1
|
Butler DA, Patel N, O'Donnell JN, Lodise TP. Combination therapy with IV fosfomycin for adult patients with serious Gram-negative infections: a review of the literature. J Antimicrob Chemother 2024; 79:2421-2459. [PMID: 39215642 DOI: 10.1093/jac/dkae253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Treatment of patients with serious infections due to resistant Gram-negative bacteria remains highly problematic and has prompted clinicians to use existing antimicrobial agents in innovative ways. One approach gaining increased therapeutic use is combination therapy with IV fosfomycin. This article reviews the preclinical pharmacokinetic/pharmacodynamic (PK/PD) infection model and clinical data surrounding the use of combination therapy with IV fosfomycin for the treatment of serious infections caused by resistant Gram-negative bacteria. Data from dynamic in vitro and animal infection model studies of highly resistant Enterobacterales and non-lactose fermenters are positive and suggest IV fosfomycin in combination with a β-lactam, polymyxin or aminoglycoside produces a synergistic effect that rivals or surpasses that of other aminoglycoside- or polymyxin-containing regimens. Clinical studies performed to date primarily have involved patients with pneumonia and/or bacteraemia due to Klebsiella pneumoniae, Pseudomonas aeruginosa or Acinetobacter baumannii. Overall, the observed success rates with fosfomycin combination regimens were consistent with those reported for other combination regimens commonly used to treat these patients. In studies in which direct treatment comparisons can be derived, the results suggest that patients who received fosfomycin combination therapy had similar or improved outcomes compared with other therapies and combinations, especially when it was used in combination with a β-lactam that (1) targets PBP-3 and (2) has exceptional stability in the presence of β-lactamases. Collectively, the data indicate that combination therapy with IV fosfomycin should be considered as a potential alternative to aminoglycoside or polymyxin combinations for patients with antibiotic-resistant Gram-negative infections when benefits outweigh risks.
Collapse
Affiliation(s)
- David A Butler
- Department of Pharmacy Practice, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, Albany, NY 12208, USA
| | - Nimish Patel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9255 Pharmacy Lane, La Jolla, CA, USA
| | - J Nicholas O'Donnell
- Department of Pharmacy Practice, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, Albany, NY 12208, USA
| | - Thomas P Lodise
- Department of Pharmacy Practice, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, Albany, NY 12208, USA
| |
Collapse
|
2
|
Russo A, Gullì SP, D'Avino A, Borrazzo C, Carannante N, Dezza FC, Covino S, Polistina G, Fiorentino G, Trecarichi EM, Mastroianni CM, Torti C, Oliva A. Intravenous fosfomycin for treatment of severe infections caused by carbapenem-resistant Acinetobacter baumannii: A multi-centre clinical experience. Int J Antimicrob Agents 2024; 64:107190. [PMID: 38697579 DOI: 10.1016/j.ijantimicag.2024.107190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 04/05/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND Severe infections caused by carbapenem-resistant Acinetobacter baumannii (CRAB) have been reported increasingly over the past few years. Many in-vivo and in-vitro studies have suggested a possible role of intravenous fosfomycin for the treatment of CRAB infections. METHODS This multi-centre, retrospective study included patients treated with intravenous fosfomycin for severe infections caused by CRAB admitted consecutively to four hospitals in Italy from December 2017 to December 2022. The primary goal of the study was to evaluate the risk factors associated with 30-day mortality in the study population. A propensity score matched analysis was added to the model. RESULTS One hundred and two patients with severe infections caused by CRAB treated with an intravenous fosfomycin-containing regimen were enrolled in this study. Ventilator-associated pneumonia (VAP) was diagnosed in 59% of patients, primary bacteraemia in 22% of patients, and central-venous-catheter-related infection in 16% of patients. All patients were treated with a regimen containing intravenous fosfomycin, mainly in combination with cefiderocol (n=54), colistin (n=48) or ampicillin/sulbactam (n=18). Forty-eight (47%) patients died within 30 days. Fifty-eight (57%) patients experienced clinical therapeutic failure. Cox regression analysis showed that diabetes, primary bacteraemia and a colistin-containing regimen were independently associated with 30-day mortality, whereas adequate source control of infection, early 24-h active in-vitro therapy, and a cefiderocol-containing regimen were associated with survival. A colistin-based regimen, A. baumannii colonization and primary bacteraemia were independently associated with clinical failure. Conversely, adequate source control of infection, a cefiderocol-containing regimen, and early 24-h active in-vitro therapy were associated with clinical success. CONCLUSIONS Different antibiotic regimens containing fosfomycin in combination can be used for treatment of severe infections caused by CRAB.
