1
|
Pazos C, Gualoto M, Oña T, Velarde E, Portilla K, Cabrera-García S, Banchón C, Dávila G, Hernández-Alomia F, Bastidas-Caldes C. Molecular Detection of blaTEM and blaSHV Genes in ESBL-Producing Acinetobacter baumannii Isolated from Antarctic Soil. Microorganisms 2025; 13:482. [PMID: 40142377 PMCID: PMC11945639 DOI: 10.3390/microorganisms13030482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/28/2025] Open
Abstract
The phenomenon of antimicrobial resistance (AMR) in cold environments, exemplified by the Antarctic, calls into question the assumption that pristine ecosystems lack clinically significant resistance genes. This study examines the molecular basis of AMR in Acinetobacter spp. Isolated from Antarctic soil, focusing on the blaTEM and blaSHV genes associated with extended-spectrum beta-lactamase (ESBL) production; Soil samples were collected and processed to isolate Antarctic soil bacteria. Molecular detection was then conducted using polymerase chain reaction (PCR) to identify the bacteria species by 16S rRNA/rpoB and 10 different beta-lactamase-producing genes. PCR amplicons were sequenced to confirm gene identity and analyze genetic variability. Acinetobacter baumannii were identified by both microbiological and molecular tests. Notably, both the blaTEM and blaSHV genes encoding the enzymes responsible for resistance to penicillins and cephalosporins were identified, indicating the presence of resistance determinants in bacteria from extreme cold ecosystems. The nucleotide sequence analysis indicated the presence of conserved ARGs, which suggest stability and the potential for horizontal gene transfer within microbial communities. These findings emphasize that AMR is not confined to human-impacted environments but can emerge and persist in remote, cold habitats, potentially facilitated by natural reservoirs and global microbial dispersal. Understanding the presence and role of AMR in extreme environments provides insights into its global dissemination and supports the development of strategies to mitigate the spread of resistance genes in both environmental and clinical contexts.
Collapse
Affiliation(s)
- Clara Pazos
- Grupo de Investigaciones Antárticas (GIAN), Universidad Técnica del Norte (UTN), Av. 17 de Julio 5-21 y Gral. José María Córdova, Ibarra 100150, Ecuador; (C.P.); (T.O.); (E.V.); (K.P.); (S.C.-G.)
| | - Miguel Gualoto
- Scientific Advisory Committee of General Directorate of Maritime Interests and Foundation for Maritime, Riverine, Lacustrine, and Coastal Development (DIGEIM-FUNDEMAR), Quito 170403, Ecuador;
| | - Tania Oña
- Grupo de Investigaciones Antárticas (GIAN), Universidad Técnica del Norte (UTN), Av. 17 de Julio 5-21 y Gral. José María Córdova, Ibarra 100150, Ecuador; (C.P.); (T.O.); (E.V.); (K.P.); (S.C.-G.)
| | - Elizabeth Velarde
- Grupo de Investigaciones Antárticas (GIAN), Universidad Técnica del Norte (UTN), Av. 17 de Julio 5-21 y Gral. José María Córdova, Ibarra 100150, Ecuador; (C.P.); (T.O.); (E.V.); (K.P.); (S.C.-G.)
| | - Karen Portilla
- Grupo de Investigaciones Antárticas (GIAN), Universidad Técnica del Norte (UTN), Av. 17 de Julio 5-21 y Gral. José María Córdova, Ibarra 100150, Ecuador; (C.P.); (T.O.); (E.V.); (K.P.); (S.C.-G.)
| | - Santiago Cabrera-García
- Grupo de Investigaciones Antárticas (GIAN), Universidad Técnica del Norte (UTN), Av. 17 de Julio 5-21 y Gral. José María Córdova, Ibarra 100150, Ecuador; (C.P.); (T.O.); (E.V.); (K.P.); (S.C.-G.)
