1
|
Cheng G, Jian S, Li W, Yan L, Chen T, Cheng T, Liu Z, Ye G, Tang H, Zhang L. Epigallocatechin gallate protects mice from Salmonella enterica ser. Typhimurium infection by modulating bacterial virulence through quorum sensing inhibition. Front Cell Infect Microbiol 2024; 14:1432111. [PMID: 39479281 PMCID: PMC11521958 DOI: 10.3389/fcimb.2024.1432111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/23/2024] [Indexed: 11/02/2024] Open
Abstract
Salmonella enterica ser. Typhimurium is a common pathogen that poses a considerable public health threat, contributing to severe gastrointestinal diseases and widespread foodborne illnesses. The virulence of S. Typhimurium is regulated by quorum sensing (QS) and the type III secretion system (T3SS). This study investigated the inhibitory effects and anti-QS activity of epigallocatechin gallate (EGCG), which is a bioactive ingredient found in green tea, on the virulence of S. Typhimurium. In vitro bacterial experiments demonstrated that EGCG inhibited the production of autoinducers, biofilm formation, and flagellar activity by downregulating the expression of AI-1, AI-2, Salmonella pathogenicity islands (SPI)-1, SPI-2, and genes related to flagella, fimbriae, and curli fibers. In a mouse model of S. Typhimurium-induced enteritis, EGCG considerably reduced intestinal colonization by S. Typhimurium and alleviated intestinal damage. In conclusion, EGCG protects the intestines of mice infected with S. Typhimurium by inhibiting QS-induced virulence gene expression, demonstrating its potential as a therapeutic agent for controlling S. Typhimurium infections.
Collapse
Affiliation(s)
- Guoqiang Cheng
- Animal Experiment Center, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
| | - Shanqiu Jian
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Wen Li
- Department of Science, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Liangchun Yan
- Animal Experiment Center, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
| | - Tiezhu Chen
- Animal Experiment Center, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
| | - Tingting Cheng
- Animal Experiment Center, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
| | - Zongxiu Liu
- Department of Innovation, Chengdu Qiankun Animal Pharmaceutical Co., Ltd, Chengdu, China
| | - Gang Ye
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Huaqiao Tang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Li Zhang
- Animal Experiment Center, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
| |
Collapse
|
2
|
Koshak AE, Elfaky MA, Abdallah HM, Albadawi DAI, Mohamed GA, Ibrahim SRM, Alzain AA, Khafagy ES, Rajab AAH, Hegazy WAH. Arctigenin from Burdock Root Exhibits Potent Antibacterial and Anti-Virulence Properties against Pseudomonas aeruginosa. J Microbiol Biotechnol 2024; 34:1642-1652. [PMID: 39049476 PMCID: PMC11380511 DOI: 10.4014/jmb.2403.03003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/10/2024] [Accepted: 06/03/2024] [Indexed: 07/27/2024]
Abstract
Arctium lappa (Burdock) root is used in various culinary applications especially in Asian Cuisine. Arctigenin (ARC) is a polyphenolic compound abundant in the roots of the burdock plant from which it derives its name. The emergence of bacterial resistance is a growing global worry, specifically due to the declining availability of new antibiotics. Screening for the antibacterial candidates among the safe natural products is a promising approach. The present study was aimed to assess the antibacterial activity of ARC against Pseudomonas aeruginosa exploring its effect on the bacterial cell membrane. Furthermore, the anti-virulence activities and anti-quorum sensing (QS) activities of ARC were in vitro, in vivo and in silico assessed against P. aeruginosa. The current results showed the ARC antibacterial activity was owed to its disruption effect of the cell membrane. ARC at sub-MIC significantly decreased the formation of biofilm, motility, production of extracellular enzymes and in vivo protected mice against P. aeruginosa. These anti-virulence activities of ARC are owed to its interference with bacterial QS and its expression. Furthermore, ARC showed mild effect on mammalian erythrocytes, low probability to induce resistance and synergistically combined with antibiotics. In summary, the promising anti-virulence properties of ARC indicate its potential as an effective supplement to conventional antibiotics for treating severe P. aeruginosa infections.
Collapse
Affiliation(s)
- Abdulrahman E Koshak
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mahmoud A Elfaky
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hossam M Abdallah
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Dina A I Albadawi
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Gamal A Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sabrin R M Ibrahim
- Department of Chemistry, Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| | - Abdulrahim A Alzain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Madani 21111, Sudan
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Azza A H Rajab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Egypt
| | - Wael A H Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Egypt
- Pharmacy Program, Department of Pharmaceutical Sciences, Oman College of Health Sciences, Muscat 113, Oman
| |
Collapse
|
3
|
Bendary MM, Ali MAM, Abdel Halim AS, Boufahja F, Chaudhary AA, Elkelish A, Soliman RHM, Hegazy WAH. Investigating Sulforaphane's anti-virulence and anti-quorum sensing properties against Pseudomonas aeruginosa. Front Pharmacol 2024; 15:1406653. [PMID: 38835668 PMCID: PMC11148281 DOI: 10.3389/fphar.2024.1406653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 04/29/2024] [Indexed: 06/06/2024] Open
Abstract
Background P. aeruginosa, a significant bacterium, can cause severe illness and resistance to antibiotics. Quorum sensing (QS) systems regulate virulence factors production. Targeting QS could reduce bacteria pathogenicity and prevent antibiotic resistance. Cruciferous vegetables contain sulforaphane, known for its anti-inflammatory, antioxidant, anticancer, and antimicrobial properties. Aim We aimed to examine the inhibitory influences of sulforaphane, at a sub-inhibitory concentration (¼ minimum inhibitory concentration, MIC), on virulence and QS in P. aeruginosa. Materials and methods The sulforaphane's anti-virulence actions at sub-inhibitory concentrations were explored in vitro and in vivo. A sub-MIC concentration of sulforaphane was combined with anti-pseudomonal drugs, and the results of this combination were assessed. The virtual affinity of sulforaphane for the receptors of QS was studied, and its effect on the expression of QS genes was quantified. Results Sulforaphane significantly decreased the biofilm formation, motility, ability to withstand oxidative stress, and the synthesis of virulence extracellular enzymes such as proteases, hemolysins, and elastase, as well as other virulence factors like pyocyanin. In addition, sulforaphane lessened the severity of P. aeruginosa infection in mice. Sulforaphane reduced the antipseudomonal antibiotics' MICs when used together, resulting in synergistic effects. The observed anti-virulence impacts were attributed to the ability of sulforaphane to inhibit QS via suppressing the QS genes' expression. Conclusion Sulforaphane shows promise as a potent anti-virulence and anti-QS agent that can be used alongside conventional antimicrobials to manage severe infections effectively. Furthermore, this study paves the way for further investigation of sulforaphane and similar structures as pharmacophores for anti-QS candidates.
Collapse
Affiliation(s)
- Mahmoud M Bendary
- Department of Microbiology and Immunology, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Mohamed A M Ali
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Alyaa S Abdel Halim
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Fehmi Boufahja
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Amr Elkelish
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Rania H M Soliman
- Department of Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Wael A H Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
- Pharmacy Program, Department of Pharmaceutical Sciences, Oman College of Health Sciences, Muscat, Oman
| |
Collapse
|
4
|
Koshak AE, Elfaky MA, Albadawi DAI, Abdallah HM, Mohamed GA, Ibrahim SRM, Alzain AA, Khafagy ES, Elsayed EM, Hegazy WAH. Piceatannol: a renaissance in antibacterial innovation unveiling synergistic potency and virulence disruption against serious pathogens. Int Microbiol 2024:10.1007/s10123-024-00532-8. [PMID: 38767683 DOI: 10.1007/s10123-024-00532-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/27/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024]
Abstract
In the relentless battle against multi-drug resistant Gram-negative bacteria, piceatannol emerges as a beacon of hope, showcasing unparalleled antibacterial efficacy and a unique ability to disrupt virulence factors. Our study illuminates the multifaceted prowess of piceatannol against prominent pathogens-Proteus mirabilis, Pseudomonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae. Notably, piceatannol demonstrated a remarkable ability to inhibit biofilm formation, reduce bacterial mobility, and diminish extracellular enzyme synthesis.Mechanistic insights into piceatannol's activity unraveled its impact on membrane potential, proton motive force, and ATP production. Furthermore, our study delved into piceatannol's anti-quorum sensing (QS) activity, showcasing its potential to downregulate QS-encoding genes and affirming its affinity to critical QS receptors through molecular docking. Crucially, piceatannol exhibited a low propensity for resistance development, positioning it as a promising candidate for combating antibiotic-resistant strains. Its mild effect on red blood cells (RBCs) suggests safety even at higher concentrations, reinforcing its potential translational value. In an in vivo setting, piceatannol demonstrated protective capabilities, significantly reducing pathogenesis in mice infected with P. aeruginosa and P. mirabilis. This comprehensive analysis positions piceatannol as a renaissance in antibacterial innovation, offering a versatile and effective strategy to confront the evolving challenges posed by resilient Gram-negative pathogens.