Collapse
Affiliation(s)
- Alessandro Russo
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, 'Magna Graecia' University of Catanzaro, Catanzaro, Italy.
| | - Sara Palma Gullì
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, 'Magna Graecia' University of Catanzaro, Catanzaro, Italy
| | - Alessandro D'Avino
- Department of Internal Medicine and Risk Management, Cristo Re Hospital, Rome, Italy
| | - Cristian Borrazzo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Novella Carannante
- Emergency Room, Cotugno-Monaldi Hospital, AORN Ospedali dei Colli, Naples, Italy
| | | | - Sara Covino
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Giorgio Polistina
- Sub-Intensive Care Unit and Respiratory Physiopathology Department, Cotugno-Monaldi Hospital, AORN Ospedali dei Colli, Naples, Italy
| | - Giuseppe Fiorentino
- Sub-Intensive Care Unit and Respiratory Physiopathology Department, Cotugno-Monaldi Hospital, AORN Ospedali dei Colli, Naples, Italy
| | - Enrico Maria Trecarichi
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, 'Magna Graecia' University of Catanzaro, Catanzaro, Italy
| | | | - Carlo Torti
- UOC Malattie Infettive - Dipartimento Scienze Mediche e Chirurgiche - Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma - Sezione Malattie Infettive - Dipartimento di Sicurezza e Bioetica - Università Cattolica S. Cuore, Roma
| | - Alessandra Oliva
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
3
|
Serapide F, Guastalegname M, Gullì SP, Lionello R, Bruni A, Garofalo E, Longhini F, Trecarichi EM, Russo A. Antibiotic Treatment of Carbapenem-Resistant Acinetobacter baumannii Infections in View of the Newly Developed β-Lactams: A Narrative Review of the Existing Evidence. Antibiotics (Basel) 2024; 13:506. [PMID: 38927173 PMCID: PMC11201171 DOI: 10.3390/antibiotics13060506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
It is estimated that antimicrobial resistance (AMR) is responsible for nearly 5 million human deaths worldwide each year and will reach 10 million by 2050. Carbapenem-resistant Acinetobacter baumannii (CRAB) infections represent the fourth-leading cause of death attributable to antimicrobial resistance globally, but a standardized therapy is still lacking. Among the antibiotics under consideration, Sulbactam/durlobactam seems to be the best candidate to replace current back-bone agents. Cefiderocol could play a pivotal role within combination therapy regimens. Due to toxicity and the pharmacokinetics/pharmacodynamics (PK/PD) limitations, colistin (or polymyxin B) should be used as an alternative agent (when no other options are available). Tigecycline (or minocycline) and fosfomycin could represent suitable partners for both NBLs. Randomized clinical trials (RCTs) are needed to better evaluate the role of NBLs in CRAB infection treatment and to compare the efficacy of tigecycline and fosfomycin as partner antibiotics. Synergism should be tested between NBLs and "old" drugs (rifampicin and trimethoprim/sulfamethoxazole). Huge efforts should be made to accelerate pre-clinical and clinical studies on safer polymyxin candidates with improved lung activity, as well as on the iv rifabutin formulation. In this narrative review, we focused the antibiotic treatment of CRAB infections in view of newly developed β-lactam agents (NBLs).