| | - Carlos Banchón
- Environmental Engineering, Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López (ESPAM-MFL), Campus Politécnico, 1701518, El Limón, vía Calceta-El Morro, Calceta 130601, Ecuador;
| | - Gabriela Dávila
- Maestria en Ciencias de la Salud, Facultad de Medicina, Universidad de las Américas, Quito 170125, Ecuador;
| | - Fernanda Hernández-Alomia
- Grupo de Investigación en Biodiversidad, Medio Ambiente y Salud (BIOMAS), Universidad de Las Américas, Quito 170125, Ecuador;
- Instituto Nacional de Biodiversidad (INABIO), Quito 170507, Ecuador
| | - Carlos Bastidas-Caldes
- Facultad de Ingeniería y Ciencias Aplicadas, Biotecnología, Universidad de Las Américas, Quito 170125, Ecuador
| |
Collapse
|
2
|
Rivera-Olivero IA, Kyriakidis NC. Latin America's Battle Against Antibiotic Resistance and Cancer: A Call to Action. Am J Med 2025:S0002-9343(25)00058-0. [PMID: 39900232 DOI: 10.1016/j.amjmed.2025.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 02/05/2025]
Affiliation(s)
- Ismar A Rivera-Olivero
- One Health Research Group. Facultad de Medicina. Universidad de Las Américas. Quito, Ecuador.
| | - Nikolaos C Kyriakidis
- Cancer Research Group, Facultad de Medicina, Universidad de Las Américas, Quito, Ecuador
| |
Collapse
|
3
|
Lemlem M, Aklilu E, Mohamed M, Kamaruzzaman NF, Devan SS, Lawal H, Kanamma AA. Prevalence and molecular characterization of ESBL-producing Escherichia coli isolated from broiler chicken and their respective farms environment in Malaysia. BMC Microbiol 2024; 24:499. [PMID: 39592959 PMCID: PMC11590571 DOI: 10.1186/s12866-024-03653-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Extended spectrum beta-lactamase-producing Escherichia coli (ESBL-EC) is an increasing public health threat. This study aimed to determine the prevalence and characterization of ESBL-producing Escherichia coli (E. coli) isolated from broiler chicken and their farm environment, in Kelantan Malaysia. METHODS Escherichia coli was isolated from 453 collected samples, including 210 cloacal swabs and 243 environmental samples. The antimicrobial susceptibility profile of the E. coli isolates was assessed for sixteen antibiotics using the disc diffusion method. The E. coli isolates were evaluated for phenotypic ESBL production using modified double disc synergy. After extraction of genomic DNA, ESBL resistance genes, phylogenetic group, and virulence genes were detected by PCR using appropriate primers. ESBL genes were further confirmed by sequencing. The molecular typing of E. coli strains was determined by Multilocus Sequence Typing (MLST). RESULTS A total of 93.8% (425/453) E. coli were isolated from the collected samples. Out of 334 E. coli isolates screened, 14.7% (49/334) were phenotypically ESBL producers. All the ESBL-EC were resistant to tetracycline, ciprofloxacin, and ampicillin. Thus, 100% of the ESBL-EC were multidrug resistant. Of the ESBL-EC 81.6% were positive for at least one ESBL encoding gene. The most prevalent ESBL gene detected was blaTEM (77.6%; 38/49) followed by blaCTX-M (32.7%; 16/49) and blaSHV (18.4%; 9/49). The majority of ESBL-EC belonged to phylogenic groups A followed by B1 accounting for 44.9% and 12.2%, respectively. The most frequently identified sequence types were ST10 (n = 3) and ST206 (n = 3). The most detected virulence genes in the E. coli isolates were astA (33.3%; 22/66) followed by iss (15.2%; 10/66). CONCLUSIONS Our results show both broiler chicken and their respective farms environment were reservoirs of multi-drug resistant ESBL-producing E. coli and ESBL resistance genes.
Collapse
Affiliation(s)
- Mulu Lemlem
- Public Health and Zoonotic Diseases Research Group, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Kota Bharu, 16100, Malaysia.