Collapse
Affiliation(s)
- Abdulrahman E Koshak
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mahmoud A Elfaky
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Dina A I Albadawi
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hossam M Abdallah
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Gamal A Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Sabrin R M Ibrahim
- Department of Chemistry, Batterjee Medical College, Preparatory Year Program, Jeddah, 21442, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Abdulrahim A Alzain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Madani, 21111, Sudan
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Eslam M Elsayed
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, 35043, Germany
- Department of Biology, Philipps-Universität Marburg, Marburg, 35043, Germany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Wael A H Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
- Pharmacy Program, Department of Pharmaceutical Sciences, Oman College of Health Sciences, Muscat, 113, Oman
| |
Collapse
|
5
|
Elfaky MA, Okairy HM, Abdallah HM, Koshak AE, Mohamed GA, Ibrahim SR, Alzain AA, Hegazy WA, Khafagy ES, Seleem NM. Assessing the antibacterial potential of 6-gingerol: Combined experimental and computational approaches. Saudi Pharm J 2024; 32:102041. [PMID: 38558886 PMCID: PMC10981156 DOI: 10.1016/j.jsps.2024.102041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
The rise of antibiotic resistance in bacteria is becoming a global concern, particularly due to the dwindling supply of new antibiotics. This situation mandates the discovery of new antimicrobial candidates. Plant-derived natural compounds have historically played a crucial role in the development of antibiotics, serving as a rich source of substances possessing antimicrobial properties. Numerous studies have supported the reputation of 6-gingerol, a prominent compound found in the ginger family, for its antibacterial properties. In this study, the antibacterial activities of 6-gingerol were evaluated against Gram-negative bacteria, Acinetobacter baumannii and Klebsiella pneumoniae, with a particular focus on the clinically significant Gram-negative Pseudomonas aeruginosa and Gram-positive bacteria Staphylococcus aureus. Furthermore, the anti-virulence activities were assessed in vitro, in vivo, and in silico. The current findings showed that 6-gingerol's antibacterial activity is due to its significant effect on the disruption of the bacterial cell membrane and efflux pumps, as it significantly decreased the efflux and disrupted the cell membrane of S. aureus and P. aeruginosa. Furthermore, 6-gingerol significantly decreased the biofilm formation and production of virulence factors in S. aureus and P. aeruginosa in concentrations below MICs. The anti-virulence properties of 6-gingerol could be attributed to its capacity to disrupt bacterial virulence-regulating systems; quorum sensing (QS). 6-Gingerol was found to interact with QS receptors and downregulate the genes responsible for QS. In addition, molecular docking, and molecular dynamics (MD) simulation results indicated that 6-gingerol showed a comparable binding affinity to the co-crystalized ligands of different P. aeruginosa QS targets as well as stable interactions during 100 ns MD simulations. These findings suggest that 6-gingerol holds promise as an anti-virulence agent that can be combined with antibiotics for the treatment of severe infections.
Collapse
Affiliation(s)
- Mahmoud A. Elfaky
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hassan M. Okairy
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hossam M. Abdallah
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdulrahman E. Koshak
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Gamal A. Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sabrin R.M. Ibrahim
- Preparatory Year Program, Department of Chemistry, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Abdulrahim A. Alzain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Madani 21111, Sudan
| | - Wael A.H. Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Pharmacy Program, Department of Pharmaceutical Sciences, Oman College of Health Sciences, Muscat 113, Oman
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Noura M. Seleem
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
6
|
Koshak AE, Okairy HM, Elfaky MA, Abdallah HM, Mohamed GA, Ibrahim SRM, Alzain AA, Abulfaraj M, Hegazy WAH, Nazeih SI. Antimicrobial and anti-virulence activities of 4-shogaol from grains of paradise against gram-negative bacteria: Integration of experimental and computational methods. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117611. [PMID: 38158095 DOI: 10.1016/j.jep.2023.117611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bacterial resistance to antibiotics is a growing global concern, highlighting the urgent need for new antimicrobial candidates. Aframomum melegueta was traditionally used for combating urinary tract and soft tissue infections, which implies its potential as an antimicrobial agent. AIM OF STUDY This study was designed to explore the antibacterial and anti-virulence capabilities of 4-shogaol isolated from A. melegueta seeds versus gram-negative bacteria: Serratia marcescens, Klebsiella pneumoniae, Acinetobacter baumannii, and the clinically important pathogen Pseudomonas aeruginosa. MATERIALS AND METHODS 4-Shogeol was isolated from A. melegueta seeds and its MICs were determined for Acinetobacter baumannii (ATCC-17978), Pseudomonas aeruginosa (ATCC-27853), Klebsiella pneumoniae (ATCC-700603), and Serratia marcescens clinical isolate. The anti-efflux activity and effect on the bacterial cell membrane for the compound were evaluated. Furthermore, the anti-virulence activities of the compound were evaluated. The effects of 4-shogeol at sub-MIC on bacterial motility, biofilm formation, and production of virulent enzymes and pigments were assessed. The anti-quorum sensing activities of 4-shogeol were evaluated virtually and by quantification its effect on the expression of quorum sensing encoding genes. The in vivo protection assay was conducted to evaluate the effect of 4-shogaol on the P. aeruginosa capacity to induce pathogenesis in mice. Finally, the effect of shogaol-antibiotics combination was assessed. RESULTS The research revealed that 4-shogaol's antibacterial action primarily involves disrupting the bacterial cell membrane and efflux pumps. It also exhibited significant anti-virulence effects by reducing biofilm development and repressing virulence factors production, effectively protecting mice against P. aeruginosa infection. Furthermore, when combined with antibiotics, 4-shogaol demonstrated synergistic effects, leading to reduced minimum inhibitory concentrations (MICs) against P. aeruginosa. Its anti-virulence properties were linked to its ability to disrupt bacterial quorum sensing (QS) mechanisms, as evidenced by its interaction with QS receptors and downregulation of QS-related genes. Notably, in silico analysis indicated that 4-shogaol exhibited strong binding affinity to different P. aeruginosa QS targets. CONCLUSION These findings suggest that 4-shogaol holds promise as an effective anti-virulence agent that can be utilized in combination with antibiotics for treating severe infections caused by gram-positive bacteria.
Collapse
Affiliation(s)
- Abdulrahman E Koshak
- Department of Natural Products and Alternative Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hassan M Okairy
- Department of Natural Products and Alternative Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mahmoud A Elfaky
- Department of Natural Products and Alternative Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hossam M Abdallah
- Department of Natural Products and Alternative Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Gamal A Mohamed
- Department of Natural Products and Alternative Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Sabrin R M Ibrahim
- Preparatory Year Program, Department of Chemistry, Batterjee Medical College, Jeddah, 21442, Saudi Arabia; Department of Pharmacognosy, Assiut University, Assiut, 71526, Egypt
| | - Abdulrahim A Alzain
- Department of Pharmaceutical Chemistry, University of Gezira, Wad Madani, 21111, Sudan
| | - Moaz Abulfaraj
- Department of Surgery, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Wael A H Hegazy
- Department of Microbiology and Immunology, Zagazig University, Zagazig, 44519, Egypt; Pharmacy Program, Department of Pharmaceutical Sciences, Oman College of Health Sciences, Muscat, 113, Oman
| | - Shaimaa I Nazeih
- Department of Microbiology and Immunology, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
7
|
Al-Rabia MW, Asfour HZ, Alhakamy NA, Abdulaal WH, Ibrahim TS, Abbas HA, Salem IM, Hegazy WAH, Nazeih SI. Thymoquinone is a natural antibiofilm and pathogenicity attenuating agent in Pseudomonas aeruginosa. Front Cell Infect Microbiol 2024; 14:1382289. [PMID: 38638827 PMCID: PMC11024287 DOI: 10.3389/fcimb.2024.1382289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/08/2024] [Indexed: 04/20/2024] Open
Abstract
Pseudomonas aeruginosa belongs to the critical pathogens that represent a global public health problem due to their high rate of resistance as listed by WHO. P. aeruginosa can result in many nosocomial infections especially in individuals with compromised immune systems. Attenuating virulence factors by interference with quorum sensing (QS) systems is a promising approach to treat P. aeruginosa-resistant infections. Thymoquinone is a natural compound isolated from Nigella sativa (black seed) essential oil. In this study, the minimum inhibitory concentration of thymoquinone was detected followed by investigating the antibiofilm and antivirulence activities of the subinhibitory concentration of thymoquinone against P. aeruginosa PAO1. The effect of thymoquinone on the expression of QS genes was assessed by quantitative real-time PCR, and the protective effect of thymoquinone against the pathogenesis of PAO1 in mice was detected by the mouse survival test. Thymoquinone significantly inhibited biofilm, pyocyanin, protease activity, and swarming motility. At the molecular level, thymoquinone markedly downregulated QS genes lasI, lasR, rhlI, and rhlR. Moreover, thymoquinone could protect mice from the pathologic effects of P. aeruginosa increasing mouse survival from 20% to 100%. In conclusion, thymoquinone is a promising natural agent that can be used as an adjunct therapeutic agent with antibiotics to attenuate the pathogenicity of P. aeruginosa.
