1
|
Yan J, Li Y, He H, Liu G, Tang X, Wang Y, Peng X. Effects of electron beam irradiation on the sensory qualities and bioactive compounds of broccoli sprout juice. Food Res Int 2025; 199:115365. [PMID: 39658165 DOI: 10.1016/j.foodres.2024.115365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/22/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024]
Abstract
This study investigates the effects of electron beam irradiation at varying doses on the bioactive compounds and sensory qualities and of broccoli sprout juice (BSJ). A comprehensive analysis of volatile flavor components using GC-IMS and GC-MS identified 49 compounds, including esters, aldehydes, and olefins. Notably, the sulforaphane content exhibited a strong negative correlation with irradiation intensity (R2 = 0.9596), which is critical for predicting the impact of irradiation dose on sulforaphane degradation. Statistical analysis confirmed that 34 volatile compounds, like methyl acetate, 2-methylbutanal, hexanoic acid ethyl ester, etc., exhibited significant difference in different irradiation doses groups (P < 0.05). Sensory evaluation revealed that 6 kGy was the optimal irradiation dose, enhancing the sweetness and mushroom aroma while reducing undesirable spicy flavors. These findings provide valuable insights for balancing preservation techniques, sensory qualities, and nutritional integrity in BSJ, offering potential applications in both food and medicinal industries.
Collapse
Affiliation(s)
- Jiayan Yan
- College of Life Science, Yantai University, Yantai, Shandong 264005, China
| | - Yunying Li
- College of Life Science, Yantai University, Yantai, Shandong 264005, China
| | - Hongju He
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| | - Guangmin Liu
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| | - Xiaowei Tang
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| | - Yaqin Wang
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| | - Xinyan Peng
- College of Life Science, Yantai University, Yantai, Shandong 264005, China.
| |
Collapse
|
2
|
Latif S, Sameeullah M, Abbasi HQ, Masood Z, Demiral Sert T, Aslam N, Pekdemir T, Imren M, Çiftçi V, Saba K, Malik MS, Ijaz F, Batool N, Mirza B, Waheed MT. Broccoli ( Brassica oleracea var. italica) leaves exhibit significant antidiabetic potential in alloxan-induced diabetic rats: the putative role of ABC vacuolar transporter for accumulation of Quercetin and Kaempferol. Front Pharmacol 2024; 15:1421131. [PMID: 39737071 PMCID: PMC11683327 DOI: 10.3389/fphar.2024.1421131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 11/26/2024] [Indexed: 01/01/2025] Open
Abstract
Background The global prevalence of diabetes among adults over 18 years of age is expected to increase from 10.5% to 12.2% (between 2021 and 2045). Plants can be a cost-effective source of flavonoids like quercetin and kaempferol with anti-diabetic properties. Methodology We aimed to assess the antidiabetic potential of leaves of Brassica oleracea cvs. Green Sprout and Marathon. Further, flavonoid contents were measured in broccoli leaves grown under light and dark conditions. The methanolic extracts of Green Sprout (GSL-M) and Marathon (ML-M) were first evaluated in vitro for their α-amylase and α-glucosidase inhibitory potential and then for antidiabetic activity in vivo in alloxan-induced diabetic rat models. Results Treatment with plant extracts promoted the reduced glutathione (GSH) content and CAT, POD, and SOD activities in the pancreas, liver, kidney, heart, and brain of diabetic rats, whereas lowered lipid peroxidation, H2O2, and nitrite concentrations. The histopathological studies revealed the protective effect of plant extracts at high dose (300 mg/kg), which could be due to broccoli's rich content of chlorogenic acid, quercetin, and kaempferol. Strikingly, etiolated leaves of broccoli manifested higher levels of quercetin and kaempferol than green ones. The putative role of an ABC transporter in the accumulation of quercetin and kaempferol in etiolated leaves was observed as evaluated by qRT-PCR and in silico analyses. Conclusion In conclusion, the present study shows a strong link between the antidiabetic potential of broccoli due to the presence of chlorogenic acid, quercetin, and kaempferol and the role of an ABC transporter in their accumulation within the vacuole.