- Department of Medical Microbiology and Immunology, College of Health Science, Mekelle University, Tigray, Ethiopia.
| | - Erkihun Aklilu
- Public Health and Zoonotic Diseases Research Group, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Kota Bharu, 16100, Malaysia.
| | - Maizan Mohamed
- Public Health and Zoonotic Diseases Research Group, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Kota Bharu, 16100, Malaysia
| | - Nor Fadhilah Kamaruzzaman
- Public Health and Zoonotic Diseases Research Group, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Kota Bharu, 16100, Malaysia
| | - Susmita Seenu Devan
- Public Health and Zoonotic Diseases Research Group, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Kota Bharu, 16100, Malaysia
| | - Habiba Lawal
- Public Health and Zoonotic Diseases Research Group, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Kota Bharu, 16100, Malaysia
- Department of Public Health, Ministry of Animal Health, Husbandry and Fisheries, Birnin Kebbi, Kebbi State, 860101, Nigeria
| | - Abubakar Abdulkarim Kanamma
- Public Health and Zoonotic Diseases Research Group, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Kota Bharu, 16100, Malaysia
| |
Collapse
|
4
|
Bastidas-Caldes C, Hernández-Alomía F, Almeida M, Ormaza M, Boada J, Graham J, Calvopiña M, Castillejo P. Molecular identification and antimicrobial resistance patterns of enterobacterales in community urinary tract infections among indigenous women in Ecuador: addressing microbiological misidentification. BMC Infect Dis 2024; 24:1195. [PMID: 39438815 PMCID: PMC11515717 DOI: 10.1186/s12879-024-10096-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Antibiotic resistance of Enterobacterales poses a major challenge in the treatment of urinary tract infections (UTIs). In low- and middle-income countries (LMICs), standard microbiological (i.e. urine culture and simple disk diffusion test) methods are considered the "gold standard" for bacterial identification and drug susceptibility testing, while PCR and DNA sequencing are less commonly used. In this study, we aimed to re-identifying Enterobacterales as the primary bacterial agents responsible for urinary tract infections (UTIs) by comparing the sensitivity and specificity of traditional microbiological methods with advanced molecular techniques for the detection of uropathogens in indigenous women from Otavalo, Ecuador. METHODS A facility-based cross-sectional study was conducted from October 2021 to February 2022 among Kichwa-Otavalo women. Pathogens from urine samples were identified using culture and biochemical typing. Morphological identification was doble-checked through PCR and DNA sequencing of 16S, recA, and rpoB molecular barcodes. The isolates were subjected to antimicrobial susceptibility-testing using disk diffusion test. RESULTS This study highlighted a 32% misidentification rate between biochemical and molecular identification. Using traditional methods, E. coli was 26.19% underrepresented meanwhile Klebsiella oxytoca was overrepresented by 92.86%. Furthermore, the genera Pseudomonas, Proteus, and Serratia were confirmed to be E. coli and Klebsiella spp. by molecular method, and one Klebsiella spp. was reidentified as Enterobacter spp. The susceptibility profile showed that 59% of the isolates were multidrug resistant strains and 31% produced extended spectrum beta-lactamases (ESBLs). Co-trimoxazole was the least effective antibiotic with 61% of the isolates resistant. Compared to previous reports, resistance to nitrofurantoin and fosfomycin showed an increase in resistance by 25% and 15%, respectively. CONCLUSIONS Community-acquired UTIs in indigenous women in Otavalo were primarily caused by E. coli and Klebsiella spp. Molecular identification (16S/rpoB/recA) revealed a high rate of misidentification by standard biochemical and microbiological techniques, which could lead to incorrect antibiotic prescriptions. UTI isolates in this population displayed higher levels of resistance to commonly used antibiotics compared with non-indigenous groups. Accurate identification of pathogens causing UTIs and their antibiotic susceptibility in local populations is important for local antibiotic prescribing guidelines.
