1
|
Garbarino CA, Bariselli S, Pupillo G, Bassi P, Luppi A, Taddei R, Reggiani A, Massella E, Ricchi M, Carra E, Zadoks RN. Emergence of Group B Streptococcus Disease in Pigs and Porcupines, Italy. Emerg Infect Dis 2024; 30:1228-1231. [PMID: 38782033 PMCID: PMC11138975 DOI: 10.3201/eid3006.231322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
We describe group B Streptococcus linked to disease in farmed pigs and wild porcupines in Italy. Occurrence in pigs was attributed to transmission from nonpasteurized bovine milk whey. Antimicrobial-resistance profiles in isolates from porcupines suggest no common source of infection. Our findings expand the known host range for group B Streptococcus disease.
Collapse
Affiliation(s)
| | | | - Giovanni Pupillo
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Brescia, Italy (C.A. Garbarino, S. Bariselli, G. Pupillo, P. Bassi, A. Luppi, R. Taddei, A. Reggiani, E. Massella, M. Ricchi, E. Carra)
- University of Sydney Faculty of Science, Sydney School of Veterinary Science, Camden, New South Wales, Australia (R.N. Zadoks)
| | - Patrizia Bassi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Brescia, Italy (C.A. Garbarino, S. Bariselli, G. Pupillo, P. Bassi, A. Luppi, R. Taddei, A. Reggiani, E. Massella, M. Ricchi, E. Carra)
- University of Sydney Faculty of Science, Sydney School of Veterinary Science, Camden, New South Wales, Australia (R.N. Zadoks)
| | - Andrea Luppi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Brescia, Italy (C.A. Garbarino, S. Bariselli, G. Pupillo, P. Bassi, A. Luppi, R. Taddei, A. Reggiani, E. Massella, M. Ricchi, E. Carra)
- University of Sydney Faculty of Science, Sydney School of Veterinary Science, Camden, New South Wales, Australia (R.N. Zadoks)
| | - Roberta Taddei
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Brescia, Italy (C.A. Garbarino, S. Bariselli, G. Pupillo, P. Bassi, A. Luppi, R. Taddei, A. Reggiani, E. Massella, M. Ricchi, E. Carra)
- University of Sydney Faculty of Science, Sydney School of Veterinary Science, Camden, New South Wales, Australia (R.N. Zadoks)
| | - Alessandro Reggiani
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Brescia, Italy (C.A. Garbarino, S. Bariselli, G. Pupillo, P. Bassi, A. Luppi, R. Taddei, A. Reggiani, E. Massella, M. Ricchi, E. Carra)
- University of Sydney Faculty of Science, Sydney School of Veterinary Science, Camden, New South Wales, Australia (R.N. Zadoks)
| | - Elisa Massella
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Brescia, Italy (C.A. Garbarino, S. Bariselli, G. Pupillo, P. Bassi, A. Luppi, R. Taddei, A. Reggiani, E. Massella, M. Ricchi, E. Carra)
- University of Sydney Faculty of Science, Sydney School of Veterinary Science, Camden, New South Wales, Australia (R.N. Zadoks)
| | - Matteo Ricchi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Brescia, Italy (C.A. Garbarino, S. Bariselli, G. Pupillo, P. Bassi, A. Luppi, R. Taddei, A. Reggiani, E. Massella, M. Ricchi, E. Carra)
- University of Sydney Faculty of Science, Sydney School of Veterinary Science, Camden, New South Wales, Australia (R.N. Zadoks)
| | | | | |
Collapse
|
2
|
Duodu S, Ayiku ANA, Adelani AA, Daah DA, Amoako EK, Jansen MD, Cudjoe KS. Serotype distribution, virulence and antibiotic resistance of Streptococcus agalactiae isolated from cultured tilapia Oreochromis niloticus in Lake Volta, Ghana. DISEASES OF AQUATIC ORGANISMS 2024; 158:27-36. [PMID: 38661135 DOI: 10.3354/dao03780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Streptococcus agalactiae infection is one of the major factors limiting the expansion of tilapia farming globally. In this study, we investigated the serotype distribution, virulence and antimicrobial resistance of S. agalactiae isolates from tilapia farmed in Lake Volta, Ghana. Isolates from 300 moribund fish were characterised by Gram staining, MALDI-TOF/MS and 16S rRNA sequencing. Serotype identification was based on multiplex polymerase chain reaction (PCR) amplification of the capsular polysaccharide genes. Detection of virulence genes (cfb, fbsA and cspA) and histopathology were used to infer the pathogenicity of the isolates. The susceptibility of isolates to antibiotics was tested using the Kirby-Bauer disk diffusion assay. All 32 isolates identified as S. agalactiae were of serotype Ia. This was notably different from isolates previously collected from the farms in 