1
|
D'Accolti M, Soffritti I, Bini F, Mazziga E, Cason C, Comar M, Volta A, Bisi M, Fumagalli D, Mazzacane S, Caselli E. Shaping the subway microbiome through probiotic-based sanitation during the COVID-19 emergency: a pre-post case-control study. MICROBIOME 2023; 11:64. [PMID: 36991513 PMCID: PMC10060134 DOI: 10.1186/s40168-023-01512-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/07/2023] [Indexed: 05/11/2023]
Abstract
BACKGROUND The COVID-19 pandemic has highlighted the extent to which the public transportation environment, such as in subways, may be important for the transmission of potential pathogenic microbes among humans, with the possibility of rapidly impacting large numbers of people. For these reasons, sanitation procedures, including massive use of chemical disinfection, were mandatorily introduced during the emergency and remain in place. However, most chemical disinfectants have temporary action and a high environmental impact, potentially enhancing antimicrobial resistance (AMR) of the treated microbes. By contrast, a biological and eco-sustainable probiotic-based sanitation (PBS) procedure was recently shown to stably shape the microbiome of treated environments, providing effective and long-term control of pathogens and AMR spread in addition to activity against SARS-CoV-2, the causative agent of COVID-19. Our study aims to assess the applicability and impact of PBS compared with chemical disinfectants based on their effects on the surface microbiome of a subway environment. RESULTS The train microbiome was characterized by both culture-based and culture-independent molecular methods, including 16S rRNA NGS and real-time qPCR microarray, for profiling the train bacteriome and its resistome and to identify and quantify specific human pathogens. SARS-CoV-2 presence was also assessed in parallel using digital droplet PCR. The results showed a clear and significant decrease in bacterial and fungal pathogens (p < 0.001) as well as of SARS-CoV-2 presence (p < 0.01), in the PBS-treated train compared with the chemically disinfected control train. In addition, NGS profiling evidenced diverse clusters in the population of air vs. surface while demonstrating the specific action of PBS against pathogens rather than the entire train bacteriome. CONCLUSIONS The data presented here provide the first direct assessment of the impact of different sanitation procedures on the subway microbiome, allowing a better understanding of its composition and dynamics and showing that a biological sanitation approach may be highly effective in counteracting pathogens and AMR spread in our increasingly urbanized and interconnected environment. Video Abstract.
Collapse
Affiliation(s)
- Maria D'Accolti
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences, and LTTA, University of Ferrara, 44121, Ferrara, Italy
- CIAS Research Center, University of Ferrara, 44122, Ferrara, Italy
| | - Irene Soffritti
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences, and LTTA, University of Ferrara, 44121, Ferrara, Italy
- CIAS Research Center, University of Ferrara, 44122, Ferrara, Italy
| | - Francesca Bini
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences, and LTTA, University of Ferrara, 44121, Ferrara, Italy
- CIAS Research Center, University of Ferrara, 44122, Ferrara, Italy
| | - Eleonora Mazziga
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences, and LTTA, University of Ferrara, 44121, Ferrara, Italy
- CIAS Research Center, University of Ferrara, 44122, Ferrara, Italy
| | - Carolina Cason
- Department of Advanced Translational Microbiology, Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy
| | - Manola Comar
- Department of Advanced Translational Microbiology, Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Antonella Volta
- CIAS Research Center, University of Ferrara, 44122, Ferrara, Italy
| | - Matteo Bisi
- CIAS Research Center, University of Ferrara, 44122, Ferrara, Italy
| | - Daniele Fumagalli
- Facility Management Unit, Azienda Trasporti Milanesi S.P.A, 20121, Milan, Italy
| | - Sante Mazzacane
- CIAS Research Center, University of Ferrara, 44122, Ferrara, Italy
| | - Elisabetta Caselli
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences, and LTTA, University of Ferrara, 44121, Ferrara, Italy.
- CIAS Research Center, University of Ferrara, 44122, Ferrara, Italy.
| |
Collapse
|
2
|
Zimmerman T, Ibrahim SA. Quercetin Is a Novel Inhibitor of the Choline Kinase of Streptococcus pneumoniae. Antibiotics (Basel) 2022; 11:antibiotics11091272. [PMID: 36140052 PMCID: PMC9495829 DOI: 10.3390/antibiotics11091272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 12/05/2022] Open
Abstract
The effectiveness of current antimicrobial methods for addressing for food-borne Gram-positive pathogens has dropped with the emergence of resistant strains. Consequently, new methods for addressing Gram-positive strains have to be developed continuously. This includes establishing novel targets for antimicrobial discovery efforts. Eukaryotic choline kinases have been highly developed as drug targets for the treatment of cancer, rheumatoid arthritis, malaria and many other conditions and diseases. Recently, choline kinase (ChoK) has been proposed as a drug target for Gram-positive species generally. The aim of this work was to discover novel, natural sources of inhibitors for bacterial ChoK from tea extracts. We report the first natural bacterial ChoK inhibitor with antimicrobial activity against Streptococcus pneumoniae: quercetin.