Collapse
Affiliation(s)
- Carlos Bastidas-Caldes
- One Health Research Group, Facultad de Ingeniería y Ciencias Aplicadas, Ingeniería en Biotecnología, Universidad de Las Américas 170125, Quito, Ecuador
| | - Fernanda Hernández-Alomía
- Grupo de Investigación en Biodiversidad, Ingeniería en Biotecnología, Medio Ambiente y Salud (BIOMAS), Universidad de Las Américas 170125, Quito, Ecuador
| | - Miguel Almeida
- Centro Médico de Orientación y Planificación Familiar (CEMOPLAF), Quito, 100201, Otavalo, Ecuador
| | - Mirian Ormaza
- Centro Médico de Orientación y Planificación Familiar (CEMOPLAF), Quito, 100201, Otavalo, Ecuador
| | - Josué Boada
- Grupo de Investigación en Biodiversidad, Ingeniería en Biotecnología, Medio Ambiente y Salud (BIOMAS), Universidad de Las Américas 170125, Quito, Ecuador
| | - Jay Graham
- Berkeley School of Public Health, University of California, Berkeley, CA, 94607, USA
| | - Manuel Calvopiña
- One Health Research Group, Facultad de Ingeniería y Ciencias Aplicadas, Ingeniería en Biotecnología, Universidad de Las Américas 170125, Quito, Ecuador
| | - Pablo Castillejo
- Grupo de Investigación en Biodiversidad, Ingeniería en Biotecnología, Medio Ambiente y Salud (BIOMAS), Universidad de Las Américas 170125, Quito, Ecuador.
| |
Collapse
|
5
|
Khasapane NG, Nkhebenyane SJ, Lekota K, Thekisoe O, Ramatla T. "One Health" Perspective on Prevalence of ESKAPE Pathogens in Africa: A Systematic Review and Meta-Analysis. Pathogens 2024; 13:787. [PMID: 39338978 PMCID: PMC11434769 DOI: 10.3390/pathogens13090787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/29/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The leading cause of hospital-acquired infections worldwide includes Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. (ESKAPE) infections. These bacteria are commonly isolated from clinical settings and linked to a number of potentially fatal diseases associated with hospitals. The objective of this study was to review the prevalence of ESKAPE pathogens in Africa. We gathered and systematically reviewed the literature concerning the prevalence of ESKAPE pathogens, published in the English language from January 2014 to February 2024, from three databases (PubMed, Web of Science and ScienceDirect). Our overall results revealed that S. aureus was the most prevalent species (79.5%), followed by A. baumannii (27.6%), K. pneumoniae (24.2%), Enterobacter spp. (20%), P. aeruginosa (9.0%), and E. faecium (5.1%). Moreover, stool samples had the highest Pooled Prevalence Estimates (PPEs) of 44.0%, followed by urine, nasal, and blood samples with 37.3%, 26.9%, and 22.9%, respectively. For the diagnostic method used to identify these ESKAPE pathogens, VITEK-MS had the highest PPE of 55.2%, followed by whole genome sequencing and PCR with 37.1% and 33.2%, respectively. The highest PPE of ESKAPE pathogens was recorded in West Africa with 77.3%, followed by Central/Middle Africa and East Africa with 43.5% and 25.1%, respectively. The overall PPE of ESKAPE pathogens from humans, animals, the environment (water, soil, and surfaces) and food sources was 35.8%, 37.3%, 47.7%, and 34.2%, respectively. Despite their prevalence in nosocomial settings, studies have shown that the ESKAPE pathogens may be isolated from a range of environmental reservoirs, including soil, dumping sites, beach sand, wastewater, food, and fish farms, among others. This wide source of ESKAPE pathogens substrates indicates the need for a multidisciplinary collaborative partnership for epidemiological studies and intervention efforts by the human, veterinary, and environmental health sectors in Africa.
