1
|
Steiner LX, Schmittmann L, Rahn T, Lachnit T, Jahn MT, Hentschel U. Phage-induced disturbance of a marine sponge microbiome. ENVIRONMENTAL MICROBIOME 2024; 19:97. [PMID: 39593141 PMCID: PMC11590407 DOI: 10.1186/s40793-024-00637-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024]
Abstract
BACKGROUND Bacteriophages are known modulators of community composition and activity in environmental and host-associated microbiomes. However, the impact single phages have on bacterial community dynamics under viral predation, the extent and duration of their effect, are not completely understood. In this study, we combine morphological and genomic characterization of a novel marine phage, isolated from the Baltic sponge Halichondria panicea, and report on first attempts of controlled phage-manipulation of natural sponge-associated microbiomes. RESULTS We used culture-based and culture-independent (16S rRNA gene amplicon sequencing) methods to investigate bacterial community composition and dynamics in sponge microbiomes with and without the addition of phages. Upon application of a novel Maribacter specialist phage Panino under controlled conditions, we were able to detect community-wide shifts in the microbiome composition and load after 72 h. While bacterial community composition became more dissimilar over time in the presence of phages, species evenness and richness were maintained. Upon phage exposure, we observed the loss of several low-abundance constituent taxa of the resident microbiota, while other originally underrepresented taxa increased. Virulent phages likely induce community-wide disturbances, evident in changes in the total sponge microbial profile by specific elimination of constituent taxa, which leads to an increase in bacterial abundance of opportunistic taxa, such as the genera Vibrio, Pseudoalteromonas, and Photobacterium. CONCLUSIONS Our findings suggest that sponge microbiome diversity and, by extension, its resilience depend on the maintenance of resident bacterial community members, irrespective of their abundance. Phage-induced disturbances can significantly alter community structure by promoting the growth of opportunistic bacteria like Vibrio and shifting the microbiome to a dysbiotic state. These insights highlight the role of bacteriophages in shaping microbiome dynamics and underscore the potential for phage application in managing bacterial community composition in marine host-associated environments.
Collapse
Affiliation(s)
- Leon X Steiner
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Marine Ecology, RU Marine Symbioses, Kiel, Germany.
| | - Lara Schmittmann
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD1 Ocean Circulation and Climate Dynamics, RU Ocean Dynamics, Kiel, Germany
| | - Tanja Rahn
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Marine Ecology, RU Marine Symbioses, Kiel, Germany
| | - Tim Lachnit
- Zoological Institute, Christian-Albrechts Universität Kiel, Kiel, Germany
| | - Martin T Jahn
- Department of Biology, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Ute Hentschel
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Marine Ecology, RU Marine Symbioses, Kiel, Germany.
- Christian-Albrechts-Universität Kiel, Kiel, Germany.
| |
Collapse
|
2
|
Braik A, Serna-Duque JA, Nefzi A, Aroui S, Esteban MÁ. Potential therapeutic use of dermaseptin S4 from the frog Phyllomedusa sauvagii and its derivatives against bacterial pathogens in fish. J Appl Microbiol 2024; 135:lxae222. [PMID: 39187398 DOI: 10.1093/jambio/lxae222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/29/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
AIM Dermaseptins are one of the main families of antimicrobial peptides (AMPs) derived from the skin secretions of Hylidae frogs. Among them, dermaseptin S4 (DS4) is characterized by its broad-spectrum of activity against bacteria, protozoa, and fungi. In this study, the physicochemical properties of the native peptide DS4 (1-28) and two derivatives [DS4 (1-28)a and DS4 (1-26)a] isolated from the skin of the frog Phyllomedusa sauvagii were investigated and their antimicrobial properties against two marine pathogenic bacteria (Vibrio harveyi and Vibrio anguillarum) were examined. METHODS AND RESULTS The results indicate that the peptide DS4 (1-26)a has high-antibacterial activity against the tested strains and low-hemolytic activity (<30% lysis at the highest tested concentration of 100 µg/mL) compared to the other two peptides tested. In addition, all three peptides affect the membrane and cell wall integrity of both pathogenic bacteria, causing leakage of cell contents, with DS4 (1-26)a having the most severe impact. These skills were corroborated by transmission electron microscopy and by the variation of cations in their binding sites due to the effects caused by the AMPs. CONCLUSIONS These results suggest that DS4 and its derivatives, in particular the truncated and amidated peptide DS4 (1-26)a could be effective in the treatment of infections caused by these marine pathogenic bacteria. Future studies are required to validate the use of DS4 in vivo for the prevention of bacterial diseases in fish.