Collapse
Affiliation(s)
- Mohammed W. Al-Rabia
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hani Z. Asfour
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Wesam H. Abdulaal
- Department of Biochemistry, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tarek S. Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hisham A. Abbas
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Ibrahim M. Salem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sphinx University, Assiut, Egypt
| | - Wael A. H. Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
- Pharmacy Program, Department of Pharmaceutical Sciences, Oman College of Health Sciences, Muscat, Oman
| | - Shaimaa I. Nazeih
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
8
|
Abdulaal WH, Alhakamy NA, Asseri AH, Radwan MF, Ibrahim TS, Okbazghi SZ, Abbas HA, Mansour B, Shoun AA, Hegazy WAH, Abdel-Halim MS. Redirecting pantoprazole as a metallo-beta-lactamase inhibitor in carbapenem-resistant Klebsiella pneumoniae. Front Pharmacol 2024; 15:1366459. [PMID: 38533260 PMCID: PMC10963397 DOI: 10.3389/fphar.2024.1366459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/27/2024] [Indexed: 03/28/2024] Open
Abstract
The development of resistance to carbapenems in Klebsiella pneumoniae due to the production of metallo-β-lactamases (MBLs) is a critical public health problem because carbapenems are the last-resort drugs used for treating severe infections of extended-spectrum β-lactamases (ESBLs) producing K. pneumoniae. Restoring the activity of carbapenems by the inhibition of metallo-β-lactamases is a valuable approach to combat carbapenem resistance. In this study, two well-characterized clinical multidrug and carbapenem-resistant K. pneumoniae isolates were used. The sub-inhibitory concentrations of pantoprazole and the well-reported metallo-β-lactamase inhibitor captopril inhibited the hydrolytic activities of metallo-β-lactamases, with pantoprazole having more inhibiting activities. Both drugs, when used in combination with meropenem, exhibited synergistic activities. Pantoprazole could also downregulate the expression of the metallo-β-lactamase genes bla NDM and bla VIM. A docking study revealed that pantoprazole could bind to and chelate zinc ions of New Delhi and Verona integron-encoded MBL (VIM) enzymes with higher affinity than the control drug captopril and with comparable affinity to the natural ligand meropenem, indicating the significant inhibitory activity of pantoprazole against metallo-β-lactamases. In conclusion, pantoprazole can be used in combination with meropenem as a new strategy for treating serious infections caused by metallo-β-lactamases producing K. pneumoniae.
Collapse
Affiliation(s)
- Wesam H. Abdulaal
- Department of Biochemistry, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amer H. Asseri
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed F. Radwan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tarek S. Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Solomon Z. Okbazghi
- Global Analytical and Pharmaceutical Development, Alexion Pharmaceuticals, New Haven, CT, United States
| | - Hisham A. Abbas
- Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Basem Mansour
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Aly A. Shoun
- Microbiology and Immunology Department, Faculty of Pharmacy, El Salehey El Gadida University, Sharkiya, Egypt
| | - Wael A. H. Hegazy
- Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
- Pharmacy Program, Department of Pharmaceutical Sciences, Oman College of Health Sciences, Muscat, Oman
| | | |
Collapse
|
9
|
Elfaky MA. Unveiling the hidden language of bacteria: anti-quorum sensing strategies for gram-negative bacteria infection control. Arch Microbiol 2024; 206:124. [PMID: 38409503 DOI: 10.1007/s00203-024-03900-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/04/2024] [Accepted: 02/16/2024] [Indexed: 02/28/2024]
Abstract
Quorum sensing (QS) is a communication mechanism employed by many bacteria to regulate gene expression in a population density-dependent manner. It plays a crucial role in coordinating various bacterial behaviors, including biofilm formation, virulence factor production, and antibiotic resistance. However, the dysregulation of QS can lead to detrimental effects, making it an attractive target for developing novel therapeutic strategies. Anti-QS approaches aim to interfere with QS signaling pathways, inhibiting the communication between bacteria, and disrupting their coordinated activities. Various strategies have been explored to achieve this goal. Advances in understanding QS mechanisms and the discovery of new targets have paved the way for the development of innovative anti-QS approaches. Combining multiple anti-QS strategies or utilizing them in combination with traditional antibiotics holds great promise for combating bacterial infections and addressing the challenges posed by antibiotic resistance. Anti-QS approaches offer a diverse range of strategies including natural compounds, antibody-mediated quorum quenching (QQ), computer-aided drug design for QQ, repurposing of Drugs approved by FDA as anti-QS agents and modulating quorum-sensing molecules which were discussed in detail in this review. This review, comprehensively and for the first time, sheds light on the significance of diverse anti-QS strategies in solving antimicrobial resistance problem in Gram-negative microbial infection.
Collapse
Affiliation(s)
- Mahmoud A Elfaky
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| |
Collapse
|
10
|
Gomaa SE, Abbas HA, Mohamed FA, Ali MAM, Ibrahim TM, Abdel Halim AS, Alghamdi MA, Mansour B, Chaudhary AA, Elkelish A, Boufahja F, Hegazy WAH, Yehia FAZA. The anti-staphylococcal fusidic acid as an efflux pump inhibitor combined with fluconazole against vaginal candidiasis in mouse model. BMC Microbiol 2024; 24:54. [PMID: 38341568 PMCID: PMC10858509 DOI: 10.1186/s12866-024-03181-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/04/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Candida albicans is the most common fungus that causes vaginal candidiasis in immunocompetent women and catastrophic infections in immunocompromised patients. The treatment of such infections is hindered due to the increasing emergence of resistance to azoles in C. albicans. New treatment approaches are needed to combat candidiasis especially in the dwindled supply of new effective and safe antifungals. The resistance to azoles is mainly attributed to export of azoles outside the cells by means of the efflux pump that confers cross resistance to all azoles including fluconazole (FLC). OBJECTIVES This study aimed to investigate the possible efflux pump inhibiting activity of fusidic acid (FA) in C. albicans resistant isolates and the potential use of Fusidic acid in combination with fluconazole to potentiate the antifungal activity of fluconazole to restore its activity in the resistant C. albicans isolates. METHODS The resistance of C. albicans isolates was assessed by determination of minimum inhibitory concentration. The effect of Fusidic acid at sub-inhibitory concentration on efflux activity was assayed by rhodamine 6G efflux assay and intracellular accumulation. Mice model studies were conducted to evaluate the anti-efflux activity of Fusidic acid and its synergistic effects in combination with fluconazole. Impact of Fusidic acid on ergosterol biosynthesis was quantified. The synergy of fluconazole when combined with Fusidic acid was investigated by determination of minimum inhibitory concentration. The cytotoxicity of Fusidic acid was tested against erythrocytes. The effect of Fusidic acid on efflux pumps was tested at the molecular level by real-time PCR and in silico study. In vivo vulvovaginitis mice model was used to confirm the activity of the combination in treating vulvovaginal candidiasis. RESULTS Fusidic acid showed efflux inhibiting activity as it increased the accumulation of rhodamine 6G, a substrate for ABC-efflux transporter, and decreased its efflux in C. albicans cells. The antifungal activity of fluconazole was synergized when combined with Fusidic acid. Fusidic acid exerted only minimal cytotoxicity on human erythrocytes indicating its safety. The FA efflux inhibitory activity could be owed to its ability to interfere with efflux protein transporters as revealed by docking studies and downregulation of the efflux-encoding genes of both ABC transporters and MFS superfamily. Moreover, in vivo mice model showed that using fluconazole-fusidic acid combination by vaginal route enhanced fluconazole antifungal activity as shown by lowered fungal burden and a negligible histopathological change in vaginal tissue. CONCLUSION The current findings highlight FA's potential as a potential adjuvant to FLC in the treatment of vulvovaginal candidiasis.
Collapse
Affiliation(s)
- Salwa E Gomaa
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Hisham A Abbas
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Fatma A Mohamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
- Department of Medical Microbiology and Immunology-Medical School, University of Pécs, Szigeti Út 12, Pécs, H-7624, Hungary
| | - Mohamed A M Ali
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
- Department of Biochemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Tarek M Ibrahim
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Alyaa S Abdel Halim
- Department of Biochemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Mashael A Alghamdi
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Basem Mansour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Belqas, 11152, Egypt
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Amr Elkelish
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Fehmi Boufahja
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Wael A H Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
- Pharmacy Program, Department of Pharmaceutical Sciences, Oman College of Health Sciences, Muscat, 113, Oman.
| | - Fatma Al-Zahraa A Yehia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
11
|
Alotaibi HF, Alotaibi H, Darwish KM, Khafagy ES, Abu Lila AS, Ali MAM, Hegazy WAH, Alshawwa SZ. The Anti-Virulence Activities of the Antihypertensive Drug Propranolol in Light of Its Anti-Quorum Sensing Effects against Pseudomonas aeruginosa and Serratia marcescens. Biomedicines 2023; 11:3161. [PMID: 38137382 PMCID: PMC10741015 DOI: 10.3390/biomedicines11123161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
The development of bacterial resistance is an increasing global concern that requires discovering new antibacterial agents and strategies. Bacterial quorum sensing (QS) systems play important roles in controlling bacterial virulence, and their targeting could lead to diminishing bacterial pathogenesis. In this context, targeting QS systems without significant influence on bacterial growth is assumed as a promising strategy to overcome resistance development. This study aimed at evaluating the anti-QS and anti-virulence activities of the β-adrenoreceptor antagonist propranolol at sub-minimal inhibitory concentrations (sub-MIC) against two Gram-negative bacterial models Pseudomonas aeruginosa and Serratia marcescens. The effect of propranolol on the expression of QS-encoding genes was evaluated. Additionally, the affinity of propranolol to QS receptors was virtually attested. The influence of propranolol at sub-MIC on biofilm formation, motility, and production of virulent factors was conducted. The outcomes of the propranolol combination with different antibiotics were assessed. Finally, the in vivo protection assay in mice was performed to assess propranolol's effect on lessening the bacterial pathogenesis. The current findings emphasized the significant ability of propranolol at sub-MIC to reduce the formation of biofilms, motility, and production of virulence factors. In addition, propranolol at sub-MIC decreased the capacity of tested bacteria to induce pathogenesis in mice. Furthermore, propranolol significantly downregulated the QS-encoding genes and showed significant affinity to QS receptors. Finally, propranolol at sub-MIC synergistically decreased the MICs of different antibiotics against tested bacteria. In conclusion, propranolol might serve as a plausible adjuvant therapy with antibiotics for the treatment of serious bacterial infections after further pharmacological and pharmaceutical studies.
