, Turkey
| | - Vito Laudadio
- Department of DETO, Section of Veterinary Science and Animal Production, University of Bari Aldo Moro, Valenzano, Bari, Italy
| |
Collapse
|
2
|
Smaoui S, Tarapoulouzi M, Agriopoulou S, D'Amore T, Varzakas T. Current State of Milk, Dairy Products, Meat and Meat Products, Eggs, Fish and Fishery Products Authentication and Chemometrics. Foods 2023; 12:4254. [PMID: 38231684 DOI: 10.3390/foods12234254] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024] Open
Abstract
Food fraud is a matter of major concern as many foods and beverages do not follow their labelling. Because of economic interests, as well as consumers' health protection, the related topics, food adulteration, counterfeiting, substitution and inaccurate labelling, have become top issues and priorities in food safety and quality. In addition, globalized and complex food supply chains have increased rapidly and contribute to a growing problem affecting local, regional and global food systems. Animal origin food products such as milk, dairy products, meat and meat products, eggs and fish and fishery products are included in the most commonly adulterated food items. In order to prevent unfair competition and protect the rights of consumers, it is vital to detect any kind of adulteration to them. Geographical origin, production methods and farming systems, species identification, processing treatments and the detection of adulterants are among the important authenticity problems for these foods. The existence of accurate and automated analytical techniques in combination with available chemometric tools provides reliable information about adulteration and fraud. Therefore, the purpose of this review is to present the advances made through recent studies in terms of the analytical techniques and chemometric approaches that have been developed to address the authenticity issues in animal origin food products.
Collapse
Affiliation(s)
- Slim Smaoui
- Laboratory of Microbial, Enzymatic Biotechnology, and Biomolecules (LBMEB), Center of Biotechnology of Sfax, University of Sfax-Tunisia, Sfax 3029, Tunisia
| | - Maria Tarapoulouzi
- Department of Chemistry, Faculty of Pure and Applied Science, University of Cyprus, P.O. Box 20537, Nicosia CY-1678, Cyprus
| | - Sofia Agriopoulou
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece
| | - Teresa D'Amore
- IRCCS CROB, Centro di Riferimento Oncologico della Basilicata, 85028 Rionero in Vulture, Italy
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece
| |
Collapse
|
3
|
Kolba N, Tako E. Effective alternatives for dietary interventions for necrotizing enterocolitis: a systematic review of in vivo studies. Crit Rev Food Sci Nutr 2023:1-21. [PMID: 37971890 DOI: 10.1080/10408398.2023.2281623] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Necrotizing enterocolitis (NEC) is a significant cause of morbidity and mortality among neonates and low birth weight children in the United States. Current treatment options, such as antibiotics and intestinal resections, often result in complications related to pediatric nutrition and development. This systematic review aimed to identify alternative dietary bioactive compounds that have shown promising outcomes in ameliorating NEC in vivo studies conducted within the past six years. Following PRISMA guidelines and registering in PROSPERO (CRD42023330617), we conducted a comprehensive search of PubMed, Scopus, and Web of Science. Our analysis included 19 studies, predominantly involving in vivo models of rats (Rattus norvegicus) and mice (Mus musculus). The findings revealed that various types of compounds have demonstrated successful amelioration of NEC symptoms. Specifically, six studies employed plant phenolics, seven utilized plant metabolites/cytotoxic chemicals, three explored the efficacy of vitamins, and three investigated the potential of whole food extracts. Importantly, all administered compounds exhibited positive effects in mitigating the disease. These results highlight the potential of natural cytotoxic chemicals derived from medicinal plants in identifying and implementing powerful alternative drugs and therapies for NEC. Such approaches have the capacity to impact multiple pathways involved in the development and progression of NEC symptoms.
Collapse
Affiliation(s)
- Nikolai Kolba
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Elad Tako
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
4
|
Mittal P, Arora D, Parashar S, Goyal R, Khan A, Chopra H, Mishra DK, Gautam RK, Dhama K. Celiac disease: Pathogenesis, disease management and new insights into the herbal-based treatments. NARRA J 2023; 3:e147. [PMID: 38454981 PMCID: PMC10919711 DOI: 10.52225/narra.v3i2.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/04/2023] [Indexed: 03/09/2024]
Abstract
Celiac disease (CD) is a gluten intolerance autoimmune disorder which its symptoms involve the gastrointestinal tract and sometimes the other organs. It is one of the most prevalent health problems rising in many populations as statistics show that in every 100 people about one person is suffering from CD. It has been observed that the persons who genetically contain the human leukocyte antigen (HLA) DQ2 and HLA DQ8 genes involved in the immune system haplotypes are more prone to develop an allergy to gluten. The only treatment currently available for CD is a strict gluten-free diet. However, recent research has shown promising new insights into the herbal-based treatments of CD. New insight on CD is now offering various prospects to manage its treatment, diagnosis, and serving in the development of advanced therapies. Several herbs and botanical extracts have demonstrated anti-inflammatory, immunomodulatory, and gut-healing properties that make them potential candidates for the management of CD. Here, we provide an updated review on pathogeneses and managements of CD. In particular, we summarize the current understandings of herbal-based treatments for CD and highlights their potential benefits.