2017, which belonged to serotype Ib, suggesting a possible serotype replacement. The prevalence of the pathogen was related to the scale of farm operation, with large-scale farms showing higher S. agalactiae positivity. Data from histopathological analysis and PCR amplification of targeted virulence genes confirmed the virulence potential and ability of the isolates to cause systemic infection in tilapia. Except for gentamicin, the majority of the isolates were less resistant to the tested antibiotics. All isolates were fully sensitive to oxytetracycline, erythromycin, florfenicol, enrofloxacin, ampicillin and amoxicillin. This study has improved our understanding of the specific S. agalactiae serotypes circulating in Lake Volta and demonstrates the need for continuous monitoring to guide the use of antimicrobials and vaccines against streptococcal infections in Ghanaian aquaculture systems.
Collapse
Affiliation(s)
- Samuel Duodu
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, LG54 Volta Rd, Legon-Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, LG54 Volta Rd, Legon-Accra, Ghana
| | - Angela N A Ayiku
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, LG54 Volta Rd, Legon-Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, LG54 Volta Rd, Legon-Accra, Ghana
| | - Abigail A Adelani
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, LG54 Volta Rd, Legon-Accra, Ghana
| | - Derrick A Daah
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, LG54 Volta Rd, Legon-Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, LG54 Volta Rd, Legon-Accra, Ghana
| | - Enock K Amoako
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, LG54 Volta Rd, Legon-Accra, Ghana
| | - Mona D Jansen
- Norwegian Veterinary Institute, Elizabeth Stephansons vei 1, 1433 Ås, Norway
| | - Kofitsyo S Cudjoe
- Norwegian Veterinary Institute, Elizabeth Stephansons vei 1, 1433 Ås, Norway
| |
Collapse
|
3
|
Ren Y, Li C, Nanayakkara Sapugahawatte D, Zhu C, Spänig S, Jamrozy D, Rothen J, Daubenberger CA, Bentley SD, Ip M, Heider D. Predicting hosts and cross-species transmission of Streptococcus agalactiae by interpretable machine learning. Comput Biol Med 2024; 171:108185. [PMID: 38401454 DOI: 10.1016/j.compbiomed.2024.108185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/13/2024] [Accepted: 02/18/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND Streptococcus agalactiae, commonly known as Group B Streptococcus (GBS), exhibits a broad host range, manifesting as both a beneficial commensal and an opportunistic pathogen across various species. In humans, it poses significant risks, causing neonatal sepsis and meningitis, along with severe infections in adults. Additionally, it impacts livestock by inducing mastitis in bovines and contributing to epidemic mortality in fish populations. Despite its wide host spectrum, the mechanisms enabling GBS to adapt to specific hosts remain inadequately elucidated. Therefore, the development of a rapid and accurate method differentiates GBS strains associated with particular animal hosts based on genome-wide information holds immense potential. Such a tool would not only bolster the identification and containment efforts during GBS outbreaks but also deepen our comprehension of the bacteria's host adaptations spanning humans, livestock, and other natural animal reservoirs. METHODS AND RESULTS Here, we developed three machine learning models-random forest (RF), logistic regression (LR), and support vector machine (SVM) based on genome-wide mutation data. These models enabled precise prediction of the host origin of GBS, accurately distinguishing between human, bovine, fish, and pig hosts. Moreover, we conducted an interpretable machine learning using SHapley Additive exPlanations (SHAP) and variant annotation to uncover the most influential genomic features and associated genes for each host. Additionally, by meticulously examining misclassified samples, we gained valuable insights into the dynamics of host transmission and the potential for zoonotic infections. CONCLUSIONS Our study underscores the effectiveness of random forest (RF) and logistic regression (LR) models based on mutation data for accurately predicting GBS host origins. Additionally, we identify the key features associated with each GBS host, thereby enhancing our understanding of the bacteria's host-specific adaptations.