Collapse
Affiliation(s)
- Sara Latif
- Department of Biology, University of Haripur, Haripur, Pakistan
| | - Muhammad Sameeullah
- Department of Field Crops, Faculty of Agriculture, Bolu Abant Izzet Baysal University, Bolu, Türkiye
- Centre for Innovative Food Technologies Development, Application and Research, Bolu Abant Izzet Baysal University, Bolu, Türkiye
| | | | - Zainab Masood
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Tijen Demiral Sert
- Department of Biology, Faculty of Engineering and Natural Sciences, Süleyman Demirel University, Isparta, Türkiye
| | - Noreen Aslam
- Department of Biology, Faculty of Science and Literature, Bolu Abant Izzet Baysal University, Bolu, Türkiye
| | - Turgay Pekdemir
- Centre for Innovative Food Technologies Development, Application and Research, Bolu Abant Izzet Baysal University, Bolu, Türkiye
- Department of Chemical Engineering, Faculty of Engineering, Bolu Abant Izzet Baysal University, Bolu, Türkiye
| | - Mustafa Imren
- Department of Plant Protection, Faculty of Agriculture, Bolu Abant Izzet Baysal University, Bolu, Türkiye
| | - Vahdettin Çiftçi
- Department of Field Crops, Faculty of Agriculture, Bolu Abant Izzet Baysal University, Bolu, Türkiye
| | - Kiran Saba
- Department of Biochemistry, Faculty of Life Sciences, Shaheed Benazir Bhutto Women University, Peshawar, Pakistan
| | | | - Fatima Ijaz
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Neelam Batool
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Bushra Mirza
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | | |
Collapse
|
3
|
Gudiño I, Casquete R, Martín A, Wu Y, Benito MJ. Comprehensive Analysis of Bioactive Compounds, Functional Properties, and Applications of Broccoli By-Products. Foods 2024; 13:3918. [PMID: 39682990 DOI: 10.3390/foods13233918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Broccoli by-products, traditionally considered inedible, possess a comprehensive nutritional and functional profile. These by-products are abundant in glucosinolates, particularly glucoraphanin, and sulforaphane, an isothiocyanate renowned for its potent antioxidant and anticarcinogenic properties. Broccoli leaves are a significant source of phenolic compounds, including kaempferol and quercetin, as well as pigments, vitamins, and essential minerals. Additionally, they contain proteins, essential amino acids, lipids, and carbohydrates, with the leaves exhibiting the highest protein content among the by-products. Processing techniques such as ultrasound-assisted extraction and freeze-drying are crucial for maximizing the concentration and efficacy of these bioactive compounds. Advanced analytical methods, such as high-performance liquid chromatography-mass spectrometry (HPLC-MS), have enabled precise characterization of these bioactives. Broccoli by-products have diverse applications in the food industry, enhancing the nutritional quality of food products and serving as natural substitutes for synthetic additives. Their antioxidant, antimicrobial, and anti-inflammatory properties not only contribute to health promotion but also support sustainability by reducing agricultural waste and promoting a circular economy, thereby underscoring the value of these often underutilized components.
Collapse
Affiliation(s)
- Iris Gudiño
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avd. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación en Recursos Agrarios (INURA), Universidad de Extremadura, Avd. de la Investigación, 06006 Badajoz, Spain
| | - Rocío Casquete
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avd. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación en Recursos Agrarios (INURA), Universidad de Extremadura, Avd. de la Investigación, 06006 Badajoz, Spain
| | - Alberto Martín
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avd. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación en Recursos Agrarios (INURA), Universidad de Extremadura, Avd. de la Investigación, 06006 Badajoz, Spain
| | - Yuanfeng Wu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - María José Benito
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avd. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación en Recursos Agrarios (INURA), Universidad de Extremadura, Avd. de la Investigación, 06006 Badajoz, Spain
| |
Collapse
|
4
|
Yun J, Kim JE. Broccoli Sprout Extract Suppresses Particulate-Matter-Induced Matrix-Metalloproteinase (MMP)-1 and Cyclooxygenase (COX)-2 Expression in Human Keratinocytes by Direct Targeting of p38 MAP Kinase. Nutrients 2024; 16:4156. [PMID: 39683550 DOI: 10.3390/nu16234156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES Particulate matter (PM) is an environmental pollutant that negatively affects human health, particularly skin health. In this study, we investigated the inhibitory effects of broccoli sprout extract (BSE) on PM-induced skin aging and inflammation in human keratinocytes. METHODS HaCaT keratinocytes were pretreated with BSE before exposure to PM. Cell viability was assessed using the MTT assay. The expression of skin aging and inflammation markers (MMP-1, COX-2, IL-6) was measured using Western blot, ELISA, and qRT-PCR. Reactive oxygen species levels were determined using the DCF-DA assay. Kinase assays and pull-down assays were conducted to investigate the interaction between BSE and p38α MAPK. RESULTS Our findings demonstrate that BSE effectively suppressed the expression of MMP-1, COX-2, and IL-6-critical skin aging and inflammation markers-by inhibiting p38 MAPK activity. BSE binds directly to p38α without competing with ATP, thereby selectively inhibiting its activity and downstream signaling pathways, including MSK1/2, AP-1, and NF-κB. CONCLUSIONS These results suggest that BSE is a potential functional ingredient in skincare products to mitigate PM-induced skin damage.