Collapse
Affiliation(s)
- Francesca Serapide
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, ‘Magna Graecia’ University of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (S.P.G.); (R.L.)
| | - Maurizio Guastalegname
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, ‘Magna Graecia’ University of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (S.P.G.); (R.L.)
| | - Sara Palma Gullì
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, ‘Magna Graecia’ University of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (S.P.G.); (R.L.)
| | - Rosaria Lionello
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, ‘Magna Graecia’ University of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (S.P.G.); (R.L.)
| | - Andrea Bruni
- Intensive Care Unit, Department of Medical and Surgical Sciences, ‘Magna Graecia’ University of Catanzaro, 88100 Catanzaro, Italy; (A.B.); (E.G.); (F.L.)
| | - Eugenio Garofalo
- Intensive Care Unit, Department of Medical and Surgical Sciences, ‘Magna Graecia’ University of Catanzaro, 88100 Catanzaro, Italy; (A.B.); (E.G.); (F.L.)
| | - Federico Longhini
- Intensive Care Unit, Department of Medical and Surgical Sciences, ‘Magna Graecia’ University of Catanzaro, 88100 Catanzaro, Italy; (A.B.); (E.G.); (F.L.)
| | - Enrico Maria Trecarichi
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, ‘Magna Graecia’ University of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (S.P.G.); (R.L.)
| | - Alessandro Russo
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, ‘Magna Graecia’ University of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (S.P.G.); (R.L.)
| |
Collapse
|
4
|
Papazachariou A, Tziolos RN, Karakonstantis S, Ioannou P, Samonis G, Kofteridis DP. Treatment Strategies of Colistin Resistance Acinetobacter baumannii Infections. Antibiotics (Basel) 2024; 13:423. [PMID: 38786151 PMCID: PMC11117269 DOI: 10.3390/antibiotics13050423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
Acinetobacter baumannii has emerged as a pressing challenge in clinical practice, mainly due to the development of resistance to multiple antibiotics, including colistin, one of the last-resort treatments. This review highlights all the possible mechanisms of colistin resistance and the genetic basis contributing to this resistance, such as modifications to lipopolysaccharide or lipid A structures, alterations in outer membrane permeability via porins and heteroresistance. In light of this escalating threat, the review also evaluates available treatment options. The development of new antibiotics (cefiderocol, sulbactam/durlobactam) although not available everywhere, and the use of various combinations and synergistic drug combinations (including two or more of the following: a polymyxin, ampicillin/sulbactam, carbapenems, fosfomycin, tigecycline/minocycline, a rifamycin, and aminoglycosides) are discussed in the context of overcoming colistin resistance of A. baumannii infections. Although most studied combinations are polymyxin-based combinations, non-polymyxin-based combinations have been emerging as promising options. However, clinical data remain limited and continued investigation is essential to determine optimal therapeutic strategies against colistin-resistant A. baumannii.
Collapse
Affiliation(s)
- Andria Papazachariou
- Department of Internal Medicine & Infectious Diseases, University General Hospital of Heraklion, 71500 Heraklion, Greece; (A.P.); (R.-N.T.); (S.K.)
| | - Renatos-Nikolaos Tziolos
- Department of Internal Medicine & Infectious Diseases, University General Hospital of Heraklion, 71500 Heraklion, Greece; (A.P.); (R.-N.T.); (S.K.)
| | - Stamatis Karakonstantis
- Department of Internal Medicine & Infectious Diseases, University General Hospital of Heraklion, 71500 Heraklion, Greece; (A.P.); (R.-N.T.); (S.K.)
| | - Petros Ioannou
- Department of Internal Medicine & Infectious Diseases, University General Hospital of Heraklion, 71500 Heraklion, Greece; (A.P.); (R.-N.T.); (S.K.)
| | - George Samonis
- Department of Internal Medicine & Infectious Diseases, University General Hospital of Heraklion, 71500 Heraklion, Greece; (A.P.); (R.-N.T.); (S.K.)