Collapse
Affiliation(s)
- Yunxiao Ren
- Department for Data Science in Biomedicine, Faculty of Mathematics and Computer Science, Philipps-University of Marburg, Marburg, Germany
| | - Carmen Li
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | | | - Chendi Zhu
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Sebastian Spänig
- Department for Data Science in Biomedicine, Faculty of Mathematics and Computer Science, Philipps-University of Marburg, Marburg, Germany
| | - Dorota Jamrozy
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Julian Rothen
- Swiss Tropical and Public Health Institute (Swiss TPH) Basel, Department of Medical Parasitology and Infection Biology, 4002, Basel, Switzerland; University of Basel, 4002, Basel, Switzerland
| | - Claudia A Daubenberger
- Swiss Tropical and Public Health Institute (Swiss TPH) Basel, Department of Medical Parasitology and Infection Biology, 4002, Basel, Switzerland; University of Basel, 4002, Basel, Switzerland
| | - Stephen D Bentley
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Margaret Ip
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Dominik Heider
- Department for Data Science in Biomedicine, Faculty of Mathematics and Computer Science, Philipps-University of Marburg, Marburg, Germany; Institute for Computer Science, University of Düsseldorf, 40211, Düsseldorf, Germany; Center for Digital Health, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany.
| |
Collapse
|
4
|
Hou X, Shi H, Jiang Y, Li X, Chen K, Li Q, Liu R. Transcriptome analysis reveals the neuroactive receptor genes response to Streptococcus agalactiae infection in tilapia, Oreochromis niloticus. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109090. [PMID: 37722443 DOI: 10.1016/j.fsi.2023.109090] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/13/2023] [Accepted: 09/16/2023] [Indexed: 09/20/2023]
Abstract
The detailed crosstalk between the neuroendocrine and immune systems in Oreochromis niloticus, an economically important fish, in response to pathogenic infections, remains unclear. This study revealed the head kidney transcriptional profiles of O. niloticus upon infections with Streptococcus agalactiae, a prevalent pathogen known to cause severe meningitis. Twelve cDNA libraries of O. niloticus head kidney, representing four treatment time points (0, 6, 24, and 48 h), were constructed and a total of 2,528 differentially expressed genes were identified based on pairwise comparisons. KEGG pathway analysis revealed a significant enrichment of the 'neuroactive ligand-receptor interaction' pathway (ko04080), with 13 genes exhibiting differential expression during S. agalactiae infection. Among these, six neuroactive receptor genes (lepr, nr3c1, ptger4, thrb, tspo, and β2-ar) were selected, cloned, and characterized. Although these genes are ubiquitously expressed, and in head kidney leukocytes, their expression was mainly observed in T cells, Mo/Mφ, and NCCs, which are characterized by antimicrobial responses. Furthermore, we examined the response patterns of these six neuroactive receptor genes to gram-positive (S. agalactiae) and gram-negative (Aeromonas hydrophila) bacteria in four different tissues. Notably, lepr, ptger4, tspo, and β2-ar were upregulated in all selected tissues in response to S. agalactiae and A. hydrophila infections. However, nr3c1 and thrb were downregulated in response to S. agalactiae infection in the head kidney and spleen, whereas nr3c1 was upregulated, and thrb was unresponsive to A. hydrophila infection. Our findings provide a theoretical foundation for understanding new links between the neuroendocrine and immune systems during bacterial infection in teleost fish.