Collapse
Affiliation(s)
- Hadil Faris Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Haifa Alotaibi
- Department of Family Medicine, Prince Sultan Military Medical City, Riyadh 12624, Saudi Arabia
| | - Khaled M. Darwish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Amr S. Abu Lila
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Hail, Hail 81442, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed A. M. Ali
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
- Department of Biochemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Wael A. H. Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Pharmacy Program, Department of Pharmaceutical Sciences, Oman College of Health Sciences, Muscat 113, Oman
| | - Samar Zuhair Alshawwa
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| |
Collapse
|
12
|
Nazeih SI, Ali MAM, Halim ASA, Al-Lawati H, Abbas HA, Al-Zharani M, Boufahja F, Alghamdi MA, Hegazy WAH, Seleem NM. Relocating Glyceryl Trinitrate as an Anti-Virulence Agent against Pseudomonas aeruginosa and Serratia marcescens: Insights from Molecular and In Vivo Investigations. Microorganisms 2023; 11:2420. [PMID: 37894078 PMCID: PMC10609227 DOI: 10.3390/microorganisms11102420] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/23/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
The problem of antibiotic resistance is a global critical public health concern. In light of the threat of returning to the pre-antibiotic era, new alternative approaches are required such as quorum-sensing (QS) disruption and virulence inhibition, both of which apply no discernible selective pressure on bacteria, therefore mitigating the potential for the development of resistant strains. Bearing in mind the significant role of QS in orchestrating bacterial virulence, disrupting QS becomes essential for effectively diminishing bacterial virulence. This study aimed to assess the potential use of sub-inhibitory concentration (0.25 mg/mL) of glyceryl trinitrate (GTN) to inhibit virulence in Serratia marcescens and Pseudomonas aeruginosa. GTN could decrease the expression of virulence genes in both tested bacteria in a significant manner. Histopathological study revealed the ability of GTN to alleviate the congestion in hepatic and renal tissues of infected mice and to reduce bacterial and leukocyte infiltration. This study recommends the use of topical GTN to treat topical infection caused by P. aeruginosa and S. marcescens in combination with antibiotics.
Collapse
Affiliation(s)
- Shaimaa I. Nazeih
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (S.I.N.); (H.A.A.); (N.M.S.)
| | - Mohamed A. M. Ali
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; (M.A.M.A.); (F.B.)
- Department of Biochemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo 11566, Egypt;
| | - Alyaa S. Abdel Halim
- Department of Biochemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo 11566, Egypt;
| | - Hanan Al-Lawati
- Pharmacy Program, Department of Pharmaceutics, Oman College of Health Sciences, Muscat 113, Oman;
| | - Hisham A. Abbas
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (S.I.N.); (H.A.A.); (N.M.S.)
| | - Mohammed Al-Zharani
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; (M.A.M.A.); (F.B.)
| | - Fehmi Boufahja
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; (M.A.M.A.); (F.B.)
| | - Mashael A. Alghamdi
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia;
| | - Wael A. H. Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (S.I.N.); (H.A.A.); (N.M.S.)
- Pharmacy Program, Department of Pharmaceutical Sciences, Oman College of Health Sciences, Muscat 113, Oman
| | - Noura M. Seleem
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (S.I.N.); (H.A.A.); (N.M.S.)
| |
Collapse
|
13
|
Rajab AAH, Hegazy WAH. What’s old is new again: Insights into diabetic foot microbiome. World J Diabetes 2023; 14:680-704. [PMID: 37383589 PMCID: PMC10294069 DOI: 10.4239/wjd.v14.i6.680] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/20/2023] [Accepted: 04/10/2023] [Indexed: 06/14/2023] Open
Abstract
Diabetes is a chronic disease that is considered one of the most stubborn global health problems that continues to defy the efforts of scientists and physicians. The prevalence of diabetes in the global population continues to grow to alarming levels year after year, causing an increase in the incidence of diabetes complications and health care costs all over the world. One major complication of diabetes is the high susceptibility to infections especially in the lower limbs due to the immunocompromised state of diabetic patients, which is considered a definitive factor in all cases. Diabetic foot infections continue to be one of the most common infections in diabetic patients that are associated with a high risk of serious complications such as bone infection, limb amputations, and life-threatening systemic infections. In this review, we discussed the circumstances associated with the high risk of infection in diabetic patients as well as some of the most commonly isolated pathogens from diabetic foot infections and the related virulence behavior. In addition, we shed light on the different treatment strategies that aim at eradicating the infection.
Collapse
Affiliation(s)
- Azza A H Rajab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagzig 44511, Egypt
| | - Wael A H Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagzig 44511, Egypt
| |
Collapse
|
14
|
Roy PK, Kim SH, Jeon EB, Park EH, Park SY. Inhibition of Listeria monocytogenes Cocktail Culture Biofilms on Crab and Shrimp Coupons and the Expression of Biofilm-Related Genes. Antibiotics (Basel) 2023; 12:1008. [PMID: 37370327 DOI: 10.3390/antibiotics12061008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/26/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Listeria monocytogenes, a bacterium that is transmitted by tainted food, causes the infection listeriosis. In this study, quercetin was tested for its antibacterial properties and effectiveness as a food additive in preventing the growth of L. monocytogenes cocktail (ATCC19117, ATCC19113, and ATCC15313) biofilms on crabs and shrimps. Quercetin showed the least bactericidal activity and no discernible microbial growth at a minimum inhibitory concentration (MIC) of 250 µg/mL. The biofilm inhibition was performed at sub-MICs (1/2, 1/4, and 1/8 MIC). There was no quercetin added to the control group. Additionally, the present work examines the expression of various genes related to biofilm formation and quorum sensing (flaA, fbp, agrA, hlyA, and prfA). The levels of target genes were all significantly down-regulated. Quercetin (0-125 µg/mL) on the surfaces of the crab and shrimp was studied; its inhibitory effects were measured as log reductions at 0.39-2.31 log CFU/cm2 and 0.42-2.36 log CFU/cm2, respectively (p < 0.05). Quercetin reduced the formation of biofilms by disrupting cell-to-cell connections and causing cell lysis, which led to the deformation of the cells, evidenced by FE-SEM (field-emission scanning electron microscopy). These findings emphasize the significance of using natural food agents to target bacteria throughout the entire food production process.
Collapse
Affiliation(s)
- Pantu Kumar Roy
- Institute of Marine Industry, Department of Seafood Science and Technology, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| | - So Hee Kim
- Institute of Marine Industry, Department of Seafood Science and Technology, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| | - Eun Bi Jeon
- Institute of Marine Industry, Department of Seafood Science and Technology, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| | - Eun Hee Park
- Institute of Marine Industry, Department of Seafood Science and Technology, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| | - Shin Young Park
- Institute of Marine Industry, Department of Seafood Science and Technology, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| |
Collapse
|
15
|
Khayat MT, Abbas HA, Ibrahim TS, Elbaramawi SS, Khayyat AN, Alharbi M, Hegazy WAH, Yehia FAZA. Synergistic Benefits: Exploring the Anti-Virulence Effects of Metformin/Vildagliptin Antidiabetic Combination against Pseudomonas aeruginosa via Controlling Quorum Sensing Systems. Biomedicines 2023; 11:biomedicines11051442. [PMID: 37239113 DOI: 10.3390/biomedicines11051442] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The repurposing of drugs is one of the most competent strategies for discovering new antimicrobial agents. Vildagliptin is a dipeptidyl peptidase-4 inhibitor (DPI-4) that is used effectively in combination with metformin to control blood glucose levels in diabetic patients. This study was designed to evaluate the anti-virulence activities of this combination against one of the most clinically important pathogens, Pseudomonas aeruginosa. The current findings show a significant ability of the vildagliptin-metformin combination to diminish biofilm formation, bacterial motility, and the production of virulent extracellular enzymes and pyocyanin pigment. Furthermore, this drug combination significantly increased the susceptibility of P. aeruginosa to oxidative stress, indicating immunity enhancement in the eradication of bacterial cells. In compliance with the in vitro findings, the histopathological photomicrographs of mice showed a considerable protective effect of the metformin-vildagliptin combination against P. aeruginosa, revealing relief of inflammation due to P. aeruginosa-induced pathogenesis. P. aeruginosa mainly employs quorum sensing (QS) systems to control the production of its huge arsenal of virulence factors. The anti-virulence activities of the metformin-vildagliptin combination can be interrupted by the anti-QS activities of both metformin and vildagliptin, as both exhibited a considerable affinity to QS receptors. Additionally, the metformin-vildagliptin combination significantly downregulated the expression of the main three QS-encoding genes in P. aeruginosa. These findings show the significant anti-virulence activities of metformin-vildagliptin at very low concentrations (10, 1.25 mg/mL, respectively) compared to the concentrations (850, 50 mg/mL, respectively) used to control diabetes.