Collapse
Affiliation(s)
- Afef Braik
- Research Unit of Analysis and Process Applied on The Environment- APAE (UR17ES32) Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Monastir 5019, Tunisia
| | - John Alberto Serna-Duque
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Immunobiology for Aquaculture Group, Murcia 30100, Spain
| | - Adel Nefzi
- Florida International University, Port St. Lucie, FL 34987, USA
| | - Sonia Aroui
- Laboratory of Biochemistry, Research Unit: UR 12ES08 "Cell Signaling and Pathologies", Faculty of Medicine of Monastir, University of Monastir, Monastir 5019, Tunisia
| | - María Ángeles Esteban
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Immunobiology for Aquaculture Group, Murcia 30100, Spain
| |
Collapse
|
3
|
Kumar S, Lekshmi M, Stephen J, Ortiz-Alegria A, Ayitah M, Varela MF. Dynamics of efflux pumps in antimicrobial resistance, persistence, and community living of Vibrionaceae. Arch Microbiol 2023; 206:7. [PMID: 38017151 DOI: 10.1007/s00203-023-03731-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/30/2023]
Abstract
The marine bacteria of the Vibrionaceae family are significant from the point of view of their role in the marine geochemical cycle, as well as symbionts and opportunistic pathogens of aquatic animals and humans. The well-known pathogens of this group, Vibrio cholerae, V. parahaemolyticus, and V. vulnificus, are responsible for significant morbidity and mortality associated with a range of infections from gastroenteritis to bacteremia acquired through the consumption of raw or undercooked seafood and exposure to seawater containing these pathogens. Although generally regarded as susceptible to commonly employed antibiotics, the antimicrobial resistance of Vibrio spp. has been on the rise in the last two decades, which has raised concern about future infections by these bacteria becoming increasingly challenging to treat. Diverse mechanisms of antimicrobial resistance have been discovered in pathogenic vibrios, the most important being the membrane efflux pumps, which contribute to antimicrobial resistance and their virulence, environmental fitness, and persistence through biofilm formation and quorum sensing. In this review, we discuss the evolution of antimicrobial resistance in pathogenic vibrios and some of the well-characterized efflux pumps' contributions to the physiology of antimicrobial resistance, host and environment survival, and their pathogenicity.
Collapse
Affiliation(s)
- Sanath Kumar
- QC Laboratory, Post-Harvest Technology, ICAR-Central Institute of Fisheries Education (CIFE), Mumbai, 400061, India
| | - Manjusha Lekshmi
- QC Laboratory, Post-Harvest Technology, ICAR-Central Institute of Fisheries Education (CIFE), Mumbai, 400061, India
| | - Jerusha Stephen
- QC Laboratory, Post-Harvest Technology, ICAR-Central Institute of Fisheries Education (CIFE), Mumbai, 400061, India
| | - Anely Ortiz-Alegria
- Department of Biology, Eastern New Mexico University, Station 33, Portales, NM, 88130, USA
| | - Matthew Ayitah
- Department of Biology, Eastern New Mexico University, Station 33, Portales, NM, 88130, USA
| | - Manuel F Varela
- Department of Biology, Eastern New Mexico University, Station 33, Portales, NM, 88130, USA.
| |
Collapse
|
4
|
Matos GM, Garcia-Teodoro B, Martins CP, Schmitt P, Guzmán F, de Freitas ACO, Stoco PH, Ferreira FA, Stadnik MJ, Robl D, Perazzolo LM, Rosa RD. Antimicrobial Spectrum of Activity and Mechanism of Action of Linear Alpha-Helical Peptides Inspired by Shrimp Anti-Lipopolysaccharide Factors. Biomolecules 2023; 13:biom13010150. [PMID: 36671535 PMCID: PMC9856130 DOI: 10.3390/biom13010150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Shrimp antilipopolysaccharide factors (ALFs) form a multifunctional and diverse family of antimicrobial host defense peptides (AMPs) composed of seven members (groups A to G), which differ in terms of their primary structure and biochemical properties. They are amphipathic peptides with two conserved cysteine residues stabilizing a central β-hairpin that is understood to be the core region for their biological activities. In this study, we synthetized three linear (cysteine-free) peptides based on the amino acid sequence of the central β-hairpin of the newly identified shrimp (Litopenaeus vannamei) ALFs from groups E to G. Unlike whole mature ALFs, the ALF-derived peptides exhibited an α-helix secondary structure. In vitro assays revealed that the synthetic peptides display a broad spectrum of activity against both Gram-positive and Gram-negative bacteria and fungi but not against the protozoan parasites Trypanosoma cruzi and Leishmania (L.) infantum. Remarkably, they displayed synergistic effects and showed the ability to permeabilize bacterial membranes, a mechanism of action of classical AMPs. Having shown low cytotoxicity to THP-1 human cells and being active against clinical multiresistant bacterial isolates, these nature-inspired peptides represent an interesting class of bioactive molecules with biotechnological potential for the development of novel therapeutics in medical sciences.