Collapse
Affiliation(s)
- Xitan Hou
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China.
| | - Haokai Shi
- College of Medical Engineering, Jining Medical University, Jining, China
| | - Yan Jiang
- Shandong Freshwater Fisheries Research Institute, Jinan, China
| | - Xiaoke Li
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| | - Kaiqi Chen
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| | - Qi Li
- Fisheries College, Jimei University, Xiamen, China.
| | - Ruonan Liu
- College of Medical Engineering, Jining Medical University, Jining, China.
| |
Collapse
|
5
|
Ivorra L, Cardoso PG, Chan SK, Cruzeiro C, Tagulao K. Quantification of insecticides in commercial seafood sold in East Asian markets: risk assessment for consumers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:34585-34597. [PMID: 36515882 PMCID: PMC10017608 DOI: 10.1007/s11356-022-24413-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
The extraction of 21 insecticides and 5 metabolites was performed using an optimized and validated QuEChERS protocol that was further used for the quantification (GC-MS/MS) in several seafood matrices (crustaceans, bivalves, and fish-mudskippers). Seven species, acquired from Hong Kong and Macao wet markets (a region so far poorly monitored), were selected based on their commercial importance in the Indo-Pacific region, market abundance, and affordable price. Among them, mussels from Hong Kong, together with mudskippers from Macao, presented the highest insecticide concentrations (median values of 30.33 and 23.90 ng/g WW, respectively). Residual levels of fenobucarb, DDTs, HCHs, and heptachlors were above the established threshold (10 ng/g WW) for human consumption according to the European and Chinese legislations: for example, in fish-mudskippers, DDTs, fenobucarb, and heptachlors (5-, 20- and tenfold, respectively), and in bivalves, HCHs (fourfold) had higher levels than the threshold. Risk assessment revealed potential human health effects (e.g., neurotoxicity), especially through fish and bivalve consumption (non-carcinogenic risk; ΣHQLT > 1), and a potential concern of lifetime cancer risk development through the consumption of fish, bivalves, and crustaceans collected from these markets (carcinogenic risk; ΣTCR > 10-4). Since these results indicate polluted regions, where the seafood is collected/produced, a strict monitoring framework should be implemented in those areas to improve food quality and safety of seafood products.
Collapse
Affiliation(s)
- Lucia Ivorra
- Institute of Science and Environment, ISE—University of Saint Joseph, Macao, SAR China
| | - Patricia G. Cardoso
- CIIMAR/CIMAR—Interdisciplinary Centre for Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| | - Shek Kiu Chan
- Institute of Science and Environment, ISE—University of Saint Joseph, Macao, SAR China
| | - Catarina Cruzeiro
- Helmholtz Zentrum München, German Research Centre for Environmental Health, GmbH, Research Unit Comparative Microbiome Analysis, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Karen Tagulao
- Institute of Science and Environment, ISE—University of Saint Joseph, Macao, SAR China
| |
Collapse
|
6
|
Shi H, Zhou M, Zhang Z, Hu Y, Song S, Hui R, Wang L, Li G, Yao L. Molecular epidemiology, drug resistance, and virulence gene analysis of Streptococcus agalactiae isolates from dairy goats in backyard farms in China. Front Cell Infect Microbiol 2023; 12:1049167. [PMID: 36699728 PMCID: PMC9868259 DOI: 10.3389/fcimb.2022.1049167] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/08/2022] [Indexed: 01/11/2023] Open
Abstract
Streptococcus agalactiae infections may lead to clinical or subclinical mastitis in dairy animals when it invades the mammary gland. In this study, 51 S. agalactiae strains were isolated from 305 milk samples that were collected from goats with mastitis in 13 provinces of China. The antimicrobial resistance of S. agalactiae was determined by disk diffusion methods against 18 antibiotics from six classes. In addition, multilocus sequence typing (MLST), and the presence of resistance and virulence genes was determined by PCR analysis. Seven sequence types in five clonal complexes were identified according to MLST; CC103 and CC67 strains were predominant, with rates of 45.1% and 39.2%, respectively. All isolates (100%) were multiresistant to three or more antimicrobial agents. S. agalactiae isolates had a 100% resistance rate to penicillin, oxacillin, and amoxicillin, followed by doxycycline (82.4%), tetracycline (76.5%), and amikacin (74.5%). The lowest resistance was observed for ciprofloxacin (29.4%), which varied in five different regions. The detection rates of six classes of antimicrobial-related genes were calculated as follows: 33 (64.7%) for β-lactam-related resistance gene, 12 (23.5%) for tetracyclines, 11 (21.6%) for quinolone-related resistance genes, 10 (19.6%) for aminoglycosides, 7 (13.7%) for macrolides (ermA, ermB, and mefA), and 3 (5.9%) for lincosamide (lnu(B)). Regarding virulence genes, profile 1 (bca cfb-cspA-cylE-hylB-bibA-pavA-fbsA-fbsB) was the most prevalent, with a detection rate of 54.9%. This work provides a primary source related to the molecular epidemiology of S. agalactiae in dairy goat herds in China and will aid in the clinical treatment, prevention, and control of mastitis.