Collapse
Affiliation(s)
- Ntelekwane George Khasapane
- Centre for Applied Food Safety and Biotechnology, Department of Life Sciences, Central University of Technology, 1 Park Road, Bloemfontein 9300, South Africa; (S.J.N.); (T.R.)
| | - Sebolelo Jane Nkhebenyane
- Centre for Applied Food Safety and Biotechnology, Department of Life Sciences, Central University of Technology, 1 Park Road, Bloemfontein 9300, South Africa; (S.J.N.); (T.R.)
| | - Kgaugelo Lekota
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa; (K.L.); (O.T.)
| | - Oriel Thekisoe
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa; (K.L.); (O.T.)
| | - Tsepo Ramatla
- Centre for Applied Food Safety and Biotechnology, Department of Life Sciences, Central University of Technology, 1 Park Road, Bloemfontein 9300, South Africa; (S.J.N.); (T.R.)
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa; (K.L.); (O.T.)
| |
Collapse
|
6
|
Liu Y, Wang Q, Qi T, Zhang M, Chen R, Si Z, Li J, Jin Y, Xu Q, Li P, Hao Y. Molecular Epidemiology of mcr-1-Positive Polymyxin B-Resistant Escherichia coli Producing Extended-Spectrum β-Lactamase (ESBL) in a Tertiary Hospital in Shandong, China. Pol J Microbiol 2024; 73:363-375. [PMID: 39268958 PMCID: PMC11395425 DOI: 10.33073/pjm-2024-032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/23/2024] [Indexed: 09/15/2024] Open
Abstract
Escherichia coli, a rod-shaped Gram-negative bacterium, is a significant causative agent of severe clinical bacterial infections. This study aimed to analyze the epidemiology of extended-spectrum β-lactamase (ESBL)-producing mcr-1 -positive E. coli in Shandong, China. We collected 668 non-duplicate ESBL-producing E. coli strains from clinical samples at Shandong Provincial Hospital between January and December 2018, and estimated their minimum inhibitory concentrations (MICs) using a VITEK® 2 compact system and broth microdilution. Next-generation sequencing and bioinformatic analyses identified the mcr-1 gene and other resistance genes in the polymyxin B-resistant strains. The conjugation experiment assessed the horizontal transfer capacity of the mcr-1 gene. Of the strains collected, 24 polymyxin B-resistant strains were isolated with a positivity rate of 3.59% and among the 668 strains, 19 clinical strains carried the mobile colistin resistance gene mcr-1, with a positivity rate of approximately 2.8%. All 19 clinical strains were resistant to ampicillin, cefazolin, ceftriaxone, ciprofloxacin, levofloxacin, and polymyxin B. Seventeen strains successfully transferred the mcr-1 gene into E. coli J53. All transconjugants were resistant to polymyxin B, and carried the drug resistance gene mcr-1. The 19 clinical strains had 14 sequence types (STs), with ST155 (n = 4) being the most common. The whole-genome sequencing results of pECO-POL-29_mcr1 revealed that no ISApl1 insertion sequences were found on either side of the mcr-1 gene. Our study uncovered the molecular epidemiology of mcr-1-carrying ESBL-producing E. coli in the region and suggested horizontal transmission mediated by plasmids as the main mode of mcr-1 transmission.