Collapse
Affiliation(s)
- Pooja Mittal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, India
| | - Disha Arora
- Chandigarh College of Pharmacy, CGC Landran, Mohali, India
| | - Smriti Parashar
- Vedic Institute of Pharmaceutical Education and Research, Sagar, India
| | - Rajat Goyal
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, India
| | - Amir Khan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, India
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Rajpura, India
| | | | | | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| |
Collapse
|
5
|
Meng J, Wang J, Zhu J, Li S, Qiu T, Wang W, Ding J, Wang W, Liu J. Bacteriostatic Effects of Yujin Powder and Its Components on Clinical Isolation of Multidrug-Resistant Avian Pathogenic Escherichia coli. Vet Sci 2023; 10:vetsci10050328. [PMID: 37235411 DOI: 10.3390/vetsci10050328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Escherichia coli is one of the most common pathogenic bacteria in diarrheal chickens, leading to serious economic losses in the poultry industry. The limited effect of antibiotics on antibiotic-resistant E. coli makes this bacterium a potential threat to human health. Yujin powder (YJP) has been reported as an agent that releases the symptoms caused by E. coli for a long time. The objective of this study is to investigate the effect of Yujin powder (YJP) and its components, Scutellariae Radix (SR) and Baicalin (Bac), anti-against multi-drug-resistant E. coli in vitro and in vivo. A multi-drug-resistant bacteria was isolated and identified from a clinical diarrheal chick. Then, the anti-bacterial effects of drugs were assessed in vitro and in vivo by analyzing the bacteria loads of organs, the levels of endotoxin, TNF-α, IL-1β, and IL-6 of the serum. Results found that the pathogenic E. coli was resistant to 19 tested antibiotics. YJP, SR, and Bac could directly inhibit the growth of this strain at high concentrations in vitro, and presents obvious anti-bacterial effects by reducing the bacterial loads, the release of endotoxin, and inflammation in vivo, which was much more effective than the resistant antibiotic ciprofloxacin. This study demonstrates that those natural medicines have the potential to be used as novel treatments to treat the disease caused by this isolated MDREC strain.
Collapse
Affiliation(s)
- Jinwu Meng
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary Medicine Research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinli Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary Medicine Research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- College of Agriculture, Jinhua Polytechnic, Jinhua 321000, China
| | - Jinyue Zhu
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary Medicine Research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Siya Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary Medicine Research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Tianxin Qiu
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary Medicine Research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Weiran Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary Medicine Research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinxue Ding
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary Medicine Research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenjia Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary Medicine Research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaguo Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary Medicine Research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
6
|
Mandal D, Sarkar T, Chakraborty R. Critical Review on Nutritional, Bioactive, and Medicinal Potential of Spices and Herbs and Their Application in Food Fortification and Nanotechnology. Appl Biochem Biotechnol 2023; 195:1319-1513. [PMID: 36219334 PMCID: PMC9551254 DOI: 10.1007/s12010-022-04132-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 01/24/2023]
Abstract
Medicinal or herbal spices are grown in tropical moist evergreen forestland, surrounding most of the tropical and subtropical regions of Eastern Himalayas in India (Sikkim, Darjeeling regions), Bhutan, Nepal, Pakistan, Iran, Afghanistan, a few Central Asian countries, Middle East, USA, Europe, South East Asia, Japan, Malaysia, and Indonesia. According to the cultivation region surrounded, economic value, and vogue, these spices can be classified into major, minor, and colored tropical spices. In total, 24 tropical spices and herbs (cardamom, black jeera, fennel, poppy, coriander, fenugreek, bay leaves, clove, chili, cassia bark, black pepper, nutmeg, black mustard, turmeric, saffron, star anise, onion, dill, asafoetida, celery, allspice, kokum, greater galangal, and sweet flag) are described in this review. These spices show many pharmacological activities like anti-inflammatory, antimicrobial, anti-diabetic, anti-obesity, cardiovascular, gastrointestinal, central nervous system, and antioxidant activities. Numerous bioactive compounds are present in these selected spices, such as 1,8-cineole, monoterpene hydrocarbons, γ-terpinene, cuminaldehyde, trans-anethole, fenchone, estragole, benzylisoquinoline alkaloids, eugenol, cinnamaldehyde, piperine, linalool, malabaricone C, safrole, myristicin, elemicin, sinigrin, curcumin, bidemethoxycurcumin, dimethoxycurcumin, crocin, picrocrocin, quercetin, quercetin 4'-O-β-glucoside, apiol, carvone, limonene, α-phellandrene, galactomannan, rosmarinic acid, limonene, capsaicinoids, eugenol, garcinol, and α-asarone. Other than that, various spices are used to synthesize different types of metal-based and polymer-based nanoparticles like zinc oxide, gold, silver, selenium, silica, and chitosan nanoparticles which provide beneficial health effects such as antioxidant, anti-carcinogenic, anti-diabetic, enzyme retardation effect, and antimicrobial activity. The nanoparticles can also be used in environmental pollution management like dye decolorization and in chemical industries to enhance the rate of reaction by the use of catalytic activity of the nanoparticles. The nutritional value, phytochemical properties, health advantages, and both traditional and modern applications of these spices, along with their functions in food fortification, have been thoroughly discussed in this review.