Collapse
Affiliation(s)
- Gabriel Machado Matos
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
- Correspondence: (G.M.M.); (R.D.R.); Tel.: +55-48-3721-6163 (R.D.R.)
| | - Beatriz Garcia-Teodoro
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Camila Pimentel Martins
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Paulina Schmitt
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile
| | - Fanny Guzmán
- Núcleo Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile
| | - Ana Claudia Oliveira de Freitas
- Laboratory of Protozoology, Department of Microbiology, Parasitology and Immunology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Patricia Hermes Stoco
- Laboratory of Protozoology, Department of Microbiology, Parasitology and Immunology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Fabienne Antunes Ferreira
- Laboratory of Molecular Genetics of Bacteria, Department of Microbiology, Parasitology and Immunology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Marciel João Stadnik
- Laboratory of Plant Pathology, Department of Plant Sciences, Federal University of Santa Catarina, Florianópolis 88034-001, Brazil
| | - Diogo Robl
- Laboratory of Microorganisms and Biotechnological Processes, Department of Microbiology, Parasitology and Immunology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Luciane Maria Perazzolo
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Rafael Diego Rosa
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
- Correspondence: (G.M.M.); (R.D.R.); Tel.: +55-48-3721-6163 (R.D.R.)
| |
Collapse
|
5
|
Giacomucci S, Mathieu-Denoncourt A, Vincent AT, Jannadi H, Duperthuy M. Experimental evolution of Vibrio cholerae identifies hypervesiculation as a way to increase motility in the presence of polymyxin B. Front Microbiol 2022; 13:932165. [PMID: 36090081 PMCID: PMC9454949 DOI: 10.3389/fmicb.2022.932165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/27/2022] [Indexed: 11/28/2022] Open
Abstract
Vibrio cholerae includes strains responsible for the cholera disease and is a natural inhabitant of aquatic environments. V. cholerae possesses a unique polar flagellum essential for motility, adhesion, and biofilm formation. In a previous study, we showed that motility and biofilm formation are altered in the presence of subinhibitory concentrations of polymyxin B in V. cholerae O1 and O139. In this study, we performed an experimental evolution to identify the genes restoring the motility in the presence of a subinhibitory concentration of polymyxin B. Mutations in five genes have been identified in three variants derived from two different parental strains A1552 and MO10: ihfA that encodes a subunit of the integration host factor (IHF), vacJ (mlaA) and mlaF, two genes belonging to the maintenance of the lipid asymmetry (Mla) pathway, dacB that encodes a penicillin-binding protein (PBP4) and involved in cell wall synthesis, and ccmH that encodes a c-type cytochrome maturation protein. We further demonstrated that the variants derived from MO10 containing mutations in vacJ, mlaF, and dacB secrete more and larger membrane vesicles that titer the polymyxin B, which increases the bacterial survival and is expected to limit its impact on the bacterial envelope and participate in the flagellum’s retention and motility.
Collapse
Affiliation(s)
- Sean Giacomucci
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | | | - Antony T. Vincent
- Département des Sciences Animales, Faculté des Sciences de l’Agriculture et de l’Alimentation, Université Laval, Québec, QC, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
| | - Hanen Jannadi
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Marylise Duperthuy
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
- *Correspondence: Marylise Duperthuy,
| |
Collapse
|
6
|
Stephen J, Lekshmi M, Ammini P, Kumar SH, Varela MF. Membrane Efflux Pumps of Pathogenic Vibrio Species: Role in Antimicrobial Resistance and Virulence. Microorganisms 2022; 10:microorganisms10020382. [PMID: 35208837 PMCID: PMC8875612 DOI: 10.3390/microorganisms10020382] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/15/2022] [Accepted: 01/23/2022] [Indexed: 02/06/2023] Open
Abstract
Infectious diseases caused by bacterial species of the Vibrio genus have had considerable significance upon human health for centuries. V. cholerae is the causative microbial agent of cholera, a severe ailment characterized by profuse watery diarrhea, a condition associated with epidemics, and seven great historical pandemics. V. parahaemolyticus causes wound infection and watery diarrhea, while V. vulnificus can cause wound infections and septicemia. Species of the Vibrio genus with resistance to multiple antimicrobials have been a significant health concern for several decades. Mechanisms of antimicrobial resistance machinery in Vibrio spp. include biofilm formation, drug inactivation, target protection, antimicrobial permeability reduction, and active antimicrobial efflux. Integral membrane-bound active antimicrobial efflux pump systems include primary and secondary transporters, members of which belong to closely related protein superfamilies. The RND (resistance-nodulation-division) pumps, the MFS (major facilitator superfamily) transporters, and the ABC superfamily of efflux pumps constitute significant drug transporters for investigation. In this review, we explore these antimicrobial transport systems in the context of Vibrio spp. pathogenesis and virulence.
Collapse
Affiliation(s)
- Jerusha Stephen
- QC Laboratory, Harvest and Post-Harvest Technology Division, Central Institute of Fisheries Education (CIFE), Seven Bungalows, Versova, Andheri (W), Mumbai 400061, India; (J.S.); (M.L.); (S.H.K.)
| | - Manjusha Lekshmi
- QC Laboratory, Harvest and Post-Harvest Technology Division, Central Institute of Fisheries Education (CIFE), Seven Bungalows, Versova, Andheri (W), Mumbai 400061, India; (J.S.); (M.L.); (S.H.K.)