Collapse
Affiliation(s)
- Yue Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qian Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ting Qi
- Department of Clinical Laboratory, Jinan Gangcheng District People’s Hospital, Jinan, China
| | - Meng Zhang
- Department of Clinical Laboratory, Liaocheng Second People’s Hospital, Liaocheng, China
| | - Ran Chen
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zaifeng Si
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jinmei Li
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Clinical Laboratory, Jinan Seventh People’s Hospital, Jinan, China
| | - Yan Jin
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qingbing Xu
- Central Laboratory of Liaocheng People’s Hospital, Liaocheng, China
| | - Ping Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yingying Hao
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
7
|
Brauncajs M, Bielec F, Macieja A, Machnicki P, Pastuszak-Lewandoska D. Antimicrobial Susceptibility and Genetic Epidemiology of Extended-Spectrum β-Lactamase-Positive Enterobacterales Clinical Isolates in Central Poland. Int J Mol Sci 2024; 25:8371. [PMID: 39125939 PMCID: PMC11312491 DOI: 10.3390/ijms25158371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
The extended-spectrum β-lactamases (ESβLs) are bacterial enzymes capable of hydrolyzing penicillins, cephalosporins, and aztreonam. The prevalence of ESβL is increasing among clinically significant microorganisms worldwide, drastically reducing the therapeutic management of infectious diseases. The study aimed to determine the drug susceptibility of ESβL-positive clinical isolates acquired from patients hospitalized in Lodz, central Poland, and analyze the prevalence of specific genes, determining acquired resistance in these bacteria. The samples of ESβL-positive clinical isolates were gathered in 2022 from medical microbiological laboratories in the city of Lodz, central Poland. The strains were subjected to biochemical identification and antimicrobial susceptibility testing following EUCAST guidelines. The presence of studied genes (blaCTX-M, blaSHV, blaTEM, blaPER, blaVEB) was confirmed by PCR. Over 50% of studied isolates were resistant to gentamicin, cefepime, ceftazidime and ciprofloxacin. The most common ESβL gene was blaCTX-M. In most isolates, the resistance genes occurred simultaneously. The blaPER was not detected in any of the tested strains. ESβL-producing strains are largely susceptible to the currently available antibiotics. The observation of the coexistence of different genes in most clinical isolates is alarming.
Collapse
Affiliation(s)
- Małgorzata Brauncajs
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, 90-151 Lodz, Poland; (M.B.); (A.M.); (P.M.); (D.P.-L.)
- Medical Microbiology Laboratory, Central Teaching Hospital of Medical University of Lodz, 92-213 Lodz, Poland
| | - Filip Bielec
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, 90-151 Lodz, Poland; (M.B.); (A.M.); (P.M.); (D.P.-L.)
- Medical Microbiology Laboratory, Central Teaching Hospital of Medical University of Lodz, 92-213 Lodz, Poland
| | - Anna Macieja
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, 90-151 Lodz, Poland; (M.B.); (A.M.); (P.M.); (D.P.-L.)
| | - Piotr Machnicki
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, 90-151 Lodz, Poland; (M.B.); (A.M.); (P.M.); (D.P.-L.)
| | - Dorota Pastuszak-Lewandoska
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, 90-151 Lodz, Poland; (M.B.); (A.M.); (P.M.); (D.P.-L.)
| |
Collapse
|
8
|
Ribeiro LF, Nespolo NM, Rossi GAM, Fairbrother JM. Exploring Extended-Spectrum Beta-Lactamase (ESBL)-Producing Escherichia coli in Food-Producing Animals and Animal-Derived Foods. Pathogens 2024; 13:346. [PMID: 38668301 PMCID: PMC11054374 DOI: 10.3390/pathogens13040346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024] Open
Abstract
Antimicrobials serve as crucial treatments in both veterinary and human medicine, aiding in the control and prevention of infectious diseases. However, their misuse or overuse has led to the emergence of antimicrobial resistance, posing a significant threat to public health. This review focuses on extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli in animals and their associated food products, which contribute to the proliferation of antimicrobial-resistant strains. Recent research has highlighted the presence of ESBL-producing E. coli in animals and animal-derived foods, with some studies indicating genetic similarities between these isolates and those found in human infections. This underscores the urgent need to address antimicrobial resistance as a pressing public health issue. More comprehensive studies are required to understand the evolving landscape of ESBLs and to develop strategic public health policies grounded in the One Health approach, aiming to control and mitigate their prevalence effectively.