Collapse
Affiliation(s)
- Maan T Khayat
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hisham A Abbas
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Tarek S Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Samar S Elbaramawi
- Medicinal Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Ahdab N Khayyat
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Majed Alharbi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Wael A H Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Pharmacy Program, Department of Pharmaceutical Sciences, Oman College of Health Sciences, Muscat 113, Oman
| | - Fatma Al-Zahraa A Yehia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
16
|
Alhawas B, Abd El-Hamid MI, Hassan Z, Ibrahim GA, Neamat-Allah ANF, Rizk El-Ghareeb W, Alahmad BAHY, Meligy AMA, Abdel-Raheem SM, Abdel-Moez Ahmed Ismail H, Ibrahim D. Curcumin loaded liposome formulation: Enhanced efficacy on performance, flesh quality, immune response with defense against Streptococcus agalactiae in Nile tilapia (Orechromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2023; 138:108776. [PMID: 37182798 DOI: 10.1016/j.fsi.2023.108776] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/16/2023]
Abstract
Application of novel trend comprising antioxidant phytogenics is aiming to minimize the stress related factors and associated diseases in intensive fish culturing. Today, the concept of exploiting and protecting natural antioxidants represents a paradigm shift for the aqua feed industry. Therefore, our principal goal targeting liposome as a novel nanocarrier for curcumin is directed to attain superior performance, fillet antioxidant stability and bacterial resistance in Nile tilapia. A total of 500 Nile tilapia fingerlings (average body weight, 10.27 ± 0.10 g) assigned into five experimental groups in 25 glass aquaria of 120 L capacity at the density 20 fish/aquaria. The experimental groups were supplemented with varying doses of liposomal curcumin-NPs, LipoCur-NPs (0, 5, 15, 25 and 35 mg/kg diet) were reared for 12 weeks and later Streptococcus agalactiae (S. agalactiae) challenged model was performed. Inclusion of LipoCur-NPs (25 and 35 mg/kg diet) had the most prominent impact on Nile tilapia growth rate and feed conversion ratio. The immune boosting outcomes post supplementing 35 mg/kg diet of LipoCur-NPs were evidenced by higher myeloperoxidase, lysozyme and total immunoglobulin levels. Even after 4 weeks frozen storage, LipoCur-NPs at the dose of 35 mg/kg diet prominently increased (P < 0.05) the fillet scavenging capability for free radicals (1,1-diphenyl-2-picrylhydrazyl and 2,2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) with an inverse reduction in lipid peroxidation biomarker (malondialdehyde). Notably, upregulation of GSH-Px, CAT, and SOD genes in fillet of 35 mg/kg LipoCur-NPs fed fish coordinated with higher T-AOC and lower oxidative markers (ROS and H2O2). Post S. agalactiae challenge, higher supplementation levels of LipoCur-NPs (35 mg/kg diet) greatly attenuated the expression of its vital virulence genes (cfb, fbsA and cpsA) with higher expression of Igm, CXC-chemokine and MHC genes. Concordantly, downregulation of inflammatory markers (IL-1β, TNF-α and IL-8) and upregulation of anti-inflammatory ones (IL-10 and TGF-β) were remarkably documented. Based on these findings, the innovative curcumin loaded liposome was considered a novel multitargeting alternative not only playing an imperative role in Nile tilapia growth promotion and fillet stability upon storage, but also protecting efficiently against S. agalactiae.
Collapse
Affiliation(s)
- Bassam Alhawas
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box: 400, Hofuf, Al-Ahsa, 31982, Saudi Arabia.
| | - Marwa I Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| | - Zeinab Hassan
- Fish Disease Department, Faculty of Veterinary Medicine, Aswan University, Aswan, 81528, Egypt.
| | - Ghada A Ibrahim
- Department of Bacteriology, Animal Health Research Institute (AHRI), Ismailia Branch, Agriculture Research Center (ARC), Ismailia, 41522, Egypt.
| | - Ahmed N F Neamat-Allah
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Egypt
| | - Waleed Rizk El-Ghareeb
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box: 400, Hofuf, Al-Ahsa, 31982, Saudi Arabia; Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt.
| | - Badr Abdul-Hakim Y Alahmad
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box: 400, Hofuf, Al-Ahsa, 31982, Saudi Arabia
| | - Ahmed M A Meligy
- Department of Clinical Science, Central Lab, College of Veterinary Medicine, King Faisal University, P.O. Box: 400, Hofuf, Al-Ahsa, 31982, Saudi Arabia; Department of Physiology, Agricultural Research Center (ARC), Giza, Egypt.
| | - Sherief M Abdel-Raheem
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box: 400, Hofuf, Al-Ahsa, 31982, Saudi Arabia; Department of Animal Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Assiut University, 71526, Assiut, Egypt.
| | - Hesham Abdel-Moez Ahmed Ismail
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box: 400, Hofuf, Al-Ahsa, 31982, Saudi Arabia; Food Hygiene Dept., Fac. of Vet. Med., Assiut Univ., Egypt.
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| |
Collapse
|
17
|
Elfaky MA, Elbaramawi SS, Eissa AG, Ibrahim TS, Khafagy ES, Ali MAM, Hegazy WAH. Drug repositioning: doxazosin attenuates the virulence factors and biofilm formation in Gram-negative bacteria. Appl Microbiol Biotechnol 2023; 107:3763-3778. [PMID: 37079062 DOI: 10.1007/s00253-023-12522-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 04/21/2023]
Abstract
The resistance development is an increasing global health risk that needs innovative solutions. Repurposing drugs to serve as anti-virulence agents is suggested as an advantageous strategy to diminish bacterial resistance development. Bacterial virulence is controlled by quorum sensing (QS) system that orchestrates the expression of biofilm formation, motility, and virulence factors production as enzymes and virulent pigments. Interfering with QS could lead to bacterial virulence mitigation without affecting bacterial growth that does not result in bacterial resistance development. This study investigated the probable anti-virulence and anti-QS activities of α-adrenoreceptor blocker doxazosin against Proteus mirabilis and Pseudomonas aeruginosa. Besides in silico study, in vitro and in vivo investigations were conducted to assess the doxazosin anti-virulence actions. Doxazosin significantly diminished the biofilm formation and release of QS-controlled Chromobacterium violaceum pigment and virulence factors in P. aeruginosa and P. mirabilis, and downregulated the QS encoding genes in P. aeruginosa. Virtually, doxazosin interfered with QS proteins, and in vivo protected mice against P. mirabilis and P. aeruginosa. The role of the membranal sensors as QseC and PmrA was recognized in enhancing the Gram-negative virulence. Doxazosin downregulated the membranal sensors PmR and QseC encoding genes and could in silico interfere with them. In conclusion, this study preliminary documents the probable anti-QS and anti-virulence activities of doxazosin, which indicate its possible application as an alternative or in addition to antibiotics. However, extended toxicological and pharmacological investigations are essential to approve the feasible clinical application of doxazosin as novel efficient anti-virulence agent. KEY POINTS: • Anti-hypertensive doxazosin acquires anti-quorum sensing activities • Doxazosin diminishes the virulence of Proteus mirabilis and Pseudomonas aeruginosa • Doxazosin could dimmish the bacterial espionage.
Collapse
Affiliation(s)
- Mahmoud A Elfaky
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Samar S Elbaramawi
- Medicinal Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Ahmed G Eissa
- Medicinal Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Tarek S Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Mohamed A M Ali
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, 11432, Saudi Arabia
- Department of Biochemistry, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Wael A H Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
- Pharmacy Program, Department of Pharmaceutical Sciences, Oman College of Health Sciences, Muscat, 113, Oman.
| |
Collapse
|
18
|
Khayat MT, Elbaramawi SS, Nazeih SI, Safo MK, Khafagy ES, Ali MAM, Abbas HA, Hegazy WAH, Seleem NM. Diminishing the Pathogenesis of the Food-Borne Pathogen Serratia marcescens by Low Doses of Sodium Citrate. BIOLOGY 2023; 12:biology12040504. [PMID: 37106705 PMCID: PMC10135860 DOI: 10.3390/biology12040504] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/21/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023]
Abstract
Protecting food from bacterial contamination is crucial for ensuring its safety and avoiding foodborne illness. Serratia marcescens is one of the food bacterial contaminants that can form biofilms and pigments that spoil the food product and could cause infections and illness to the consumer. Food preservation is essential to diminish such bacterial contaminants or at least reduce their pathogenesis; however, it should not affect food odor, taste, and consistency and must be safe. Sodium citrate is a well-known safe food additive and the current study aims to evaluate its anti-virulence and anti-biofilm activity at low concentrations against S. marcescens. The anti-virulence and antibiofilm activities of sodium citrate were evaluated phenotypically and genotypically. The results showed the significant effect of sodium citrate on decreasing the biofilm formation and other virulence factors, such as motility and the production of prodigiosin, protease, and hemolysins. This could be owed to its downregulating effect on the virulence-encoding genes. An in vivo investigation was conducted on mice and the histopathological examination of isolated tissues from the liver and kidney of mice confirmed the anti-virulence activity of sodium citrate. In addition, an in silico docking study was conducted to evaluate the sodium citrate binding ability to S. marcescens quorum sensing (QS) receptors that regulates its virulence. Sodium citrate showed a marked virtual ability to compete on QS proteins, which could explain sodium citrate’s anti-virulence effect. In conclusion, sodium citrate is a safe food additive and can be used at low concentrations to prevent contamination and biofilm formation by S. marcescens and other bacteria.