| | - Parvathi Ammini
- Department of Biotechnology, Cochin University of Science and Technology, Kochi 682022, India;
| | - Sanath H. Kumar
- QC Laboratory, Harvest and Post-Harvest Technology Division, Central Institute of Fisheries Education (CIFE), Seven Bungalows, Versova, Andheri (W), Mumbai 400061, India; (J.S.); (M.L.); (S.H.K.)
| | - Manuel F. Varela
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA
- Correspondence:
| |
Collapse
|
7
|
Mathieu-Denoncourt A, Duperthuy M. Secretome analysis reveals a role of subinhibitory concentrations of polymyxin B in the survival of Vibrio cholerae mediated by the type VI secretion system. Environ Microbiol 2021; 24:1133-1149. [PMID: 34490971 DOI: 10.1111/1462-2920.15762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/04/2021] [Indexed: 11/30/2022]
Abstract
Antimicrobials are commonly used in prevention of infections including in aquaculture, agriculture and medicine. Subinhibitory concentrations of antimicrobial peptides can modulate resistance, virulence and persistence effectors in Gram-negative pathogens. In this study, we investigated the effect of subinhibitory concentrations of polymyxin B (PmB) on the secretome of Vibrio cholerae, a natural inhabitant of aquatic environments and the pathogen responsible for the cholera disease. Our proteomic approach revealed that the abundance of many extracellular proteins is affected by PmB and some of them are detected only either in the presence or in the absence of PmB. The type VI secretion system (T6SS) secreted hemolysin-coregulated protein (Hcp) displayed an increased abundance in the presence of PmB. Hcp is also more abundant in the bacterial cells in the presence of PmB and hcp expression is upregulated upon PmB supplementation. No effect of the T6SS on antimicrobial resistance was observed. Conversely, PmB increases the T6SS-dependent cytotoxicity of V. cholerae towards the amoeba Dictyostelium discoideum and its ability to compete with Escherichia coli.
Collapse
Affiliation(s)
- Annabelle Mathieu-Denoncourt
- Department de Microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montreal, Montreal, Quebec, H3T 1J4, Canada
| | - Marylise Duperthuy
- Department de Microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montreal, Montreal, Quebec, H3T 1J4, Canada
| |
Collapse
|
8
|
Panta PR, Doerrler WT. A link between pH homeostasis and colistin resistance in bacteria. Sci Rep 2021; 11:13230. [PMID: 34168215 PMCID: PMC8225787 DOI: 10.1038/s41598-021-92718-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/14/2021] [Indexed: 12/15/2022] Open
Abstract
Colistin resistance is complex and multifactorial. DbcA is an inner membrane protein belonging to the DedA superfamily required for maintaining extreme colistin resistance of Burkholderia thailandensis. The molecular mechanisms behind this remain unclear. Here, we report that ∆dbcA displays alkaline pH/bicarbonate sensitivity and propose a role of DbcA in extreme colistin resistance of B. thailandensis by maintaining cytoplasmic pH homeostasis. We found that alkaline pH or presence of sodium bicarbonate displays a synergistic effect with colistin against not only extremely colistin resistant species like B. thailandensis and Serratia marcescens, but also a majority of Gram-negative and Gram-positive bacteria tested, suggesting a link between cytoplasmic pH homeostasis and colistin resistance across species. We found that lowering the level of oxygen in the growth media or supplementation of fermentable sugars such as glucose not only alleviated alkaline pH stress, but also increased colistin resistance in most bacteria tested, likely by avoiding cytoplasmic alkalinization. Our observations suggest a previously unreported link between pH, oxygen, and colistin resistance. We propose that maintaining optimal cytoplasmic pH is required for colistin resistance in a majority of bacterial species, consistent with the emerging link between cytoplasmic pH homeostasis and antibiotic resistance.
Collapse
Affiliation(s)
- Pradip R Panta
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - William T Doerrler
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
9
|
Liu Y, Shi J, Tong Z, Jia Y, Yang B, Wang Z. The revitalization of antimicrobial peptides in the resistance era. Pharmacol Res 2020; 163:105276. [PMID: 33161137 DOI: 10.1016/j.phrs.2020.105276] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 01/14/2023]
Abstract
The antibiotic resistance crisis is becoming incredibly thorny due to the indiscriminate employment of antibiotics in agriculture and aquaculture, such as growth promoters, and the emergence of bacteria that are capable of enduring antibiotic treatment in an endless stream. Hence, to reverse this situation, vigorous efforts should be made in the process of identifying other alternative strategies with a lower frequency of resistance. Antimicrobial peptides (AMPs), originated from host defense peptides, are generally produced by a variety of organisms as defensive weapons to protect the host from other pathogenic bacteria. The unique ability of AMPs to control bacterial infections, as well as low propensity to acquire resistance, provides the basis for it to become one of the promising antibacterial substances. Herein, we present new insights into the biological functions, structural properties, distinct mechanisms of action of AMPs and their resistance determinants. Besides, we separately discuss natural and synthetic AMPs, including their source, screening pathway and antibacterial activity. Lastly, challenges and perspectives to identify novel potent AMPs are highlighted, which will expand our understanding of the chemical space of antimicrobials and provide a pipeline for discovering the next-generation of AMPs.