Collapse
Affiliation(s)
- Laryssa Freitas Ribeiro
- Mário Palmério University Center (UniFucamp), Av. Brasil Oeste, s/n, Jardim Zenith, Monte Carmelo 38500-000, Minas Gerais State, Brazil;
| | - Natália Maramarque Nespolo
- Federal University of São Carlos (UFSCar), Rod. Washington Luís, s/n—Monjolinho, São Carlos 13565-905, São Paulo State, Brazil;
| | - Gabriel Augusto Marques Rossi
- Department of Veterinary Medicine, University of Vila Velha (UVV), Vila Velha 29102-920, Espírito Santo State, Brazil;
| | - John Morris Fairbrother
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|
9
|
Lemlem M, Aklilu E, Mohamed M, Kamaruzzaman NF, Zakaria Z, Harun A, Devan SS, Kamaruzaman INA, Reduan MFH, Saravanan M. Phenotypic and genotypic characterization of colistin-resistant Escherichia Coli with mcr-4, mcr-5, mcr-6, and mcr-9 genes from broiler chicken and farm environment. BMC Microbiol 2023; 23:392. [PMID: 38062398 PMCID: PMC10704802 DOI: 10.1186/s12866-023-03118-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Colistin is an antibiotic used as a last-resort to treat multidrug-resistant Gram-negative bacterial infections. Colistin had been used for a long time in veterinary medicine for disease control and as a growth promoter in food-producing animals. This excessive use of colistin in food animals causes an increase in colistin resistance. This study aimed to determine molecular characteristics of colistin-resistant Escherichia coli in broiler chicken and chicken farm environments. RESULTS Four hundred fifty-three cloacal and farm environment samples were collected from six different commercial chicken farms in Kelantan, Malaysia. E. coli was isolated using standard bacteriological methods, and the isolates were tested for antimicrobial susceptibility using disc diffusion and colistin minimum inhibitory concentration (MIC) by broth microdilution. Multiplex PCR was used to detect mcr genes, and DNA sequencing was used to confirm the resistance genes. Virulence gene detection, phylogroup, and multilocus sequence typing (MLST) were done to further characterize the E. coli isolates. Out of the 425 (94%; 425/453) E. coli isolated from the chicken and farm environment samples, 10.8% (48/425) isolates were carrying one or more colistin-resistance encoding genes. Of the 48 colistin-resistant isolates, 54.2% (26/48) of the mcr positive isolates were genotypically and phenotypically resistant to colistin with MIC of colistin ≥ 4 μg/ml. The most prominent mcr gene detected was mcr-1 (47.9%; 23/48), followed by mcr-8 (18.8%; 9/48), mcr-7 (14.5%; 7/48), mcr-6 (12.5%; 6/48), mcr-4 (2.1%; 1/48), mcr-5 (2.1%; 1/48), and mcr-9 (2.1%; 1/48) genes. One E. coli isolate originating from the fecal sample was found to harbor both mcr-4 and mcr-6 genes and another isolate from the drinking water sample was carrying mcr-1 and mcr-8 genes. The majority of the mcr positive isolates were categorized under phylogroup A followed by phylogroup B1. The most prevalent sequence typing (ST) was ST1771 (n = 4) followed by ST206 (n = 3). 100% of the mcr positive E. coli isolates were multidrug resistant. The most frequently detected virulence genes among mcr positive E. coli isolates were ast (38%; 18/48) followed by iss (23%; 11/48). This is the first research to report the prevalence of mcr-4, mcr-5, mcr-6, mcr-7, and mcr-8 genes in E. coli from broiler chickens and farm environments in Malaysia. CONCLUSION Our findings suggest that broiler chickens and broiler farm environments could be reservoirs of colistin-resistant E. coli, posing a risk to public health and food safety.
Collapse
Affiliation(s)
- Mulu Lemlem
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Kota Bharu, Kelantan, 16100, Malaysia.