Collapse
Affiliation(s)
- Jaehyeok Yun
- Department of Food Science and Technology, Korea National University of Transportation, Jeungpyeong 27909, Republic of Korea
| | - Jong-Eun Kim
- Department of Food Science and Technology, Korea National University of Transportation, Jeungpyeong 27909, Republic of Korea
| |
Collapse
|
5
|
Romero-Muñoz M, Pérez-Jiménez M. Optimizing Brassica oleracea L. Breeding Through Somatic Hybridization Using Cytoplasmic Male Sterility (CMS) Lines: From Protoplast Isolation to Plantlet Regeneration. PLANTS (BASEL, SWITZERLAND) 2024; 13:3247. [PMID: 39599456 PMCID: PMC11598112 DOI: 10.3390/plants13223247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
The Brassica oleracea L. species embrace important horticultural crops, such as broccoli, cauliflower, and cabbage, which are highly valued for their beneficial nutritional effects. However, the complexity of flower emasculation in these species has forced breeders to adopt biotechnological approaches such as somatic hybridization to ease hybrid seed production. Protoplasts entail a versatile tool in plant biotechnology, supporting breeding strategies that involve genome editing and hybridization. This review discusses the use of somatic hybridization in B. oleracea L. as a biotechnological method for developing fusion products with desirable agronomic traits, particularly cytoplasmic male sterile (CMS) condition. These CMS lines are critical for implementing a cost-effective, efficient, and reliable system for producing F1 hybrids. We present recent studies on CMS systems in B. oleracea L. crops, providing an overview of established models that explain the mechanisms of CMS and fertility restoration. Additionally, we emphasize key insights gained from protoplast fusion applied to B. oleracea L. breeding. Key steps including pre-treatments of donor plants, the main tissues used as sources of parental protoplasts, methods for obtaining somatic hybrids and cybrids, and the importance of establishing a reliable plant regeneration method are discussed. Finally, the review explores the incorporation of genome editing technologies, such as CRISPR-Cas9, to introduce multiple agronomic traits in Brassica species. This combination of advanced biotechnological tools holds significant promise for enhancing B. oleracea breeding programs in the actual climate change context.
Collapse
Affiliation(s)
- Miriam Romero-Muñoz
- Department of Biotechnology, Genomic and Plant Breeding, Institute for Agroenvironmental Research and Development of Murcia (IMIDA), c/Mayor s/n, E-30150 Murcia, Spain;
| | | |
Collapse
|
6
|
Quizhpe J, Ayuso P, Rosell MDLÁ, Peñalver R, Nieto G. Brassica oleracea var italica and Their By-Products as Source of Bioactive Compounds and Food Applications in Bakery Products. Foods 2024; 13:3513. [PMID: 39517297 PMCID: PMC11544821 DOI: 10.3390/foods13213513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/16/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Broccoli (Brassica oleracea var. italica) is one of the most consumed cruciferous crops in the world, with China and Spain acting as the main producers from outside and within the EU, respectively. Broccoli florets are edible, while the leaves and stalks, discarded in the field and during processing, are by-products. Therefore, the objective of this study was to conduct a comprehensive review of the nutrient and phytochemical composition of broccoli and its by-products, as well as its beneficial effects. In addition, the study highlights the revalorization of broccoli by-products through innovative green technologies and explores their potential use in bakery products for the development of functional foods. The studies suggested that broccoli is characterized by a high content of nutrients and bioactive compounds, including vitamins, fiber, glucosinolates, and phenolic compounds, and their content varied with various parts. This high content of value-added compounds gives broccoli and its various parts beneficial properties, including anti-cancer, anti-inflammatory, antioxidant, antimicrobial, metabolic disorder regulatory, and neuroprotective effects. Furthermore, broccoli and its by-products can play a key role in food applications by improving the nutritional profile of products due to their rich content of bioactive compounds. As a result, it is essential to harness the potential of the broccoli and its by-products that are generated during its processing through an appropriate agro-industrial revalorization, using environmentally friendly techniques.
Collapse
Affiliation(s)
| | | | | | | | - Gema Nieto
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, Regional Campus of International Excellence “Campus Mare Nostrum”, Campus de Espinardo, 30100 Murcia, Spain; (J.Q.); (P.A.); (M.d.l.Á.R.); (R.P.)
| |
Collapse
|
7
|
Tasnim F, Hosen ME, Haque ME, Islam A, Nuryay MN, Mawya J, Akter N, Yesmin D, Hossain MM, Rahman N, Mahmudul Hasan BM, Hassan MN, Islam MM, Khalekuzzaman M. Glucosinolates and Indole-3-carbinol from Brassica oleracea L. as inhibitors of E. coli CdtB: insights from molecular docking, dynamics, DFT and in vitro assay. In Silico Pharmacol 2024; 12:95. [PMID: 39479380 PMCID: PMC11519271 DOI: 10.1007/s40203-024-00276-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/15/2024] [Indexed: 11/02/2024] Open
Abstract
Escherichia coli (E. coli), a common human gut bacterium, is generally harmless but capable of causing infections and contributing to diseases like urinary tract infections, sepsis/meningitis, or diarrheal diseases. Notably, E. coli is implicated in developing gallbladder cancer (GBC) either through ascending infection from the gastrointestinal tract or via hematogenous spread. Certain E. coli strains are known to produce toxins, such as cytolethal distending toxins (CDTs), that directly contribute to the genetic mutations and cellular abnormalities observed in GBC. Broccoli (Brassica oleracea) is known for its health-promoting properties, including antimicrobial, antioxidant, and immunomodulatory effects, and is rich in essential compounds. Our study investigates the potential of the phytochemicals of B. oleracea to inhibit the CdtB (PDB ID: 2F1N) protein of E. coli which plays a significant role in the pathogenesis of GBC. By employing in silico molecular docking, Glucosinolates and Indole-3-carbinol emerged as promising inhibitors, demonstrating strong bonding affinities of -8.95 and - 8.5 Kcal/mol, respectively. The molecular dynamic simulation showed that both compounds maintained stable interaction with CdtB with minimal conformational changes observed in the protein-ligand complexes. Additionally, the ADMET analysis provided evidence for the drug-likeness properties of the lead compounds. Furthermore, the DFT (Density Functional Theory) revealed that Indole-3-carbinol is more chemically stable but less reactive than Glucosinolates, with HOMO-LUMO gaps of 5.14 eV and 4.50 eV, respectively. Finally, the in vitro antibacterial assessment confirmed the inhibitory effect of Glucosinolates and Indole-3-carbinol against E. coli through disc diffusion assay with the zone of inhibition 34.25 ± 0.541 and 28.67 ± 0.376 mm compared to the control ciprofloxacin. Our study provides crucial data for developing novel therapeutic agents targeting E. coli-associated GBC from the phytochemicals of B. oleracea. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00276-3.