Collapse
Affiliation(s)
- Yuan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, 225009, China.
| | - Jingru Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Ziwen Tong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Yuqian Jia
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Bingqing Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
10
|
Destoumieux-Garzón D, Canesi L, Oyanedel D, Travers MA, Charrière GM, Pruzzo C, Vezzulli L. Vibrio-bivalve interactions in health and disease. Environ Microbiol 2020; 22:4323-4341. [PMID: 32363732 DOI: 10.1111/1462-2920.15055] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022]
Abstract
In the marine environment, bivalve mollusks constitute habitats for bacteria of the Vibrionaceae family. Vibrios belong to the microbiota of healthy oysters and mussels, which have the ability to concentrate bacteria in their tissues and body fluids, including the hemolymph. Remarkably, these important aquaculture species respond differently to infectious diseases. While oysters are the subject of recurrent mass mortalities at different life stages, mussels appear rather resistant to infections. Thus, Vibrio species are associated with the main diseases affecting the worldwide oyster production. Here, we review the current knowledge on Vibrio-bivalve interaction in oysters (Crassostrea sp.) and mussels (Mytilus sp.). We discuss the transient versus stable associations of vibrios with their bivalve hosts as well as technical issues limiting the monitoring of these bacteria in bivalve health and disease. Based on the current knowledge of oyster/mussel immunity and their interactions with Vibrio species pathogenic for oyster, we discuss how differences in immune effectors could contribute to the higher resistance of mussels to infections. Finally, we review the multiple strategies evolved by pathogenic vibrios to circumvent the potent immune defences of bivalves and how key virulence mechanisms could have been positively or negatively selected in the marine environment through interactions with predators.
Collapse
Affiliation(s)
| | - Laura Canesi
- DISTAV, Department of Earth, Environment and Life Sciences, University of Genoa, Genoa, Italy
| | - Daniel Oyanedel
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | - Marie-Agnès Travers
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | - Guillaume M Charrière
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | - Carla Pruzzo
- DISTAV, Department of Earth, Environment and Life Sciences, University of Genoa, Genoa, Italy
| | - Luigi Vezzulli
- DISTAV, Department of Earth, Environment and Life Sciences, University of Genoa, Genoa, Italy
| |
Collapse
|
11
|
Giacomucci S, Cros CDN, Perron X, Mathieu-Denoncourt A, Duperthuy M. Flagella-dependent inhibition of biofilm formation by sub-inhibitory concentration of polymyxin B in Vibrio cholerae. PLoS One 2019; 14:e0221431. [PMID: 31430343 PMCID: PMC6701800 DOI: 10.1371/journal.pone.0221431] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/06/2019] [Indexed: 01/02/2023] Open
Abstract
Biofilm formation is a common strategy used by bacteria in order to survive and persist in the environment. In Vibrio cholerae (V. cholerae), a Gram-negative pathogen responsible for the cholera disease, biofilm-like aggregates are important for the pathogenesis and disease transmission. Biofilm formation is initiated by the attachment of the bacteria to a surface, followed by maturation stages involving the formation of a biofilm matrix. In V. cholerae, flagella are essential for the initial step of biofilm formation, allowing the bacteria to swim and to detect a surface. In this study, we explored the effect of polymyxin B (PmB), a cationic bacterial antimicrobial peptide, on biofilm formation in pathogenic V. cholerae strains belonging to the O1 and O139 serotypes. We found that sub-inhibitory concentration of PmB induces a reduction of the biofilm formation by V. cholerae O1 and O139. Experiment on preformed biofilm demonstrated that the biofilm formation inhibition occurs at the initial step of biofilm formation, where the flagella are essential. We further characterize the effect of PmB on V. cholerae flagellation. Our results demonstrate that the flagellin expression is not reduced in presence of sub-inhibitory concentration of PmB. However, a decrease of the abundance of flagellin associated with the bacterial cells together with an increase in the secretome was observed. Electron microscopy observations also suggest that the abundance of aflagellated bacteria increases upon PmB supplementation. Finally, in agreement with the effect on the flagellation, a reduction of the bacterial motility is observed. Altogether, our results suggest that the PmB affect V. cholerae flagella resulting in a decrease of the motility and a compromised ability to form biofilm.
Collapse
Affiliation(s)
- Sean Giacomucci
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Succ. Centre-ville, Montréal, Québec, Canada
| | - Candice Danabé-Nieto Cros
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Succ. Centre-ville, Montréal, Québec, Canada
| | - Xavier Perron
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Succ. Centre-ville, Montréal, Québec, Canada
| | - Annabelle Mathieu-Denoncourt
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Succ. Centre-ville, Montréal, Québec, Canada
| | - Marylise Duperthuy
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Succ. Centre-ville, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
12
|
DeAngelis CM, Saul-McBeth J, Matson JS. Vibrio responses to extracytoplasmic stress. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:511-521. [PMID: 30246498 DOI: 10.1111/1758-2229.12693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 06/08/2023]
Abstract
A critical factor for bacterial survival in any environment is the ability to sense and respond appropriately to any stresses encountered. This is especially important for bacteria that inhabit environments that are constantly changing, or for those that inhabit more than one biological niche. Vibrio species are unique in that they are aquatic organisms, and must adapt to ever-changing temperatures, salinity levels and nutrient concentrations. In addition, many species of Vibrio colonize other organisms, and must also deal with components of the host immune response. Vibrio infections of humans and other organisms have become more common in recent years, due to increasing water temperatures in many parts of the world. Therefore, understanding how these ubiquitous marine bacteria adapt to their changing environments is of importance. In this review, we discuss some of the ways that Vibrios sense and respond to the variety of stresses that negatively affect the bacterial cell envelope. Specifically, we will focus on what is currently known about the σE response, the Cpx response and the contributions of OmpU to extracytoplasmic stress relief.