Collapse
Affiliation(s)
- Hongfei Shi
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Provincial Engineering Laboratory of Insects Bio-reactor, Nanyang Normal University, Nanyang, China,*Correspondence: Hongfei Shi, ; Lunguang Yao,
| | - Mengxiao Zhou
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Provincial Engineering Laboratory of Insects Bio-reactor, Nanyang Normal University, Nanyang, China
| | - Zhengtian Zhang
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Provincial Engineering Laboratory of Insects Bio-reactor, Nanyang Normal University, Nanyang, China
| | - Yun Hu
- College of Animal Husbandry and Medical Engineering, Nanyang Vocational College of Agriculture, Nanyang, China
| | - Shiyang Song
- Animal Husbandry and Fishery Department, Heilongjiang State 853 Farm Limited Company, Shuangyashan, China
| | - Ruiqing Hui
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Provincial Engineering Laboratory of Insects Bio-reactor, Nanyang Normal University, Nanyang, China
| | - Long Wang
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Provincial Engineering Laboratory of Insects Bio-reactor, Nanyang Normal University, Nanyang, China
| | - Guoguang Li
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Provincial Engineering Laboratory of Insects Bio-reactor, Nanyang Normal University, Nanyang, China
| | - Lunguang Yao
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Provincial Engineering Laboratory of Insects Bio-reactor, Nanyang Normal University, Nanyang, China,*Correspondence: Hongfei Shi, ; Lunguang Yao,
| |
Collapse
|
7
|
Preenanka R, Safeena MP. Morphological, biological and genomic characterization of lytic phages against Streptococcus agalactiae causing streptococcosis in tilapia. Microb Pathog 2023; 174:105919. [PMID: 36460145 DOI: 10.1016/j.micpath.2022.105919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
Streptococcus agalactiae, a highly invasive pathogen causing streptococcosis, is a major disease imparting devastating effect in the aquaculture, worldwide. As bacteriophage therapy is getting more attention recently, as an alternative viable biocontrol agent to antibiotic and vaccine, this study aimed to isolate and purify obligately lytic bacteriophages and study its morphological, genetic and biological characteristics. Host range analysis of the four bacteriophages isolated in this study, such as Phage- 12 P, 15 F, 16 E and 20D exhibited 100% infectivity to S. agalactiae serotype Ia, a predominant serotype infecting fish. Morphotype of the phages was revealed by HR-TEM and found that the phage 20D belong to the family Myoviridae and the phages 12 P, 15 F, 16 E belonged to the family Siphoviridae with typical head and tail structure. Lytic potential of the phages were ascertained by multiplicity of infection and one step lytic curve and it is found that the phages exhibit high burst size at an MOI of 0.01. Random amplified polymorphic DNA revealed the genetic diversity of these four phages with distinct banding pattern. The phages were found to be lytic with the absence of genes coding for integrase, transposase and recombinase on PCR based screening. Phages exhibited stability and viability at various physic-chemical parameters such as temperature ranging from 4 to 45 °C, pH of 4-12 and salinity ranging from 0 to 6%. Thus the present study revealed that S. agalactiae specific phages such as Phage- 12 P, 15 F, 16 E and 20D are highly stable and potential to eliminate the S. agalactiae serotype Ia infecting fish. After the complete characterization of the phages by whole genome sequencing and exploring the defense function against S. agalactiae infection in vivo, it may be applied as a therapeutic agent against S. agalactiae infection in aquaculture.