Collapse
Affiliation(s)
- Maan T. Khayat
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (M.T.K.); (W.A.H.H.)
| | - Samar S. Elbaramawi
- Medicinal Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Shaimaa I. Nazeih
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Martin K. Safo
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41552, Egypt
| | - Mohamed A. M. Ali
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Hisham A. Abbas
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Wael A. H. Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Pharmacy Program, Department of Pharmaceutical Sciences, Oman College of Health Sciences, Muscat 113, Oman
- Correspondence: (M.T.K.); (W.A.H.H.)
| | - Noura M. Seleem
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
19
|
Ismail H, Ibrahim D, El Sayed S, Wahdan A, El-Tarabili RM, Rizk El-Ghareeb W, Abdullah Alhawas B, Alahmad BAHY, Abdel-Raheem SM, El-Hamid MIA. Prospective Application of Nanoencapsulated Bacillus amyloliquefaciens on Broiler Chickens' Performance and Gut Health with Efficacy against Campylobacter jejuni Colonization. Animals (Basel) 2023; 13:ani13050775. [PMID: 36899631 PMCID: PMC10000182 DOI: 10.3390/ani13050775] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Probiotics as novel antibiotics' substitutes are verified to provide barriers for hindering the colonization of enteric bacterial pathogens with nutritional benefits. For enhancement of the probiotics' effectiveness, their integration within nanomaterials is a paramount tool to support the progress of new compounds with functional features. Therefore, we addressed the impact of effective delivery of probiotics (Bacillus amyloliquefaciens) loaded nanoparticles (BNPs) on performance and Campylobacter jejuni (C. jejuni) shedding and colonization in poultry. Two hundred Ross broiler chickens were divided into four groups fed various BNP levels: BNPs I, BNPs II, BNPs III, and BNPs-free diets for 35 days. Nanoparticles delivery of probiotics within broiler diets improved growth performance as reflected by higher body weight gain and superior feed conversion ratio, especially in BNPs II- and BNPs III-fed groups. In parallel, the mRNA expression levels of digestive enzymes encoding genes (AMY2a, PNLIP, CELA1, and CCK) achieved their peaks in BNPs III-fed group (1.69, 1.49, 1.33, and 1.29-fold change, respectively) versus the control one. Notably, with increasing the levels of BNPs, the abundance of beneficial microbiota, such as Bifidobacterium and Lactobacillus species, was favored over harmful ones, including Clostridium species and Enterobacteriaceae. Birds fed higher levels of BNPs displayed significant improvement in the expression of barrier functions-linked genes including DEFB1, FABP-2, and MUC-2 alongside substantial reduction in cecal colonization and fecal shedding of C. jejuni. From the aforementioned positive effects of BNPs, we concluded their potential roles as growth promoters and effective preventive aids for C. jejuni infection in poultry.
Collapse
Affiliation(s)
- Hesham Ismail
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Hofuf 31982, Al-Ahsa, Saudi Arabia
- Food Hygiene Department, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
- Correspondence: (H.I.); (D.I.)
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
- Correspondence: (H.I.); (D.I.)
| | - Shorouk El Sayed
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Ali Wahdan
- Department of Bacteriology, Immunology and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Reham M. El-Tarabili
- Department of Bacteriology, Immunology and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Waleed Rizk El-Ghareeb
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Hofuf 31982, Al-Ahsa, Saudi Arabia
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Bassam Abdullah Alhawas
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Hofuf 31982, Al-Ahsa, Saudi Arabia
| | - Badr Abdul-Hakim Y. Alahmad
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Hofuf 31982, Al-Ahsa, Saudi Arabia
| | - Sherief M. Abdel-Raheem
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Hofuf 31982, Al-Ahsa, Saudi Arabia
- Department of Animal Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - Marwa I. Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
20
|
Lila ASA, Rajab AAH, Abdallah MH, Rizvi SMD, Moin A, Khafagy ES, Tabrez S, Hegazy WAH. Biofilm Lifestyle in Recurrent Urinary Tract Infections. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010148. [PMID: 36676100 PMCID: PMC9865985 DOI: 10.3390/life13010148] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023]
Abstract
Urinary tract infections (UTIs) represent one of the most common infections that are frequently encountered in health care facilities. One of the main mechanisms used by bacteria that allows them to survive hostile environments is biofilm formation. Biofilms are closed bacterial communities that offer protection and safe hiding, allowing bacteria to evade host defenses and hide from the reach of antibiotics. Inside biofilm communities, bacteria show an increased rate of horizontal gene transfer and exchange of resistance and virulence genes. Additionally, bacterial communication within the biofilm allows them to orchestrate the expression of virulence genes, which further cements the infestation and increases the invasiveness of the infection. These facts stress the necessity of continuously updating our information and understanding of the etiology, pathogenesis, and eradication methods of this growing public health concern. This review seeks to understand the role of biofilm formation in recurrent urinary tact infections by outlining the mechanisms underlying biofilm formation in different uropathogens, in addition to shedding light on some biofilm eradication strategies.
Collapse
Affiliation(s)
- Amr S. Abu Lila
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il 81442, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Correspondence: (A.S.A.L.); (W.A.H.H.)
| | - Azza A. H. Rajab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Marwa H. Abdallah
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il 81442, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Syed Mohd Danish Rizvi
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Afrasim Moin
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Wael A. H. Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Pharmacy Program, Department of Pharmaceutical Sciences, Oman College of Health Sciences, Muscat 113, Oman
- Correspondence: (A.S.A.L.); (W.A.H.H.)
| |
Collapse
|
21
|
Hiring of the Anti-Quorum Sensing Activities of Hypoglycemic Agent Linagliptin to Alleviate the Pseudomonas aeruginosa Pathogenesis. Microorganisms 2022; 10:microorganisms10122455. [PMID: 36557708 PMCID: PMC9783625 DOI: 10.3390/microorganisms10122455] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/27/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Bacteria communicate with each other using quorum sensing (QS) which works in an inducer/receptor manner. QS plays the main role in orchestrating diverse bacterial virulence factors. Pseudomonas aeruginosa is one of the most clinically important bacterial pathogens that can cause infection in almost all body tissues. Besides its efficient capability to develop resistance to different antibiotics, P. aeruginosa acquires a huge arsenal of virulence factors that are controlled mainly by QS. Challenging QS with FDA-approved drugs and natural products was proposed as a promising approach to mitigate bacterial virulence enabling the host immunity to complete the eradication of bacterial infection. The present study aims to evaluate the dipeptidase inhibitor-4 inhibitor hypoglycemic linagliptin anti-QS and anti-virulence activities against P. aeruginosa in vitro, in vivo, and in silico. The current results revealed the significant ability to diminish the production of protease and pyocyanin, motility, and biofilm formation in P. aeruginosa. Furthermore, the histopathological examination of liver and kidney tissues of mice injected with linagliptin-treated bacteria showed an obvious reduction of pathogenesis. Linagliptin downregulation to QS-encoding genes, besides the virtual ability to interact with QS receptors, indicates its anti-QS activities. In conclusion, linagliptin is a promising anti-virulence and anti-QS candidate that can be used solely or in combination with traditional antimicrobial agents in the treatment of P. aeruginosa aggressive infections.
Collapse
|
22
|
Elfaky MA, Thabit AK, Eljaaly K, Zawawi A, Abdelkhalek AS, Almalki AJ, Ibrahim TS, Hegazy WAH. Controlling of Bacterial Virulence: Evaluation of Anti-Virulence Activities of Prazosin against Salmonella enterica. Antibiotics (Basel) 2022; 11:1585. [PMID: 36358239 PMCID: PMC9686722 DOI: 10.3390/antibiotics11111585] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 08/10/2023] Open
Abstract
Salmonella enterica is a Gram-negative orofecal transmitted pathogen that causes a wide diversity of local and systemic illnesses. Salmonella enterica utilizes several interplayed systems to regulate its invasion and pathogenesis: namely, quorum sensing (QS) and type three secretion system (T3SS). In addition, S. enterica could sense the adrenergic hormones in the surroundings that enhance its virulence. The current study aimed to evaluate the ability of α-adrenoreceptor antagonist prazosin to mitigate the virulence of S. enterica serovar Typhimurium. The prazosin effect on biofilm formation and the expression of sdiA, qseC, qseE, and T3SS-type II encoding genes was evaluated. Furthermore, the prazosin intracellular replication inside macrophage and anti-virulence activity was evaluated in vivo against S. typhimurium. The current finding showed a marked prazosin ability to compete on SdiA and QseC and downregulate their encoding genes. Prazosin significantly downregulated the virulence factors encoding genes and diminished the biofilm formation, intracellular replication inside macrophages, and in vivo protected mice. To sum up, prazosin showed significant inhibitory activities against QS, T3SS, and bacterial espionage, which documents its considered anti-virulence activities.
Collapse
Affiliation(s)
- Mahmoud A. Elfaky
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abrar K. Thabit
- Pharmacy Practice Department, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Khalid Eljaaly
- Pharmacy Practice Department, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ayat Zawawi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ahmed S. Abdelkhalek
- Medicinal Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Ahmad J. Almalki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Tarek S. Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Wael A. H. Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Pharmacy Program, Department of Pharmaceutical Sciences, Oman College of Health Sciences, Muscat 113, Oman
| |
Collapse
|
23
|
Cavalu S, Elbaramawi SS, Eissa AG, Radwan MF, S. Ibrahim T, Khafagy ES, Lopes BS, Ali MAM, Hegazy WAH, Elfaky MA. Characterization of the Anti-Biofilm and Anti-Quorum Sensing Activities of the β-Adrenoreceptor Antagonist Atenolol against Gram-Negative Bacterial Pathogens. Int J Mol Sci 2022; 23:13088. [PMID: 36361877 PMCID: PMC9656717 DOI: 10.3390/ijms232113088] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 08/10/2023] Open
Abstract
The development of bacterial resistance to antibiotics is an increasing public health issue that worsens with the formation of biofilms. Quorum sensing (QS) orchestrates the bacterial virulence and controls the formation of biofilm. Targeting bacterial virulence is promising approach to overcome the resistance increment to antibiotics. In a previous detailed in silico study, the anti-QS activities of twenty-two β-adrenoreceptor blockers were screened supposing atenolol as a promising candidate. The current study aims to evaluate the anti-QS, anti-biofilm and anti-virulence activities of the β-adrenoreceptor blocker atenolol against Gram-negative bacteria Serratia marcescens, Pseudomonas aeruginosa, and Proteus mirabilis. An in silico study was conducted to evaluate the binding affinity of atenolol to S. marcescens SmaR QS receptor, P. aeruginosa QscR QS receptor, and P. mirabilis MrpH adhesin. The atenolol anti-virulence activity was evaluated against the tested strains in vitro and in vivo. The present finding shows considerable ability of atenolol to compete with QS proteins and significantly downregulated the expression of QS- and virulence-encoding genes. Atenolol showed significant reduction in the tested bacterial biofilm formation, virulence enzyme production, and motility. Furthermore, atenolol significantly diminished the bacterial capacity for killing and protected mice. In conclusion, atenolol has potential anti-QS and anti-virulence activities against S. marcescens, P. aeruginosa, and P. mirabilis and can be used as an adjuvant in treatment of aggressive bacterial infections.