Collapse
Affiliation(s)
- Cara M DeAngelis
- Department of Medical Microbiology and Immunology, University of Toledo Medical School, Toledo, OH, USA
| | - Jessica Saul-McBeth
- Department of Medical Microbiology and Immunology, University of Toledo Medical School, Toledo, OH, USA
| | - Jyl S Matson
- Department of Medical Microbiology and Immunology, University of Toledo Medical School, Toledo, OH, USA
| |
Collapse
|
13
|
Herrera CM, Henderson JC, Crofts AA, Trent MS. Novel coordination of lipopolysaccharide modifications in Vibrio cholerae promotes CAMP resistance. Mol Microbiol 2017; 106:582-596. [PMID: 28906060 DOI: 10.1111/mmi.13835] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2017] [Indexed: 01/02/2023]
Abstract
In the environment and during infection, the human intestinal pathogen Vibrio cholerae must overcome noxious compounds that damage the bacterial outer membrane. The El Tor and classical biotypes of O1 V. cholerae show striking differences in their resistance to membrane disrupting cationic antimicrobial peptides (CAMPs), such as polymyxins. The classical biotype is susceptible to CAMPs, but current pandemic El Tor biotype isolates gain CAMP resistance by altering the net charge of their cell surface through glycine modification of lipid A. Here we report a second lipid A modification mechanism that only functions in the V. cholerae El Tor biotype. We identify a functional EptA ortholog responsible for the transfer of the amino-residue phosphoethanolamine (pEtN) to the lipid A of V. cholerae El Tor that is not functional in the classical biotype. We previously reported that mildly acidic growth conditions (pH 5.8) downregulate expression of genes encoding the glycine modification machinery. In this report, growth at pH 5.8 increases expression of eptA with concomitant pEtN modification suggesting coordinated regulation of these LPS modification systems. Similarly, efficient pEtN lipid A substitution is seen in the absence of lipid A glycinylation. We further demonstrate EptA orthologs from non-cholerae Vibrio species are functional.
Collapse
Affiliation(s)
- Carmen M Herrera
- Department of Infectious Diseases, Center for Vaccines and Immunology, University of Georgia, College of Veterinary Medicine, Athens, GA 30602, USA
| | - Jeremy C Henderson
- Department of Infectious Diseases, Center for Vaccines and Immunology, University of Georgia, College of Veterinary Medicine, Athens, GA 30602, USA
| | - Alexander A Crofts
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, TX 78712, USA
| | - M Stephen Trent
- Department of Infectious Diseases, Center for Vaccines and Immunology, University of Georgia, College of Veterinary Medicine, Athens, GA 30602, USA
| |
Collapse
|
14
|
Destoumieux-Garzón D, Rosa RD, Schmitt P, Barreto C, Vidal-Dupiol J, Mitta G, Gueguen Y, Bachère E. Antimicrobial peptides in marine invertebrate health and disease. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0300. [PMID: 27160602 DOI: 10.1098/rstb.2015.0300] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2016] [Indexed: 12/11/2022] Open
Abstract
Aquaculture contributes more than one-third of the animal protein from marine sources worldwide. A significant proportion of aquaculture products are derived from marine protostomes that are commonly referred to as 'marine invertebrates'. Among them, penaeid shrimp (Ecdysozosoa, Arthropoda) and bivalve molluscs (Lophotrochozoa, Mollusca) are economically important. Mass rearing of arthropods and molluscs causes problems with pathogens in aquatic ecosystems that are exploited by humans. Remarkably, species of corals (Cnidaria) living in non-exploited ecosystems also suffer from devastating infectious diseases that display intriguing similarities with those affecting farmed animals. Infectious diseases affecting wild and farmed animals that are present in marine environments are predicted to increase in the future. This paper summarizes the role of the main pathogens and their interaction with host immunity, with a specific focus on antimicrobial peptides (AMPs) and pathogen resistance against AMPs. We provide a detailed review of penaeid shrimp AMPs and their role at the interface between the host and its resident/pathogenic microbiota. We also briefly describe the relevance of marine invertebrate AMPs in an applied context.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'.