Collapse
Affiliation(s)
- Faria Tasnim
- Department of Microbiology, Shaheed Shamsuzzoha Institute of Biosciences, Affiliated with University of Rajshahi, Rajshahi, Bangladesh
| | - Md. Eram Hosen
- Department of Microbiology, Shaheed Shamsuzzoha Institute of Biosciences, Affiliated with University of Rajshahi, Rajshahi, Bangladesh
| | - Md. Enamul Haque
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Ariful Islam
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205 Bangladesh
| | - Mst Naharina Nuryay
- Department of Microbiology, Rajshahi Institute of Bioscience, Affiliated with University of Rajshahi, Rajshahi, 6205 Bangladesh
| | - Jannatul Mawya
- Department of Microbiology, Udayan College of Bioscience, Affiliated with University of Rajshahi, Rajshahi, 6205 Bangladesh
| | - Najnin Akter
- Department of Microbiology, Udayan College of Bioscience, Affiliated with University of Rajshahi, Rajshahi, 6205 Bangladesh
| | - Delara Yesmin
- Department of Microbiology, Rajshahi Institute of Bioscience, Affiliated with University of Rajshahi, Rajshahi, 6205 Bangladesh
| | - Md. Mosabbir Hossain
- Department of Microbiology, Rajshahi Institute of Bioscience, Affiliated with University of Rajshahi, Rajshahi, 6205 Bangladesh
| | - Nilima Rahman
- Department of Microbiology, Udayan College of Bioscience, Affiliated with University of Rajshahi, Rajshahi, 6205 Bangladesh
| | | | | | - Md. Mahmudul Islam
- Department of Microbiology, Shaheed Shamsuzzoha Institute of Biosciences, Affiliated with University of Rajshahi, Rajshahi, Bangladesh
| | - Md. Khalekuzzaman
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205 Bangladesh
| |
Collapse
|
8
|
Luo P, Huang C. Causal associations between type 2 diabetes mellitus, glycemic traits, dietary habits and the risk of pressure ulcers: univariable, bidirectional and multivariable Mendelian randomization. Front Nutr 2024; 11:1375179. [PMID: 39416647 PMCID: PMC11480076 DOI: 10.3389/fnut.2024.1375179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Objective Previous research has established a connection between Type 2 Diabetes Mellitus (T2DM), glycemic traits, dietary habits, and the risk of Pressure Ulcers (PUs). The aim of our study is to disentangle any potential causal relationship between T2DM, glycemic traits, and dietary factors, and the risk of PUs. Methods The exposure and outcome datasets were sourced from the IEU Open GWAS project, the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC), and the FinnGen biobank, respectively. The primary MR analysis method employed was the inverse variance-weighted method. Furthermore, we employed multivariable MR (MVMR) adjusting for BMI. Then, we investigated the possibility of a reverse association between glycemic traits and PUs through bidirectional MR. Finally, Heterogeneity and pleiotropic analysis were conducted to ensure the accuracy and robustness of the results. Results The findings revealed that T2DM (OR = 1.282, 95% CI: 1.138-1.445, p < 0.001) and Fasting Glucose (FG; OR = 2.111, 95% CI: 1.080-4.129, p = 0.029) were associated with an increased risk of PUs, while salad/raw vegetable intake (OR: 0.014; 95% CI: 0.001-0.278; p = 0.005) was identified as a protective element. However, no other dietary elements demonstrated a statistically significant causality with PUs. In addition, in the reverse direction, there were positive correlation between genetic susceptibility to PUs and an increase in FG (OR: 1.007, 95% CI: 1.000-1.013, p = 0.048) and Fasting Insulin (FI; OR: 1.012, 95% CI: 1.003-1.022, p = 0.011). MVMR results indicated that the causal effect of T2DM on PUs was independent of BMI (OR: 1.260, 95% CI: 1.112-1.427, p < 0.001). These results remained robust when considering weak instrument bias, pleiotropy, and heterogeneity. Conclusion This study establishes a causal link between genetically predicted T2DM, FG and an increased risk of PUs. Conversely, Salad/raw vegetable intake is significantly inversely associated with PUs. Simultaneously, we identified two downstream effector factor (FG and FI) that were associated with PUs. These findings may have clinical implications for both prevention and treatment.