Collapse
Affiliation(s)
- Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| | - Samar S. Elbaramawi
- Medicinal Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Ahmed G. Eissa
- Medicinal Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed F. Radwan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Tarek S. Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Bruno Silvester Lopes
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BA, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | - Mohamed A. M. Ali
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia
- Department of Biochemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Wael A. H. Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Pharmacy Program, Department of Pharmaceutical Sciences, Oman College of Health Sciences, Muscat 113, Oman
| | - Mahmoud A. Elfaky
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
24
|
Thabit AK, Eljaaly K, Zawawi A, Ibrahim TS, Eissa AG, Elbaramawi SS, Hegazy WAH, Elfaky MA. Silencing of Salmonella typhimurium Pathogenesis: Atenolol Acquires Efficient Anti-Virulence Activities. Microorganisms 2022; 10:1976. [PMID: 36296252 PMCID: PMC9612049 DOI: 10.3390/microorganisms10101976] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 11/28/2022] Open
Abstract
The targeting of bacterial virulence is proposed as a promising approach to overcoming the bacterial resistance development to antibiotics. Salmonella enterica is one of the most important gut pathogens that cause a wide diversity of local and systemic illnesses. The Salmonella virulence is controlled by interplayed systems namely Quorum sensing (QS) and type three secretion system (T3SS). Furthermore, the Salmonella spy on the host cell via sensing the adrenergic hormones enhancing its virulence. The current study explores the possible anti-virulence activities of β-adrenoreceptor blocker atenolol against S. enterica serovar Typhimurium in vitro, in silico, and in vivo. The present findings revealed a significant atenolol ability to diminish the S. typhimurium biofilm formation, invasion into HeLa cells, and intracellular replication inside macrophages. Atenolol significantly downregulated the encoding genes of the T3SS-type II, QS receptor Lux analogs sdiA, and norepinephrine membranal sensors qseC and qseE. Moreover, atenolol significantly protected mice against S. typhimurium. For testing the possible mechanisms for atenolol anti-virulence activities, an in silico molecular docking study was conducted to assess the atenolol binding ability to QS receptor SdiA and norepinephrine membranal sensors QseC. Atenolol showed the ability to compete on the S. typhimurium targets. In conclusion, atenolol is a promising anti-virulence candidate to alleviate the S. typhimurium pathogenesis by targeting its QS and T3SS systems besides diminishing the eavesdropping on the host cells.
Collapse
Affiliation(s)
- Abrar K. Thabit
- Pharmacy Practice Department, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Khalid Eljaaly
- Pharmacy Practice Department, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ayat Zawawi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Tarek S. Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ahmed G. Eissa
- Medicinal Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Samar S. Elbaramawi
- Medicinal Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Wael A. H. Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Pharmacy Program, Department of Pharmaceutical Sciences, Oman College of Health Sciences, Muscat 113, Oman
| | - Mahmoud A. Elfaky
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
25
|
Gao Y, Chen H, Li W, Zhang Y, Luo J, Zhao L, Shi F, Ye G, He X, Xu Z, Zhu L, Tang H, Li Y. Chloroform extracts of Atractylodes chinensis inhibit the adhesion and invasion of Salmonella typhimurium. Biomed Pharmacother 2022; 154:113633. [PMID: 36063647 DOI: 10.1016/j.biopha.2022.113633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
There are 27 million cases of Salmonella Typhimurium (STM) reported worldwide annually, which have resulted in 217,000 deaths to date. Thus, there is an urgent requirement to develop novel antibacterial agents to target the multidrug-resistant strains of STM. We evaluated the inhibitory effect of the chloroform extracts of Atractylodes chinensis (Ac-CE) on the virulence of STM in vitro and develop it as a potential antibacterial agent. First, we determined the in vitro effects of Ac-CE on STM biofilm formation, and swimming, swarming, and adhesion to mucin. Further, we evaluated the effect of Ac-CE on the adhesion and invasion of STM at the gene level. Lastly, we evaluated the inhibitory effect of Ac-CE on STM infectivity at the cellular level. Ac-CE could attenuate both the adhesion and invasion abilities of STM in vitro. At the gene level, it could inhibit the expression of flagella, pilus, biofilm, SPI-1, and SPI-2 genes, which are related to the adhesion and invasion ability of STM in cells. Ac-CE significantly downregulated the expression of inflammatory cytokines and the TLR4/MyD88/NF-κB pathway in an STM infection cell model. It also significantly recovered the expression of intestinal barrier-related genes and proteins in intestinal cells that are damaged during STM infection. Ac-CE is effective as an antivirulence agent in alleviating STM infection. Although the main components of Ac-CE were analyzed.We have not demonstrated the antivirulence effect of the active ingredients in Ac-CE. And the antivirulence effect of Ac-CE and its active ingredients warrant further in vivo studies.
Collapse
Affiliation(s)
- Yuanze Gao
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Helin Chen
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Wen Li
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China
| | - Yu Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Jie Luo
- National Ethnic Affairs Commission Key Open Laboratory of Traditional Chinese Veterinary Medicine, Tongren Polytechnic College, Tongren 554300, Guizhou, China
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Fei Shi
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Gang Ye
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Xiaoli He
- College of Science, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Zhiwen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China
| | - Huaqiao Tang
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China.
| | - Yinglun Li
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu 611130, Sichuan, China.
| |
Collapse
|
26
|
Thabit AK, Eljaaly K, Zawawi A, Ibrahim TS, Eissa AG, Elbaramawi SS, Hegazy WAH, Elfaky MA. Muting Bacterial Communication: Evaluation of Prazosin Anti-Quorum Sensing Activities against Gram-Negative Bacteria Pseudomonas aeruginosa, Proteus mirabilis, and Serratia marcescens. BIOLOGY 2022; 11:biology11091349. [PMID: 36138828 PMCID: PMC9495718 DOI: 10.3390/biology11091349] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/08/2022] [Accepted: 09/10/2022] [Indexed: 12/19/2022]
Abstract
Simple Summary Bacterial infections are considered one of the main challenges to global health. Bacterial virulence is controlled by interplayed systems to regulate bacterial invasion and infection in host tissues. Quorum sensing (QS) plays a crucial role in regulating virulence factor production, thus could be considered as the bacterial communication system in the bacterial population. The current study aimed to assess the anti-QS and anti-virulence activities of α-adrenoreceptor prazosin against three virulent Gram-negative bacteria. It was demonstrated that prazosin significantly downregulates the expression of QS-encoding genes and shows considered ability to compete on QS proteins in tested strains. Prazosin can significantly diminish biofilm formation and production of virulent enzymes and mitigate the virulence factors of tested strains. However, more testing is required alongside pharmacological and toxicological studies to assure the potential clinical use of prazosin as an adjuvant anti-QS and anti-virulence agent. Abstract Quorum sensing (QS) controls the production of several bacterial virulence factors. There is accumulative evidence to support that targeting QS can ensure a significant diminishing of bacterial virulence. Lessening bacterial virulence has been approved as an efficient strategy to overcome the development of antimicrobial resistance. The current study aimed to assess the anti-QS and anti-virulence activities of α-adrenoreceptor prazosin against three virulent Gram-negative bacteria Pseudomonades aeruginosa, Proteus mirabilis, and Serratia marcescens. The evaluation of anti-QS was carried out on a series of in vitro experiments, while the anti-virulence activities of prazosin were tested in an in vivo animal model. The prazosin anti-QS activity was assessed on the production of QS-controlled Chromobacterium violaceum pigment violacein and the expression of QS-encoding genes in P. aeruginosa. In vitro tests were performed to evaluate the prazosin effects on biofilm formation and production of extracellular enzymes by P. aeruginosa, P. mirabilis, and S. marcescens. A protective assay was conducted to evaluate the in vivo anti-virulence activity of prazosin against P. aeruginosa, P. mirabilis, and S. marcescens. Moreover, precise in silico molecular docking was performed to test the prazosin affinity to different QS receptors. The results revealed that prazosin significantly decreased the production of violacein and the virulent enzymes, protease and hemolysins, in the tested strains. Prazosin significantly diminished biofilm formation in vitro and bacterial virulence in vivo. The prazosin anti-QS activity was proven by its downregulation of QS-encoding genes and its obvious binding affinity to QS receptors. In conclusion, prazosin could be considered an efficient anti-virulence agent to be used as an adjuvant to antibiotics, however, it requires further pharmacological evaluations prior to clinical application.