Collapse
|
3
|
Huang H, Song D, Zhang W, Fang S, Zhou Q, Zhang H, Liang Z, Li Y. Choline Oxidase-Integrated Copper Metal-Organic Frameworks as Cascade Nanozymes for One-Step Colorimetric Choline Detection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5228-5236. [PMID: 35411770 DOI: 10.1021/acs.jafc.2c00746] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Choline is an important factor for regulating human health and is widely present in various foods. In this work, a sensor strategy based on a choline oxidase-integrated copper(II) metal-organic framework with peroxidase-like activity is constructed for one-step cascade detection of choline. The one-step cascade strategy can avoid intermediate product transferring in general multi-step reactions, and the multi-enzyme activities can be well exerted under one condition, thus exhibiting excellent catalytic activity and enhanced stability. In the integrated system, choline is catalyzed by ChOx to produce betaine and H2O2, which eventually got converted to hydroxyl radicals by the peroxidase nanozyme, oxidized the chromogenic substrate ABTS, and produced an observable absorption peak at 420 nm. A new choline detection method was thus established and showed a satisfactory linear relationship at 6-300 μM, which has been used for the choline analysis in milk.
Collapse
Affiliation(s)
- Hui Huang
- College of Food Science and Engineering, Jilin University, Changchun 130025, China
| | - Donghui Song
- College of Food Science and Engineering, Jilin University, Changchun 130025, China
| | - Wenjing Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130025, China
| | - Shuaizhen Fang
- College of Food Science and Engineering, Jilin University, Changchun 130025, China
| | - Qianxi Zhou
- College of Food Science and Engineering, Jilin University, Changchun 130025, China
| | - Haoyu Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130025, China
| | - Zheng Liang
- College of Food Science and Engineering, Jilin University, Changchun 130025, China
| | - Yongxin Li
- Key Lab of Groundwater Resources and Environment of Ministry of Education, Key Lab of Water Resources and Aquatic Environment of Jilin Province, College of New Energy and Environment, Jilin University, Changchun 130021, China
| |
Collapse
|
4
|
Ruiz-Muelle AB, Moreno PG, Fernández I. Quantitative quadrupolar NMR (qQNMR) using nitrogen-14 for the determination of choline in complex matrixes. Talanta 2021; 230:122344. [PMID: 33934793 DOI: 10.1016/j.talanta.2021.122344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 01/17/2023]
Abstract
NMR offers the unique potential to selectively excite the chosen nuclei avoiding in an extraordinary way the matrix effect. Quantitative Nitrogen-14 NMR (14N qNMR) spectroscopy has been introduced for the first time as a robust and validated method to determine choline in a variety of matrixes including quinoa grains, instant coffee and food supplements. A study about the ion pairing of choline bitartrate in aqueous solution by means of diffusion PGSE, NOESY and HOESY NMR have been also provided. Validation of the method within eight concentrations levels (from 1.58 to 79.0 mM) afforded a limit of detection of 400 μg/mL (1.58 mM), a quantification limit of 1000 μg/mL (3.95 mM), excellent linearity (R2 higher than 0.999), intra-/inter-day precisions lower than 1.24% (CV), recoveries of 93.5%-102.5%, and complete absence of matrix effect. The fast and reliable quantification of choline together with the accuracy and simplicity of this new approach make it useful in the development of analytical procedures that could dramatically affect traditional analysis.
Collapse
Affiliation(s)
- Ana Belén Ruiz-Muelle
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento, s/n, 04120, Almería, Spain
| | - Paula García Moreno
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento, s/n, 04120, Almería, Spain
| | - Ignacio Fernández
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento, s/n, 04120, Almería, Spain.
| |
Collapse
|
5
|
Lacal JC, Zimmerman T, Campos JM. Choline Kinase: An Unexpected Journey for a Precision Medicine Strategy in Human Diseases. Pharmaceutics 2021; 13:788. [PMID: 34070409 PMCID: PMC8226952 DOI: 10.3390/pharmaceutics13060788] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 12/17/2022] Open
Abstract
Choline kinase (ChoK) is a cytosolic enzyme that catalyzes the phosphorylation of choline to form phosphorylcholine (PCho) in the presence of ATP and magnesium. ChoK is required for the synthesis of key membrane phospholipids and is involved in malignant transformation in a large variety of human tumours. Active compounds against ChoK have been identified and proposed as antitumor agents. The ChoK inhibitory and antiproliferative activities of symmetrical bispyridinium and bisquinolinium compounds have been defined using quantitative structure-activity relationships (QSARs) and structural parameters. The design strategy followed in the development of the most active molecules is presented. The selective anticancer activity of these structures is also described. One promising anticancer compound has even entered clinical trials. Recently, ChoKα inhibitors have also been proposed as a novel therapeutic approach against parasites, rheumatoid arthritis, inflammatory processes, and pathogenic bacteria. The evidence for ChoKα as a novel drug target for approaches in precision medicine is discussed.