Collapse
Affiliation(s)
- Pei Luo
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Can Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
9
|
Binici Hİ, Şat İG, Yilmaz B. Comparison of antioxidant, phenolic profile, melatonin, and volatile compounds of some selected plant samples. Food Sci Nutr 2024; 12:7158-7165. [PMID: 39479601 PMCID: PMC11521718 DOI: 10.1002/fsn3.4334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 11/02/2024] Open
Abstract
It was aimed to examine the antioxidant, phenolic profile, and volatile compound contents of seven different aromatic plant samples (broccoli, yarpuz, walnut leaves, marshmallow, wild clary, harmala, and common yarrow) collected from Adilcevaz district of Bitlis province in Türkiye. Gas chromatography-mass spectrometry (GC-MS) device was used for the volatile profile of the plant varieties. The most abundant volatile compounds were generally heptacosane compound that showed anticancer and antimicrobial effects. Piperitone oxide was detected only in yarpuz samples. Phenolic content and antioxidant activity of the plant samples were found to be highly significant (p < .01). When the amounts of total flavonoids were ranked from the largest to the smallest according to plant varieties, it was determined as wild clary > walnut leaves > yarpuz > common yarrow > marshmallow > harmala > broccoli. According to both antioxidant activity methods, wild clary had the lowest IC50 (half-maximal inhibitory concentration) value, i.e. the highest antioxidant activity. The highest amount of epicatechin was determined in yarpuz (898.30 μg/g) and the lowest amount of epicatechin was determined in wild clary (86.09 μg/g). No epicatechin was detected in the other four plant samples. Among the samples, melatonin hormone was detected only in common yarrow, harmala, and broccoli and the highest value was determined in common yarrow (3996.27 ng/g). Therefore, it shows that plant samples are rich sources of phytochemicals that can play an important role in preventing the progression of many diseases related to oxidative stress in traditional medicine treatment as functional food sources.
Collapse
Affiliation(s)
- Halil İbrahim Binici
- Department of Nutrition and Dietetics, Faculty of Health Sciencesİstanbul Esenyurt UniversityİstanbulTürkiye
| | - İhsan Güngör Şat
- Department of Food Engineering, Faculty of AgricultureAtaturk UniversityErzurumTürkiye
| | - Bilal Yilmaz
- Department of Analytical Chemistry, Faculty of PharmacyAtaturk UniversityErzurumTürkiye
| |
Collapse
|
10
|
Hajimohammadi S, Rameshrad M, Karimi G. Exploring the therapeutic effects of sulforaphane: an in-depth review on endoplasmic reticulum stress modulation across different disease contexts. Inflammopharmacology 2024; 32:2185-2201. [PMID: 38922526 DOI: 10.1007/s10787-024-01506-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024]
Abstract
The endoplasmic reticulum (ER) is an intracellular organelle that contributes to the folding of proteins and calcium homeostasis. Numerous elements can disrupt its function, leading to the accumulation of proteins that are unfolded or misfolded in the lumen of the ER, a condition that is known as ER stress. This phenomenon can trigger cell death through the activation of apoptosis and inflammation. Glucoraphanin (GRA) is the predominant glucosinolate found in cruciferous vegetables. Various mechanical and biochemical processes activate the enzyme myrosinase, leading to the hydrolysis of glucoraphanin into the bioactive compound sulforaphane. Sulforaphane is an organosulfur compound that belongs to the isothiocyanate group. It possesses a wide range of activities and has shown remarkable potential as an anti-inflammatory, antioxidant, antitumor, and anti-angiogenic substance. Additionally, sulforaphane is resistant to oxidation, has been demonstrated to have low toxicity, and is considered well-tolerable in individuals. These properties make it a valuable natural dietary supplement for research purposes. Sulforaphane has been demonstrated as a potential candidate drug molecule for managing a range of diseases, primarily because of its potent antioxidant, anti-inflammatory, and anti-apoptotic properties, which can be mediated by modulation of ER stress pathways. This review seeks to cover a wealth of data supporting the broad range of protective functions of sulforaphane, improving various diseases, such as cardiovascular, central nervous system, liver, eye, and reproductive diseases, as well as diabetes, cancer, gastroenteritis, and osteoarthritis, through the amelioration of ER stress in both in vivo and in vitro studies.
Collapse
Affiliation(s)
- Samaneh Hajimohammadi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Science, Mashhad, Iran
| | - Maryam Rameshrad
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Research Institute, Mashhad University of Medical Science, Mashhad, Iran.