- Department of Medical Microbiology and Immunology, College of Health Science, Mekelle University, 231, Mekelle, Tigray, Ethiopia.
| | - Erkihun Aklilu
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Kota Bharu, Kelantan, 16100, Malaysia.
| | - Maizan Mohamed
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Kota Bharu, Kelantan, 16100, Malaysia
| | | | - Zunita Zakaria
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| | - Azian Harun
- School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Kelantan, 15200, Malaysia
| | - Susmita Seenu Devan
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Kota Bharu, Kelantan, 16100, Malaysia
| | | | - Mohd Farhan Hanif Reduan
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Kota Bharu, Kelantan, 16100, Malaysia
| | - Muthupandian Saravanan
- AMR and Nanotherapeutics Lab, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 600077, India
| |
Collapse
|
10
|
Anyanwu MU, Jaja IF, Okpala COR, Njoga EO, Okafor NA, Oguttu JW. Mobile Colistin Resistance ( mcr) Gene-Containing Organisms in Poultry Sector in Low- and Middle-Income Countries: Epidemiology, Characteristics, and One Health Control Strategies. Antibiotics (Basel) 2023; 12:1117. [PMID: 37508213 PMCID: PMC10376608 DOI: 10.3390/antibiotics12071117] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/30/2023] Open
Abstract
Mobile colistin resistance (mcr) genes (mcr-1 to mcr-10) are plasmid-encoded genes that threaten the clinical utility of colistin (COL), one of the highest-priority critically important antibiotics (HP-CIAs) used to treat infections caused by multidrug-resistant and extensively drug-resistant bacteria in humans and animals. For more than six decades, COL has been used largely unregulated in the poultry sector in low- and middle-income countries (LMICs), and this has led to the development/spread of mcr gene-containing bacteria (MGCB). The prevalence rates of mcr-positive organisms from the poultry sector in LMICs between January 1970 and May 2023 range between 0.51% and 58.8%. Through horizontal gene transfer, conjugative plasmids possessing insertion sequences (ISs) (especially ISApl1), transposons (predominantly Tn6330), and integrons have enhanced the spread of mcr-1, mcr-2, mcr-3, mcr-4, mcr-5, mcr-7, mcr-8, mcr-9, and mcr-10 in the poultry sector in LMICs. These genes are harboured by Escherichia, Klebsiella, Proteus, Salmonella, Cronobacter, Citrobacter, Enterobacter, Shigella, Providencia, Aeromonas, Raoultella, Pseudomonas, and Acinetobacter species, belonging to diverse clones. The mcr-1, mcr-3, and mcr-10 genes have also been integrated into the chromosomes of these bacteria and are mobilizable by ISs and integrative conjugative elements. These bacteria often coexpress mcr with virulence genes and other genes conferring resistance to HP-CIAs, such as extended-spectrum cephalosporins, carbapenems, fosfomycin, fluoroquinolone, and tigecycline. The transmission routes and dynamics of MGCB from the poultry sector in LMICs within the One Health triad include contact with poultry birds, feed/drinking water, manure, poultry farmers and their farm workwear, farming equipment, the consumption and sale of contaminated poultry meat/egg and associated products, etc. The use of pre/probiotics and other non-antimicrobial alternatives in the raising of birds, the judicious use of non-critically important antibiotics for therapy, the banning of nontherapeutic COL use, improved vaccination, biosecurity, hand hygiene and sanitization, the development of rapid diagnostic test kits, and the intensified surveillance of mcr genes, among others, could effectively control the spread of MGCB from the poultry sector in LMICs.
Collapse
Affiliation(s)
| | - Ishmael Festus Jaja
- Department of Livestock and Pasture Science, University of Fort Hare, Alice 5700, South Africa
| | - Charles Odilichukwu R Okpala
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
- UGA Cooperative Extension, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Emmanuel Okechukwu Njoga
- Department of Veterinary Public Health and Preventive Medicine, University of Nigeria, Nsukka 400001, Nigeria
| | | | - James Wabwire Oguttu
- Department of Agriculture and Animal Health, Florida Campus, University of South Africa, Johannesburg 1709, South Africa
| |
Collapse
|