Collapse
Affiliation(s)
- R Preenanka
- Faculty of Ocean Science and Technology (FOST), Kerala University of Fisheries and Ocean Studies (KUFOS), Panangad, Kochi, 682 506, Kerala, India.
| | - Muhammed P Safeena
- Department of Aquatic Animal Health Management (AAHM), Faculty of Fisheries Science, Kerala University of Fisheries and Ocean Studies (KUFOS), Panangad, Kochi, 682 506, Kerala, India.
| |
Collapse
|
8
|
Sapugahawatte DN, Li C, Liyanapathirana V, Kandauda C, Gihan C, Zhu C, Lo NWS, Wong KT, Ip M. Colonization of Group B Streptococcus in Pregnant Women and Their Neonates from a Sri Lankan Hospital. Pathogens 2022; 11:pathogens11040386. [PMID: 35456061 PMCID: PMC9029214 DOI: 10.3390/pathogens11040386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 01/25/2023] Open
Abstract
We investigated the molecular epidemiology of Streptococcus agalactiae (Group B Streptococcus, GBS) from carriage in a cohort of pregnant mothers and their respective newborns in a Teaching Hospital in Sri Lanka. GBS vaginal carriage was assessed on pregnant mothers at pre-delivery (n = 250), post-delivery (n = 130), and from peri-rectal swabs of neonates (n = 159) in a prospective study. All colonizing, non-duplicate GBS isolates (n = 60) were analyzed for antimicrobial susceptibilities, capsular serotyping, and whole-genome sequencing (WGS). The percentage of GBS carriage in mothers in the pre-delivery and post-delivery cohorts were 11.2% (n = 28) and 19.2% (n = 25), respectively, and 4.4% (n = 7) in neonates. GBS isolates predominantly belonged to serotype VI (17/60, 28.3%). The isolates spanned across 12 sequence types (STs), with ST1 (24/60, 40%) being the most predominant ST. Concomitant resistance to erythromycin, tetracyclines, and gentamicin was observed in eight strains (13.3%). WGS revealed the presence of antimicrobial resistance genes including ermA (5/60), mefA (1/60), msrD (1/60), and tetLMO (2/60, 28/60, and 1/60, respectively) among 60 strains. The study provides insight into the diversity of vaccine targets of GBS since serotype VI is yet to be covered in the vaccine development program.
Collapse
Affiliation(s)
- Dulmini Nanayakkara Sapugahawatte
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (D.N.S.); (C.L.); (C.Z.); (N.W.S.L.); (K.T.W.)
| | - Carmen Li
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (D.N.S.); (C.L.); (C.Z.); (N.W.S.L.); (K.T.W.)
| | - Veranja Liyanapathirana
- Department of Microbiology, Faculty of Medicine, University of Peradeniya, Peradeniya 20400, Sri Lanka;
| | - Chaminda Kandauda
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Peradeniya, Peradeniya 20400, Sri Lanka; (C.K.); (C.G.)
| | - Champika Gihan
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Peradeniya, Peradeniya 20400, Sri Lanka; (C.K.); (C.G.)
| | - Chendi Zhu
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (D.N.S.); (C.L.); (C.Z.); (N.W.S.L.); (K.T.W.)
| | - Norman Wai Sing Lo
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (D.N.S.); (C.L.); (C.Z.); (N.W.S.L.); (K.T.W.)
| | - Kam Tak Wong
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (D.N.S.); (C.L.); (C.Z.); (N.W.S.L.); (K.T.W.)
| | - Margaret Ip
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (D.N.S.); (C.L.); (C.Z.); (N.W.S.L.); (K.T.W.)
- Correspondence: ; Tel.: +852-3505-3333
| |
Collapse
|