| |
Collapse
|
11
|
He Y, Zhu Y, Shui X, Huang Z, Li K, Lei W. Gut microbiome and metabolomic profiles reveal the antiatherosclerotic effect of indole-3-carbinol in high-choline-fed ApoE -/- mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155621. [PMID: 38678950 DOI: 10.1016/j.phymed.2024.155621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/27/2024] [Accepted: 04/09/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND The metabolites produced from choline contribute to atherosclerosis (AS) pathogenesis, and the gut microbiota is redundantly essential for this process. Indole-3-carbinol (I3C), found in cruciferous vegetables such as broccoli, cabbage, cauliflower and brussels sprouts, helps prevent hyperlipidemia, maintain the gut microbiota balance, and decrease the production of trimethylamine-N-oxide (TMAO) from choline in the diet. PURPOSE The objective of this research was to investigate the impact of I3C on choline-induced AS and to further elucidate the underlying mechanism involved. METHODS AS models of high-choline-induced ApoE-/- mice and TMAO-promoted foamy macrophages were established to observe the effect of I3C on the formation of atherosclerotic plaques and foam cells and changes in AS-related indicators (including blood biochemical indicators, TMA, TMAO, SRA, and SRB1), and integrated analyses of the microbiome and metabolome were used to reveal the mechanism of action of I3C. RESULTS We found that I3C inhibited high-choline-induced atheroma formation (50-100 mg/kg/d, in vivo) and slightly improved the lipid profile (15 mg/kg/d, in vivo). Moreover, I3C suppressed lipid influx at a concentration of 40 µmol/L in vitro, enhanced the diversity of the gut microbiota and the abundance of the phylum Verrucomicrobia, and consequently modified the gut microbial metabolites at a dosage of 50 mg/kg/d in the mice. Associative analyses based on microbiome and metabolomics revealed that 1-methyladenosine was a key modulator of the protective effect of I3C against AS in high-choline-induced ApoE-/- mice. CONCLUSION These findings demonstrate for the first time that I3C ameliorates AS progression through remodeling of the gut microbiome and metabolomics, which paves the way for the possible therapeutic use of this vegetable-derived natural compound and may reduce the clinical severity of AS-related cardiovascular diseases.
Collapse
Affiliation(s)
- Yuan He
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong Province and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Ying Zhu
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong Province and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Xiaorong Shui
- Laboratory of Vascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Zufeng Huang
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong Province and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Kongwei Li
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong Province and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Wei Lei
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong Province and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Department of Precision Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China.
| |
Collapse
|
12
|
Zeng Q, Peng Y, Zhou X, Zhang J, Yang Y, Xu X, Guan B, Zhang Y, Hu X, Chen X. Label-free Raman imaging for screening of anti-inflammatory function food. Food Chem X 2024; 22:101297. [PMID: 38544930 PMCID: PMC10966160 DOI: 10.1016/j.fochx.2024.101297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 11/11/2024] Open
Abstract
Natural bioactive compounds and plant constituents are considered to have a positive anti-inflammatory effect. This study aimed to establish a screening technique for anti-inflammatory function in foods based on label-free Raman imaging. A visible anti-inflammatory analysis method based on coherent anti-Stokes Raman scattering (CARS) was established with an LPS-induced RAW264.7 cell model. Dynamic changes in proteins and lipids were determined at laser pump light wavelengths of 2956 cm-1 and 2856 cm-1, respectively. The method was applied to a plant-based formula (JC) with anti-inflammatory activity. Q-TOF-MS and HPLC analyses revealed the main active constituents of JC as quercetin, kaempferol, l-glutamine, and sodium copper chlorophyllin. In in vitro and in vivo verification experiments, JC showed significant anti-inflammatory activity by regulating the TLR4/NF-κB pathway. In conclusion, this study successfully established a label-free and visible method for screening anti-inflammatory constituents in plant-based food products, which will facilitate the evaluation of functional foods.
Collapse
Affiliation(s)
- Qi Zeng
- Center for Biomedical-photonics and Molecular Imaging, Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xidian University, Xi'an, Shaanxi 710126, China
- Innovation Center for Advanced Medical Imaging and Intelligent Medicine, Guangzhou Institute of Technology, Xidian University, Guangzhou, Guangdong 510555, China
| | - Yangyao Peng
- Center for Biomedical-photonics and Molecular Imaging, Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xidian University, Xi'an, Shaanxi 710126, China
| | - Xianzhen Zhou
- Center for Biomedical-photonics and Molecular Imaging, Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xidian University, Xi'an, Shaanxi 710126, China
| | - Jiaojiao Zhang