Collapse
Affiliation(s)
- Delphine Destoumieux-Garzón
- CNRS, Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France Ifremer, Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France UPVD, Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France
| | - Rafael Diego Rosa
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil
| | - Paulina Schmitt
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, 2373223 Valparaíso, Chile
| | - Cairé Barreto
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil
| | - Jeremie Vidal-Dupiol
- Ifremer, UMR 241 EIO, LabexCorail, BP 7004, 98719 Taravao, Tahiti, French Polynesia
| | - Guillaume Mitta
- CNRS, Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France Ifremer, Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France UPVD, Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France
| | - Yannick Gueguen
- CNRS, Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France Ifremer, Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France UPVD, Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France
| | - Evelyne Bachère
- CNRS, Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France Ifremer, Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France UPVD, Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France
| |
Collapse
|
15
|
Myticalins: A Novel Multigenic Family of Linear, Cationic Antimicrobial Peptides from Marine Mussels (Mytilus spp.). Mar Drugs 2017. [DOI: 10.3390/md15080261 [doi link]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
16
|
Myticalins: A Novel Multigenic Family of Linear, Cationic Antimicrobial Peptides from Marine Mussels (Mytilus spp.). Mar Drugs 2017; 15:md15080261. [PMID: 28829401 PMCID: PMC5577615 DOI: 10.3390/md15080261] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/11/2017] [Accepted: 08/18/2017] [Indexed: 12/18/2022] Open
Abstract
The application of high-throughput sequencing technologies to non-model organisms has brought new opportunities for the identification of bioactive peptides from genomes and transcriptomes. From this point of view, marine invertebrates represent a potentially rich, yet largely unexplored resource for de novo discovery due to their adaptation to diverse challenging habitats. Bioinformatics analyses of available genomic and transcriptomic data allowed us to identify myticalins, a novel family of antimicrobial peptides (AMPs) from the mussel Mytilus galloprovincialis, and a similar family of AMPs from Modiolus spp., named modiocalins. Their coding sequence encompasses two conserved N-terminal (signal peptide) and C-terminal (propeptide) regions and a hypervariable central cationic region corresponding to the mature peptide. Myticalins are taxonomically restricted to Mytiloida and they can be classified into four subfamilies. These AMPs are subject to considerable interindividual sequence variability and possibly to presence/absence variation. Functional assays performed on selected members of this family indicate a remarkable tissue-specific expression (in gills) and broad spectrum of activity against both Gram-positive and Gram-negative bacteria. Overall, we present the first linear AMPs ever described in marine mussels and confirm the great potential of bioinformatics tools for the de novo discovery of bioactive peptides in non-model organisms.
Collapse
|
17
|
Myticalins: A Novel Multigenic Family of Linear, Cationic Antimicrobial Peptides from Marine Mussels (Mytilus spp.). Mar Drugs 2017. [PMID: 28829401 DOI: 10.3390/md15080261+[doi+link]] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The application of high-throughput sequencing technologies to non-model organisms has brought new opportunities for the identification of bioactive peptides from genomes and transcriptomes. From this point of view, marine invertebrates represent a potentially rich, yet largely unexplored resource for de novo discovery due to their adaptation to diverse challenging habitats. Bioinformatics analyses of available genomic and transcriptomic data allowed us to identify myticalins, a novel family of antimicrobial peptides (AMPs) from the mussel Mytilus galloprovincialis, and a similar family of AMPs from Modiolus spp., named modiocalins. Their coding sequence encompasses two conserved N-terminal (signal peptide) and C-terminal (propeptide) regions and a hypervariable central cationic region corresponding to the mature peptide. Myticalins are taxonomically restricted to Mytiloida and they can be classified into four subfamilies. These AMPs are subject to considerable interindividual sequence variability and possibly to presence/absence variation. Functional assays performed on selected members of this family indicate a remarkable tissue-specific expression (in gills) and broad spectrum of activity against both Gram-positive and Gram-negative bacteria. Overall, we present the first linear AMPs ever described in marine mussels and confirm the great potential of bioinformatics tools for the de novo discovery of bioactive peptides in non-model organisms.
Collapse
|
18
|
Le Roux F, Wegner KM, Baker-Austin C, Vezzulli L, Osorio CR, Amaro C, Ritchie JM, Defoirdt T, Destoumieux-Garzón D, Blokesch M, Mazel D, Jacq A, Cava F, Gram L, Wendling CC, Strauch E, Kirschner A, Huehn S. The emergence of Vibrio pathogens in Europe: ecology, evolution, and pathogenesis (Paris, 11-12th March 2015). Front Microbiol 2015; 6:830. [PMID: 26322036 PMCID: PMC4534830 DOI: 10.3389/fmicb.2015.00830] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/28/2015] [Indexed: 02/02/2023] Open
Abstract
Global change has caused a worldwide increase in reports of Vibrio-associated diseases with ecosystem-wide impacts on humans and marine animals. In Europe, higher prevalence of human infections followed regional climatic trends with outbreaks occurring during episodes of unusually warm weather. Similar patterns were also observed in Vibrio-associated diseases affecting marine organisms such as fish, bivalves and corals. Basic knowledge is still lacking on the ecology and evolutionary biology of these bacteria as well as on their virulence mechanisms. Current limitations in experimental systems to study infection and the lack of diagnostic tools still prevent a better understanding of Vibrio emergence. A major challenge is to foster cooperation between fundamental and applied research in order to investigate the consequences of pathogen emergence in natural Vibrio populations and answer federative questions that meet societal needs. Here we report the proceedings of the first European workshop dedicated to these specific goals of the Vibrio research community by connecting current knowledge to societal issues related to ocean health and food security.