Collapse
Affiliation(s)
- Abrar K. Thabit
- Pharmacy Practice Department, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (A.K.T.); (M.A.H.H.)
| | - Khalid Eljaaly
- Pharmacy Practice Department, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ayat Zawawi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Tarek S. Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ahmed G. Eissa
- Medicinal Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Samar S. Elbaramawi
- Medicinal Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Wael A. H. Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Pharmacy Program, Department of Pharmaceutical Sciences, Oman College of Health Sciences, Muscat 113, Oman
- Correspondence: (A.K.T.); (M.A.H.H.)
| | - Mahmoud A. Elfaky
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
27
|
Roy PK, Song MG, Park SY. The Inhibitory Effect of Quercetin on Biofilm Formation of Listeria monocytogenes Mixed Culture and Repression of Virulence. Antioxidants (Basel) 2022; 11:antiox11091733. [PMID: 36139807 PMCID: PMC9495692 DOI: 10.3390/antiox11091733] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 02/08/2023] Open
Abstract
Listeria monocytogenes is the species of foodborne pathogenic bacteria that causes the infection listeriosis. The food production chain employs various methods to control biofilms, although none are completely successful. This study evaluates the effectiveness of quercetin as a food additive in reducing L. monocytogenes mixed cultures (ATCC19113, ATCC19117, and ATCC15313) biofilm formation on stainless steel (SS), silicon rubber (SR), and hand glove (HG) coupons, as well as tests its antimicrobial activities. With a minimum inhibitory concentration (MIC) of 250 µg/mL, the tested quercetin exhibited the lowest bactericidal action with no visible bacterial growth. In contrast, during various experiments in this work, the inhibitory efficacy of quercetin at sub-MICs levels (1/2, 1/4, and 1/8 MIC) against L. monocytogenes was examined. A control group was not added with quercetin. The current study also investigates the effect of quercetin on the expression of different genes engaged in motility (flaA, fbp), QS (agrA), and virulence (hlyA, prfA). Through increasing quercetin concentration, swarming and swimming motility, biofilm formation, and expression levels of target genes linked to flagella motility, virulence, and quorum-sensing were all dramatically reduced. Quercetin (0−125 μg/mL) was investigated on the SS, SR, and HG surfaces; the inhibitory effects were 0.39−2.07, 0.09−1.96 and 0.03−1.69 log CFU/cm2, respectively (p < 0.05). Field-emission scanning electron microscopy (FE-SEM) corroborated the findings because quercetin prevented the development of biofilms by severing cell-to-cell contacts and inducing cell lysis, which resulted in the loss of normal cell shape. Our findings suggest that plant-derived quercetin should be used as an antimicrobial agent in the food industry to control the development of L. monocytogenes biofilms. These outcomes suggest that bacterial targets are of interest for biofilm reduction, with alternative natural food agents in the food sector along the entire food production chain.
Collapse
Affiliation(s)
| | | | - Shin Young Park
- Correspondence: ; Tel.: +82-55-772-9143; Fax: +82-55-772-9149
| |
Collapse
|
28
|
Modulatory Impacts of Multi-Strain Probiotics on Rabbits’ Growth, Nutrient Transporters, Tight Junctions and Immune System to Fight against Listeria monocytogenes Infection. Animals (Basel) 2022; 12:ani12162082. [PMID: 36009671 PMCID: PMC9405287 DOI: 10.3390/ani12162082] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Weaning is a crucial period associated with great stress and susceptibility to infection, implying adverse impacts on farmed rabbits’ production. Recently, probiotics have been provided as direct microbial feed supplements, which are considered the ideal antibiotic substitutes during pathogenic infections with an emphasis on promoting rabbits’ growth and modulating their immune functions. Therefore, our experiment was carried out to explore the efficacy of multi-strain probiotics (MSP) on rabbits’ growth, molecular aspects, such as nutrients transporters, cytokines, and intestinal integrity, and effectiveness against Listeria monocytogenes (L. monocytogenes) infection. Altogether, our findings proposed the beneficial consequences of MSP on rabbits’ growth, gut health, and immunity. After post-experimental infection of rabbits with L. monocytogenes, administration of MSP during the whole rearing period greatly reduced the detrimental impact of infection and consequently renovated efficient rabbits’ production. Abstract Multi-strain probiotics (MSP) are considered innovative antibiotics’ substitutes supporting superior gut health and immunity of farmed rabbits. The promising roles of MSP on performance, intestinal immunity, integrity and transporters, and resistance against Listeria monocytogenes (L. monocytogenes) were evaluated. In the feeding trial, 220 rabbits were fed a control diet or diet supplemented with three MSP graded levels. At 60 days of age, rabbits were experimentally infected with L. monocytogenes and the positive control, enrofloxacin, prophylactic MSP (MSPP), and prophylactic and therapeutic MSP (MSPTT) groups were included. During the growing period, MSP at the level of 1 × 108 CFU/kg diet (MSPIII) promoted the rabbits’ growth, upregulated the nutrient transporters and tight-junction-related genes, and modified cytokines expression. Supplementing MSPTT for L. monocytogenes experimentally-infected rabbits restored the impaired growth and intestinal barriers, reduced clinical signs of severity and mortalities, and attenuated the excessive inflammatory reactions. Notably, enrofloxacin decreased L. monocytogenes and beneficial microbial loads; unlike MSPTT, which decreased pathogenic bacterial loads and sustained the beneficial ones. Histopathological changes were greatly reduced in MSPTT, confirming its promising role in restricting L. monocytogenes translocation to different organs. Therefore, our results suggest the use of MSPTT as an alternative to antibiotics, thereby conferring protection for rabbits against L. monocytogenes infection.
Collapse
|
29
|
Anti-Quorum Sensing Activities of Gliptins against Pseudomonas aeruginosa and Staphylococcus aureus. Biomedicines 2022; 10:biomedicines10051169. [PMID: 35625906 PMCID: PMC9138634 DOI: 10.3390/biomedicines10051169] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 12/24/2022] Open
Abstract
The development of bacterial resistance to traditional antibiotics constitutes an emerging public health issue. Promising approaches have been innovated to conquer bacterial resistance, and targeting bacterial virulence is one of these approaches. Bacterial virulence mitigation offers several merits, as antivirulence agents do not affect the growth of bacteria and hence do not induce bacteria to develop resistance. In this direction, numerous drugs have been repurposed as antivirulence agents prior to their clinical use alone or in combination with traditional antibiotics. Quorum sensing (QS) plays a key role in controlling bacterial virulence. In the current study, dipeptidase inhibitor-4 (DPI-4) antidiabetic gliptins were screened for their antivirulence and anti-quorum sensing (anti-QS) activities against Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus. Upon assessing their antibiofilm activities, the ten tested gliptins significantly diminished biofilm formation. In particular, sitagliptin exhibited the most efficient antibiofilm activity, so it was chosen as a representative of all gliptins to further investigate its antivirulence activity. Sitagliptin significantly protected mice from P. aeruginosa and S. aureus pathogenesis. Furthermore, sitagliptin downregulated QS-encoding genes in P. aeruginosa and S. aureus. To test the anti-QS activities of gliptins, a detailed molecular docking study was conducted to evaluate the gliptins’ binding affinities to P. aeruginosa and S. aureus QS receptors, which helped explain the anti-QS activities of gliptins, particularly sitagliptin and omarigliptin. In conclusion, this study evaluates the possible antivirulence and anti-QS activities of gliptins that could be promising novel candidates for the treatment of aggressive Gram-negative or -positive bacterial infections either alone or as adjuvants to other antibiotics.
Collapse
|
30
|
Khayat MT, Abbas HA, Ibrahim TS, Khayyat AN, Alharbi M, Darwish KM, Elhady SS, Khafagy ES, Safo MK, Hegazy WAH. Anti-Quorum Sensing Activities of Gliptins against Pseudomonas aeruginosa and Staphylococcus aureus. Biomedicines 2022; 10:1169. [PMID: 35625906 PMCID: PMC9138634 DOI: 10.3389/fmolb.2023.1203672activities 10.3390/biomedicines10051169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 07/07/2024] Open
Abstract
The development of bacterial resistance to traditional antibiotics constitutes an emerging public health issue. Promising approaches have been innovated to conquer bacterial resistance, and targeting bacterial virulence is one of these approaches. Bacterial virulence mitigation offers several merits, as antivirulence agents do not affect the growth of bacteria and hence do not induce bacteria to develop resistance. In this direction, numerous drugs have been repurposed as antivirulence agents prior to their clinical use alone or in combination with traditional antibiotics. Quorum sensing (QS) plays a key role in controlling bacterial virulence. In the current study, dipeptidase inhibitor-4 (DPI-4) antidiabetic gliptins were screened for their antivirulence and anti-quorum sensing (anti-QS) activities against Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus. Upon assessing their antibiofilm activities, the ten tested gliptins significantly diminished biofilm formation. In particular, sitagliptin exhibited the most efficient antibiofilm activity, so it was chosen as a representative of all gliptins to further investigate its antivirulence activity. Sitagliptin significantly protected mice from P. aeruginosa and S. aureus pathogenesis. Furthermore, sitagliptin downregulated QS-encoding genes in P. aeruginosa and S. aureus. To test the anti-QS activities of gliptins, a detailed molecular docking study was conducted to evaluate the gliptins' binding affinities to P. aeruginosa and S. aureus QS receptors, which helped explain the anti-QS activities of gliptins, particularly sitagliptin and omarigliptin. In conclusion, this study evaluates the possible antivirulence and anti-QS activities of gliptins that could be promising novel candidates for the treatment of aggressive Gram-negative or -positive bacterial infections either alone or as adjuvants to other antibiotics.
Collapse
Affiliation(s)
- Maan T. Khayat
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.S.I.); (A.N.K.); (M.A.)
| | - Hisham A. Abbas
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
| | - Tarek S. Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.S.I.); (A.N.K.); (M.A.)
| | - Ahdab N. Khayyat
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.S.I.); (A.N.K.); (M.A.)
| | - Majed Alharbi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.S.I.); (A.N.K.); (M.A.)
| | - Khaled M. Darwish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41552, Egypt
| | - Martin K. Safo
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23219, USA;
| | - Wael A. H. Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
- Department of Pharmaceutical Sciences, Pharmacy Program, Oman College of Health Sciences, Muscat 113, Oman
| |
Collapse
|