- Center for Biomedical-photonics and Molecular Imaging, Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xidian University, Xi'an, Shaanxi 710126, China
| | - Yuhang Yang
- Center for Biomedical-photonics and Molecular Imaging, Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xidian University, Xi'an, Shaanxi 710126, China
| | - Xinyi Xu
- Center for Biomedical-photonics and Molecular Imaging, Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xidian University, Xi'an, Shaanxi 710126, China
- Innovation Center for Advanced Medical Imaging and Intelligent Medicine, Guangzhou Institute of Technology, Xidian University, Guangzhou, Guangdong 510555, China
| | - Bin Guan
- Affiliated Wuxi Fifth Hospital of Jiangnan University, Wuxi Fifth People's Hospital, Wuxi 214000, China
| | - Yuntian Zhang
- Shanghai Nature's Sunshine Health Products Co. Ltd, Shanghai 200040, China
| | - Xiaojia Hu
- Shanghai Nature's Sunshine Health Products Co. Ltd, Shanghai 200040, China
| | - Xueli Chen
- Center for Biomedical-photonics and Molecular Imaging, Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xidian University, Xi'an, Shaanxi 710126, China
- Innovation Center for Advanced Medical Imaging and Intelligent Medicine, Guangzhou Institute of Technology, Xidian University, Guangzhou, Guangdong 510555, China
| |
Collapse
|
13
|
Zhang L, Meng S, Liu Y, Han F, Xu T, Zhao Z, Li Z. Advances in and Perspectives on Transgenic Technology and CRISPR-Cas9 Gene Editing in Broccoli. Genes (Basel) 2024; 15:668. [PMID: 38927604 PMCID: PMC11203320 DOI: 10.3390/genes15060668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024] Open
Abstract
Broccoli, a popular international Brassica oleracea crop, is an important export vegetable in China. Broccoli is not only rich in protein, vitamins, and minerals but also has anticancer and antiviral activities. Recently, an Agrobacterium-mediated transformation system has been established and optimized in broccoli, and transgenic transformation and CRISPR-Cas9 gene editing techniques have been applied to improve broccoli quality, postharvest shelf life, glucoraphanin accumulation, and disease and stress resistance, among other factors. The construction and application of genetic transformation technology systems have led to rapid development in broccoli worldwide, which is also good for functional gene identification of some potential traits in broccoli. This review comprehensively summarizes the progress in transgenic technology and CRISPR-Cas9 gene editing for broccoli over the past four decades. Moreover, it explores the potential for future integration of digital and smart technologies into genetic transformation processes, thus demonstrating the promise of even more sophisticated and targeted crop improvements. As the field continues to evolve, these innovations are expected to play a pivotal role in the sustainable production of broccoli and the enhancement of its nutritional and health benefits.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.Z.); (S.M.); (Y.L.); (F.H.); (T.X.)
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Sufang Meng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.Z.); (S.M.); (Y.L.); (F.H.); (T.X.)
| | - Yumei Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.Z.); (S.M.); (Y.L.); (F.H.); (T.X.)
| | - Fengqing Han
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.Z.); (S.M.); (Y.L.); (F.H.); (T.X.)
| | - Tiemin Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.Z.); (S.M.); (Y.L.); (F.H.); (T.X.)
- Shouguang R&D Center of Vegetables, CAAS, Shouguang 262700, China;
| | - Zhiwei Zhao
- Shouguang R&D Center of Vegetables, CAAS, Shouguang 262700, China;
| | - Zhansheng Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.Z.); (S.M.); (Y.L.); (F.H.); (T.X.)
- Shouguang R&D Center of Vegetables, CAAS, Shouguang 262700, China;
| |
Collapse
|
14
|
Navarro-Hortal M, Romero-Márquez JM, López-Bascón MA, Sánchez-González C, Xiao J, Sumalla-Cano S, Battino M, Forbes-Hernández TY, Quiles JL. In Vitro and In Vivo Insights into a Broccoli Byproduct as a Healthy Ingredient for the Management of Alzheimer's Disease and Aging through Redox Biology. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5197-5211. [PMID: 38477041 PMCID: PMC10941188 DOI: 10.1021/acs.jafc.3c05609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/15/2024] [Accepted: 02/07/2024] [Indexed: 03/14/2024]
Abstract
Broccoli has gained popularity as a highly consumed vegetable due to its nutritional and health properties. This study aimed to evaluate the composition profile and the antioxidant capacity of a hydrophilic extract derived from broccoli byproducts, as well as its influence on redox biology, Alzheimer's disease markers, and aging in the Caenorhabditis elegans model. The presence of glucosinolate was observed and antioxidant capacity was demonstrated both in vitro and in vivo. The in vitro acetylcholinesterase inhibitory capacity was quantified, and the treatment ameliorated the amyloid-β- and tau-induced proteotoxicity in transgenic strains via SOD-3 and SKN-1, respectively, and HSP-16.2 for both parameters. Furthermore, a preliminary study on aging indicated that the extract effectively reduced reactive oxygen species levels in aged worms and extended their lifespan. Utilizing broccoli byproducts for nutraceutical or functional foods could manage vegetable processing waste, enhancing productivity and sustainability while providing significant health benefits.