Collapse
Affiliation(s)
- Frédérique Le Roux
- Unié Physiologie Fonctionnelle des Organismes Marins, Ifremer , Plouzané, France ; CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Universités, UPMC Paris 06 , Roscoff cedex, France
| | - K Mathias Wegner
- Coastal Ecology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research , List, Germany
| | | | - Luigi Vezzulli
- Department of Earth, Environmental and Life Sciences, University of Genoa , Genoa, Italy
| | - Carlos R Osorio
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela , Santiago de Compostela, Spain
| | - Carmen Amaro
- Estructura de Investigación Interdisciplinar en Biotecnología y Biomedicina, Department of Microbiology and Ecology, University of Valencia , Valencia, Spain
| | - Jennifer M Ritchie
- Faculty of Health and Medical Sciences, University of Surrey , Guildford, UK
| | - Tom Defoirdt
- UGent Aquaculture R&D Consortium, Ghent University , Ghent, Belgium
| | - Delphine Destoumieux-Garzón
- Interactions Hôtes-Pathogènes-Environnements, UMR 5244, CNRS, Ifremer, Université de Perpignan Via Domita, Université de Montpellier , Montpellier, France
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne , Lausanne, Switzerland
| | - Didier Mazel
- Département Génomes et Génétique, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Institut Pasteur , Paris, France
| | - Annick Jacq
- Institute for Integrative Biology of the Cell, CEA, CNRS, Université Paris-Sud , Orsay, France
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University , Umeå, Sweden
| | - Lone Gram
- Department of Systems Biology, Technical University of Denmark , Kongens Lyngby, Denmark
| | | | - Eckhard Strauch
- Federal Institute for Risk Assessment, National Reference Laboratory for Monitoring Bacteriological Contamination of Bivalve Molluscs , Berlin, Germany
| | - Alexander Kirschner
- Institute for Hygiene and Applied Immunology, Medical University of Vienna , Vienna, Austria
| | - Stephan Huehn
- Institute of Food Hygiene, Free University Berlin , Berlin, Germany
| |
Collapse
|
19
|
Sisavath N, Got P, Charrière GM, Destoumieux-Garzon D, Cottet H. Taking Advantage of Electric Field Induced Bacterial Aggregation for the Study of Interactions between Bacteria and Macromolecules by Capillary Electrophoresis. Anal Chem 2015; 87:6761-8. [PMID: 26086209 DOI: 10.1021/acs.analchem.5b00934] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The quantification of interaction stoichiometry and binding constant between bacteria (or other microorganism) and (macro)molecules remains a challenging issue for which only a few adapted methods are available. In this paper, a new methodology was developed for the determination of the interaction stoichiometry and binding constant between bacteria and (macro)molecules. The originality of this work is to take advantage of the bacterial aggregation phenomenon to directly quantify the free ligand concentration in equilibrated bacteria-ligand mixtures using frontal analysis continuous capillary electrophoresis. The described methodology does not require any sample preparation such as filtration step or centrifugation. It was applied to the study of interactions between Erwinia carotovora and different generations of dendrigraft poly-L-lysines leading to quantitative information (i.e., stoichiometry and binding site constant). High stoichiometries in the order of 10(6)-10(7) were determined between nanometric dendrimer-like ligands and the rod-shaped micrometric bacteria. The effect of the dendrimer generation on the binding constant and the stoichiometry is discussed. Stoichiometries were compared with those obtained by replacing the bacteria by polystyrene microbeads to demonstrate the internalization of the ligands inside the bacteria and the increase of the specific surface via the formation of vesicles.
Collapse
Affiliation(s)
- Nicolas Sisavath
- †Institut des Biomolécules Max Mousseron (IBMM, UMR 5247 CNRS, Université de Montpellier, Ecole Nationale Supérieure de Chimie de Montpellier), Place Eugène Bataillon, CC 1706, 34095 Montpellier, France
| | | | - Guillaume M Charrière
- §Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR 5244), CNRS, Ifremer, Université de Perpignan Via Domitia, Université de Montpellier, Place Eugène Bataillon, CC 80, 34095 Montpellier, France
| | - Delphine Destoumieux-Garzon
- §Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR 5244), CNRS, Ifremer, Université de Perpignan Via Domitia, Université de Montpellier, Place Eugène Bataillon, CC 80, 34095 Montpellier, France
| | - Hervé Cottet
- †Institut des Biomolécules Max Mousseron (IBMM, UMR 5247 CNRS, Université de Montpellier, Ecole Nationale Supérieure de Chimie de Montpellier), Place Eugène Bataillon, CC 1706, 34095 Montpellier, France
| |
Collapse
|