- Metropolitan Hospital, Neon Faliron, 18547 Athens, Greece
| | - Diamantis P. Kofteridis
- Department of Internal Medicine & Infectious Diseases, University General Hospital of Heraklion, 71500 Heraklion, Greece; (A.P.); (R.-N.T.); (S.K.)
| |
Collapse
|
5
|
Guastalegname M, Trecarichi EM, Russo A. Intravenous Fosfomycin: The Underdog Player in the Treatment of Carbapenem-resistant Acinetobacter baumannii Infections. Clin Infect Dis 2023; 77:1736-1737. [PMID: 37477512 DOI: 10.1093/cid/ciad435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/03/2023] [Accepted: 07/19/2023] [Indexed: 07/22/2023] Open
Affiliation(s)
- Maurizio Guastalegname
- Department of Medical and Surgical Sciences, Infectious and Tropical Disease Unit, 'Magna Graecia' University of Catanzaro, Catanzaro, Italy
| | - Enrico Maria Trecarichi
- Department of Medical and Surgical Sciences, Infectious and Tropical Disease Unit, 'Magna Graecia' University of Catanzaro, Catanzaro, Italy
| | - Alessandro Russo
- Department of Medical and Surgical Sciences, Infectious and Tropical Disease Unit, 'Magna Graecia' University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
6
|
Palombo M, Bovo F, Amadesi S, Gaibani P. Synergistic Activity of Cefiderocol in Combination with Piperacillin-Tazobactam, Fosfomycin, Ampicillin-Sulbactam, Imipenem-Relebactam and Ceftazidime-Avibactam against Carbapenem-Resistant Gram-Negative Bacteria. Antibiotics (Basel) 2023; 12:858. [PMID: 37237761 PMCID: PMC10215675 DOI: 10.3390/antibiotics12050858] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Limited treatment options are among the main reasons why antimicrobial resistance has become a leading major public health problem. In particular, carbapenem-resistant Enterobacteriales (CRE), Pseudomonas aeruginosa and Acinetobacter baumannii have been included by the World Health Organization (WHO) among the pathogens for which new therapeutic agents are needed. The combination of antibiotics represents an effective strategy to treat multidrug-resistant (MDR) pathogen infections. In this context, the aim of this study is to evaluate the in vitro activity of cefiderocol (CFD) in combination with different antimicrobial molecules against a collection of well-characterized clinical strains, exhibiting different patterns of antimicrobial susceptibility. Clinical strains were genomically characterized using Illumina iSeq100 platform. Synergy analyses were performed by combining CFD with piperacillin-tazobactam (PIP-TAZ), fosfomycin (FOS), ampicillin-sulbactam (AMP-SULB), ceftazidime-avibactam (CAZ-AVI), meropenem-vaborbactam (MER-VAB) and imipenem-relebactam (IMI-REL). Our results demonstrated the synergistic effect of CFD in combination with FOS and CAZ-AVI against CRE and carbapenem-resistant Acinetobacter baumannii (CR-Ab) clinical strains owing CFD-resistant profile, while the CFD and AMP-SULB combination was effective against CR-Pa strain displaying AMP-SULB-resistant profile. Moreover, the combination of CAZ-AVI/SULB showed synergistic activity in CAZ-AVI-resistant CRE strain. In conclusion, although further analyses are needed to confirm these results, our work showed the efficacy of CFD when used for synergistic formulations.
Collapse
Affiliation(s)
- Marta Palombo
- Microbiology Unit, IRCCS Azienda Ospedaliera-University of Bologna, 40126 Bologna, Italy
| | - Federica Bovo
- Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy
| | - Stefano Amadesi
- Microbiology Unit, IRCCS Azienda Ospedaliera-University of Bologna, 40126 Bologna, Italy
| | - Paolo Gaibani
- Microbiology Unit, IRCCS Azienda Ospedaliera-University of Bologna, 40126 Bologna, Italy
| |
Collapse
|