Collapse
Affiliation(s)
- María
D. Navarro-Hortal
- Department
of Physiology, Institute of Nutrition and
Food Technology “José Mataix Verdú”, Biomedical
Research Centre, University of Granada, 18016 Armilla, Spain
| | - Jose M. Romero-Márquez
- Department
of Physiology, Institute of Nutrition and
Food Technology “José Mataix Verdú”, Biomedical
Research Centre, University of Granada, 18016 Armilla, Spain
| | - M. Asunción López-Bascón
- Research
and Development Functional Food Centre (CIDAF), Health Science Technological Park, Avenida del Conocimiento 37, 18016 Granada, Spain
| | - Cristina Sánchez-González
- Department
of Physiology, Institute of Nutrition and
Food Technology “José Mataix Verdú”, Biomedical
Research Centre, University of Granada, 18016 Armilla, Spain
- Sport
and Health Research Centre, University of
Granada, C/Menéndez
Pelayo 32, 18016 Granada, Spain
| | - Jianbo Xiao
- Department
of Analytical Chemistry and Food Science, Faculty of Food Science
and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain
| | - Sandra Sumalla-Cano
- Research
Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres, 21, 39011 Santander, Spain
- Department
of Health, Nutrition and Sport, Iberoamerican
International University, Campeche 24560, Mexico
| | - Maurizio Battino
- Research
Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres, 21, 39011 Santander, Spain
- Department
of Clinical Sciences, Polytechnic University
of Marche, 60131 Ancona, Italy
- International
Joint Research Laboratory of Intelligent Agriculture and Agri-Products
Processing, Jiangsu University, Zhenjiang 212013, China
| | - Tamara Y. Forbes-Hernández
- Department
of Physiology, Institute of Nutrition and
Food Technology “José Mataix Verdú”, Biomedical
Research Centre, University of Granada, 18016 Armilla, Spain
| | - José L. Quiles
- Department
of Physiology, Institute of Nutrition and
Food Technology “José Mataix Verdú”, Biomedical
Research Centre, University of Granada, 18016 Armilla, Spain
- Research
and Development Functional Food Centre (CIDAF), Health Science Technological Park, Avenida del Conocimiento 37, 18016 Granada, Spain
- Research
Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres, 21, 39011 Santander, Spain
| |
Collapse
|
15
|
Mantzourani C, Mesimeri ID, Kokotou MG. Free Fatty Acid Determination in Broccoli Tissues Using Liquid Chromatography-High-Resolution Mass Spectrometry. Molecules 2024; 29:754. [PMID: 38398506 PMCID: PMC10891939 DOI: 10.3390/molecules29040754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/23/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Broccoli (Brassica oleracea L. var. italica Plenck) is a widely consumed vegetable, very popular due to its various nutritional and bioactive components. Since studies on the lipid components of broccoli have been limited so far, the aim of the present work was the study of free fatty acids (FFAs) present in different broccoli parts, aerial and underground. The direct determination of twenty-four FFAs in broccoli tissues (roots, leaves, and florets) was carried out, using a liquid chromatography-high-resolution mass spectrometry (LC-HRMS) method in a 10 min single run. Linolenic acid was found to be the most abundant FFA in all different broccoli parts in quantities ranging from 0.76 to 1.46 mg/g, followed by palmitic acid (0.17-0.22 mg/g) and linoleic acid (0.06-0.08 mg/g). To extend our knowledge on broccoli's bioactive components, for the first time, the existence of bioactive oxidized fatty acids, namely hydroxy and oxo fatty acids, was explored in broccoli tissues adopting an HRMS-based lipidomics approach. 16- and 2-hydroxypalmitic acids were detected in all parts of broccoli studied, while ricinoleic acid was detected for the first time as a component of broccoli.
Collapse
Affiliation(s)
- Christiana Mantzourani
- Laboratory of Chemistry, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece
| | - Irene-Dimitra Mesimeri
- Laboratory of Chemistry, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece
| | - Maroula G Kokotou
- Laboratory of Chemistry, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece
| |
Collapse
|
16
|
Kręcisz M, Stępień B, Łyczko J, Kamiński P. The Influence of the Vacuum Impregnation, Beetroot Juice, and Various Drying Methods on Selected Properties of Courgette and Broccoli Snacks. Foods 2023; 12:4294. [PMID: 38231696 DOI: 10.3390/foods12234294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 01/19/2024] Open
Abstract
The drying process is used in the food industry to extend the shelf life of fruits and vegetables without the use of preservatives. As quality, visual, and aroma characteristics are important determinants of consumer interest, they play a key role in the development of new foods. In the present study, vacuum impregnation (VI) was used prior to vacuum drying (VD) and freeze drying (FD) of courgette and broccoli. Organic beet juice was used to produce the novel snacks. The study showed that the use of vacuum impregnation significantly affected the VOCs profile (volatile organic compounds profile), in which the following compounds were found: viz: 2-(E)-hexen-1-ol, 2-(Z)-hexen-1-ol and aceto-phenone. VI caused a decrease in volumetric gel index (VGI), drying shrinkage (S), water activity (AW), decreased color saturation (∆C), and increased dry matter content (DM). All these properties testify to the positive effect of the pretreatment used. The drying methods used had a significant effect on the properties of the dried vegetables. The dries obtained by the FD method showed higher density and water activity, as well as better preserved color (lower ∆E) and higher VOCs, so it is considered that freeze drying is a suitable method for obtaining novel courgette and broccoli snacks.
Collapse
Affiliation(s)
- Magdalena Kręcisz
- Institute of Agricultural Engineering, Wroclaw University of Environmental and Life Sciences, Chełmońskiego Street 37a, 51-630 Wrocław, Poland
| | - Bogdan Stępień
- Institute of Agricultural Engineering, Wroclaw University of Environmental and Life Sciences, Chełmońskiego Street 37a, 51-630 Wrocław, Poland
| | - Jacek Łyczko
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
| | - Piotr Kamiński
- Institute of Agricultural Engineering, Wroclaw University of Environmental and Life Sciences, Chełmońskiego Street 37a, 51-630 Wrocław, Poland
| |
Collapse
|