Collapse
Affiliation(s)
- Debopriya Mandal
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, 700032, India
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Govt. of West Bengal, Malda, 732102, India.
| | - Runu Chakraborty
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
7
|
Formulation, optimization of a poultry feed and analysis of spectrometry, biochemical composition and energy facts. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2023. [DOI: 10.1016/j.sajce.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
8
|
Jadid N, Febrianti Widodo A, Ermavitalini D, Nailis Sa'adah N, Gunawan S, Nisa C. The medicinal Umbelliferae plant Fennel (Foeniculum vulgare Mill.): cultivation, traditional uses, phytopharmacological properties, and application in animal husbandry. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
9
|
Fatima A, Chand N, Naz S, Saeed M, Khan NU, Khan RU. Coping heat stress by crushed fennel (Foeniculum vulgare) seeds in broilers: growth, redox balance and humoral immune response. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.105082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
A Meta-Analysis of Essential Oils Use for Beef Cattle Feed: Rumen Fermentation, Blood Metabolites, Meat Quality, Performance and, Environmental and Economic Impact. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8060254] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The objective of this study was to see how dietary supplementation with essential oils (EOs) affected rumen fermentation, blood metabolites, growth performance and meat quality of beef cattle through a meta-analysis. In addition, a simulation analysis was conducted to evaluate the effects of EOs on the economic and environmental impact of beef production. Data were extracted from 34 peer-reviewed studies and analyzed using random-effects statistical models to assess the weighted mean difference (WMD) between control and EOs treatments. Dietary supplementation of EOs increased (p < 0.01) dry matter intake (WMD = 0.209 kg/d), final body weight (WMD = 12.843 kg), daily weight gain (WMD = 0.087 kg/d), feed efficiency (WMD = 0.004 kg/kg), hot carcass weight (WMD = 5.45 kg), and Longissimus dorsi muscle area (WMD = 3.48 cm2). Lower (p < 0.05) ruminal concentration of ammonia nitrogen (WMD = −1.18 mg/dL), acetate (WMD = −4.37 mol/100 mol) and total protozoa (WMD = −2.17 × 105/mL), and higher concentration of propionate (WMD = 0.878 mol/100 mol, p < 0.001) were observed in response to EOs supplementation. Serum urea concentration (WMD = −1.35 mg/dL, p = 0.026) and haptoglobin (WMD = −39.67 μg/mL, p = 0.031) were lower in cattle supplemented with EOs. In meat, EOs supplementation reduced (p < 0.001) cooking loss (WMD = −61.765 g/kg), shear force (WMD = −0.211 kgf/cm2), and malondialdehyde content (WMD = −0.040 mg/kg), but did not affect pH, color (L* a* and b*), or chemical composition (p > 0.05). Simulation analysis showed that EOs increased economic income by 1.44% and reduced the environmental footprint by 0.83%. In conclusion, dietary supplementation of EOs improves productive performance and rumen fermentation, while increasing the economic profitability and reducing the environmental impact of beef cattle. In addition, supplementation with EOs improves beef tenderness and oxidative stability.
Collapse
|
11
|
Jachimowicz K, Winiarska-Mieczan A, Tomaszewska E. The Impact of Herbal Additives for Poultry Feed on the Fatty Acid Profile of Meat. Animals (Basel) 2022; 12:ani12091054. [PMID: 35565481 PMCID: PMC9101922 DOI: 10.3390/ani12091054] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 02/04/2023] Open
Abstract
Researchers often found that herbal additives to chicken feed can favorably alter the fatty acid profile of the meat. The most desirable effects of diet modification comprise an increased content of polyunsaturated fatty acids (PUFA) and monounsaturated fatty acids (MUFA) and a reduced content of saturated fatty acids (SFA) in the breast and thigh muscles. A modified fatty acid profile contributes to improvement in the quality of poultry meat, which is reflected in its increased consumption. However, it may be problematic that PUFAs are oxidized easier than other lipids, which can have a negative impact on the sensory traits of meat. By contrast, herbs and herbal products contain antioxidants that can prevent the oxidation of unsaturated fatty acids and cholesterol present in animal-origin products and increase the antioxidant potential of the consumer’s body. This paper aims to review the influence of herbal additives for broiler chicken diets on the fatty acid profile of poultry meat. Special attention was paid to changes in the content of SFAs, MUFAs, and PUFAs, but also alterations in the omega-6:omega-3 ratio. The presented reference literature supports the statement that herbs and bioactive components of herbs added to chicken diets can improve the quality of broiler chicken meat by altering the content of fatty acids.
Collapse
Affiliation(s)
- Karolina Jachimowicz
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland;
- Correspondence:
| | - Anna Winiarska-Mieczan
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland;
| | - Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka St. 12, 20-950 Lublin, Poland;
| |
Collapse
|