Collapse
Affiliation(s)
- Juan Carlos Lacal
- Instituto de Investigaciones Biomédicas, CSIC, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital La Paz, IDIPAZ, 28046 Madrid, Spain
| | - Tahl Zimmerman
- Food Microbiology and Biotechnology Laboratory, Department of Family and Consumer Sciences, College of Agriculture and Environmental Sciences, North Carolina University, 1601 East Market Street, Greensboro, NC 27411, USA;
| | - Joaquín M. Campos
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, c/Campus de Cartuja, s/n, Universidad de Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs. GRANADA), SAS-Universidad de Granada, 18071 Granada, Spain
| |
Collapse
|
6
|
Identification and validation of novel and more effective choline kinase inhibitors against Streptococcus pneumoniae. Sci Rep 2020; 10:15418. [PMID: 32963303 PMCID: PMC7508948 DOI: 10.1038/s41598-020-72165-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/24/2020] [Indexed: 11/08/2022] Open
Abstract
Streptococcus pneumoniae choline kinase (sChoK) has previously been proposed as a drug target, yet the effectiveness of the first and only known inhibitor of sChoK, HC-3, is in the millimolar range. The aim of this study was thus to further validate sChoK as a potential therapeutic target by discovering more powerful sChoK inhibitors. LDH/PK and colorimetric enzymatic assays revealed two promising sChoK inhibitor leads RSM-932A and MN58b that were discovered with IC50 of 0.5 and 150 μM, respectively, and were shown to be 2–4 magnitudes more potent than the previously discovered inhibitor HC-3. Culture assays showed that the minimum inhibitory concentration (MIC) of RSM-932A and MN58b for S. pneumoniae was 0.4 μM and 10 μM, respectively, and the minimum lethal concentration (MLC) was 1.6 μM and 20 μM, respectively. Western blot monitoring of teichoic acid production revealed differential patterns in response to each inhibitor. In addition, both inhibitors possessed a bacteriostatic mechanism of action, and neither interfered with the autolytic effects of vancomycin. Cells treated with MN58b but not RSM-932A were more sensitive to a phosphate induced autolysis with respect to the untreated cells. SEM studies revealed that MN58b distorted the cell wall, a result consistent with the apparent teichoic acid changes. Two novel and more highly potent putative inhibitors of sChoK, MN58b and RSM-932A, were characterized in this study. However, the effects of sChoK inhibitors can vary at the cellular level. sChoK inhibition is a promising avenue to follow in the development of therapeutics for treatment of S. pneumoniae.
Collapse
|
7
|
Zimmerman T, Lacal JC, Ibrahim SA. Choline Kinase Emerges as a Promising Drug Target in Gram-Positive Bacteria. Front Microbiol 2019; 6:2146. [PMID: 31681254 PMCID: PMC6813931 DOI: 10.3389/fmicb.2019.02146] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/30/2019] [Indexed: 01/04/2023] Open
Abstract
Both nosocomial pathogens, such as Streptococcus pneumoniae and Haemophilus influenzae and food-borne pathogens, such as Bacillus cereus and Clostridium perfringens are known to be detrimental to human and animal health. The effectiveness of currently used treatments for these pathogens becomes limited as resistant strains emerge. Therefore, new methods for eliminating bacterial pathogens must be developed continuously. This includes establishing novel targets to which drug discovery efforts could be focused. A promising method for discovering new drug targets in prokaryotes is to take advantage of the information available regarding the enzymatic pathways that have been established as drug targets in eukaryotic systems and explore the analogous pathways found in bacterial systems. This is an efficient strategy because the same inhibitors developed at considerable expense to block these pathways in eukaryotic systems could also be employed in prokaryotes. Drugs that are used to prevent diseases involving eukaryotic cells could be repurposed as antibiotics and antimicrobials for the control of bacteria pathogens. This strategy could be pursued whenever the primary and tertiary structures of a target are are conserved between eukaryotic and prokaryotes. A possible novel target fitting these parameters is choline kinase (ChoK), whose active site sequences are conserved (Figure 1) and whose tertiary structure (Figure 2) is maintained. Here, we describe why ChoK is a putative drug target by describing its role in the growth and pathogenesis of Gram-positive bacteria S. pneumoniae and the Gram-negative bacteria H. influenzae. Using S. pneumoniae as a model, we also present promising preliminary information that repurposing of drugs known to inhibit the human isoform of ChoK (hChoK), is a promising strategy for blocking the growth of S. pneumoniae cells and inhibiting the activity of the S. pneumoniae isoform of ChoK (sChok), with downstream physiological effects on the cell wall.
Collapse
Affiliation(s)
- Tahl Zimmerman
- Food Microbiology and Biotechnology Laboratory, Food and Nutritional Sciences Program, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| | - Juan Carlos Lacal
- Department of Oncology, Hospital Universitario de Fuenlabrada, Madrid, Spain
| | - Salam A Ibrahim
- Food Microbiology and Biotechnology Laboratory, Food and Nutritional Sciences Program, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| |
Collapse
|