1
|
Wiraswati HL, Ma'ruf IF, Sharifi-Rad J, Calina D. Piperine: an emerging biofactor with anticancer efficacy and therapeutic potential. Biofactors 2024. [PMID: 39467259 DOI: 10.1002/biof.2134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/03/2024] [Indexed: 10/30/2024]
Abstract
Anticancer drug discovery needs serious attention to overcome the high mortality rate caused by cancer. There are still many obstacles to treating this disease, such as the high cost of chemotherapeutic drugs, the resulting side effects from the drug, and the occurrence of multidrug resistance. Herbaceous plants are a reservoir of natural compounds that can be anticancer drugs with novel mechanisms of action. Piperine, a bioactive compound derived from Piper species, is gaining attention due to its unique dual role in directly inhibiting tumor growth and enhancing the bioavailability of chemotherapeutic drugs. Unlike conventional treatments, Piperine exhibits a novel mechanism of action by modulating multiple signaling pathways, including apoptosis and autophagy, with low toxicity. Additionally, Piperine acts as a bioenhancer by improving the absorption and effectiveness of other anticancer agents, reducing the required dosage, and minimizing side effects. Therefore, this review aims to visualize a summary of Piperine sources, phytochemistry, chemical structure-anticancer activity relationship, anticancer activities of semi-synthetic derivatives, pharmacokinetic and bioavailability, in vitro and in vivo preclinical studies, mechanism of antitumor action, human clinical trials, toxicity, side effects, and safety of Piperine. References were collected from the Pubmed/MedLine database (https://pubmed.ncbi.nlm.nih.gov/) with the following keywords: "Piperine anticancer," "Piperine derivatives," "Piperine antitumor mechanism" and "Piperine pharmacokinetic and bioavailability," after filter process by inclusion and exclusion criteria, 101 were selected from 444 articles. From 2013 to 2023, there were numerous studies regarding preclinical studies of Piperine of various cell lines, including breast cancer, prostate cancer, lung cancer, melanoma, cervical cancer, gastric cancer, osteosarcoma, colon cancer, hepatocellular carcinoma, ovarian cancer, leukemia, colorectal cancer, and hypopharyngeal carcinoma. In vivo, the anticancer study has also been conducted on some animal models, such as Ehrlich carcinoma-bearing mice, Ehrlich ascites carcinoma cells-bearing Balbc mice, hepatocellular carcinoma-bearing Wistar rat, A375SM cells-bearing mice, A375P cells-bearing mice, SNU-16 cells-bearing BalbC mice, and HGC-27-bearing baby mice. Treatment with this compound leads to cell proliferation inhibition and induction of apoptosis. Piperine has been used for clinical trials of diseases, but no cancer patient report exists. Various semi-synthetic derivatives of Piperine show efficacy as an anticancer drug across multiple cell lines. Piperine shows promise for use in cancer clinical trials, either as a standalone treatment or as a bioenhancer. Its bioenhancer properties may enhance the efficacy of existing chemotherapeutic agents, providing a valuable foundation for developing new anticancer therapies.
Collapse
Affiliation(s)
- Hesti Lina Wiraswati
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Indonesia
- Oncology and Stem Cell Working Group, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Ilma Fauziah Ma'ruf
- Oncology and Stem Cell Working Group, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Javad Sharifi-Rad
- Universidad Espíritu Santo, Samborondón, Ecuador
- Centro de Estudios Tecnológicos y Universitarios del Golfo, Veracruz, Mexico
- Department of Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| |
Collapse
|
2
|
Hu B, Wang H, Liang H, Ma N, Wu D, Zhao R, Lv H, Xiao Z. Multiple effects of spicy flavors on neurological diseases through the intervention of TRPV1: a critical review. Crit Rev Food Sci Nutr 2024:1-20. [PMID: 39041177 DOI: 10.1080/10408398.2024.2381689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The spicy properties of foods are contributed by various spicy flavor substances (SFs) such as capsaicin, piperine, and allicin. Beyond their distinctive sensory characteristics, SFs also influence health conditions and numerous studies have associated spicy flavors with disease treatment. In this review, we enumerate different types of SFs and describe their role in food processing, with a specific emphasis on critically examining their influence on human wellness. Particularly, detailed insights into the mechanisms through which SFs enhance physiological balance and alleviate neurological diseases are provided, and a systematic analysis of the significance of transient receptor potential vanilloid type-1 (TRPV1) in regulating metabolism and nervous system homeostasis is presented. Moreover, enhancing the accessibility and utilization of SFs can potentially amplify the physiological effects. This review aims to provide compelling evidence for the integration of food flavor and human health.
Collapse
Affiliation(s)
- Boyong Hu
- Department of Food Science & Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Heng Wang
- Department of Food Science & Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Liang
- Department of Food Science & Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ning Ma
- Department of Food Science & Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Diyi Wu
- Department of Food Science & Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ruotong Zhao
- Department of Food Science & Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Haoming Lv
- Department of Food Science & Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zuobing Xiao
- Department of Food Science & Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Singh S A, Vellapandian C. Sub-chronic oral toxicity study of the alkaloid rich fraction from Luffa cylindrica fruit in Sprague-Dawley rats. Toxicol Rep 2024; 12:307-317. [PMID: 38495473 PMCID: PMC10944161 DOI: 10.1016/j.toxrep.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/23/2024] [Accepted: 03/02/2024] [Indexed: 03/19/2024] Open
Abstract
The loofah/sponge gourd Luffa cylindrica (L.), a member of the Cucurbitaceae family, is one of the neglected medicinal plants. Traditionally, Luffa cylindrica is prescribed for inducing labor. It has a long history of use in China for the treatment of fever, diabetes, dyspnea, and dysentery. This study investigated the toxicity profile of the alkaloid-rich fraction of Luffa cylindrica (ARF-LC) for the first time in Sprague Dawley rats. A total of 80 rats (40 male and 40 female rats) aged 13 weeks old and weighing 200-220 g were selected for this study. In SD rats, sub-chronic oral toxicity was investigated at doses of 100, 200, and 400 mg/kg/d for a total of 90 days, followed by a 30-day recovery period. The results showed no variation in body weight among the three dose groups compared to the control group. Treatment-related adverse events, such as alterations in hematology and serum biochemistry parameters and the histology of the liver were sporadic in the high-dose rats but within the reference range. However, these changes disappeared after the doses were withdrawn during the recovery period. In conclusion, the "no observed adverse effect level" (NOAEL) of oral administration of ARF-LC in SD rats was considered 400 mg/kg/d and can be studied for its potential in further in vivo chronic investigations.
Collapse
Affiliation(s)
- Ankul Singh S
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu, Tamil Nadu, India
| | - Chitra Vellapandian
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu, Tamil Nadu, India
| |
Collapse
|
4
|
Immune System and Epidemics: The Role of African Indigenous Bioactive Substances. Nutrients 2023; 15:nu15020273. [PMID: 36678143 PMCID: PMC9864875 DOI: 10.3390/nu15020273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
With over 6 million coronavirus pandemic deaths, the African continent reported the lowest death rate despite having a high disease burden. The African community's resilience to the pandemic has been attributed to climate and weather conditions, herd immunity, repeated exposure to infectious organisms that help stimulate the immune system, and a disproportionately large youth population. In addition, functional foods, herbal remedies, and dietary supplements contain micronutrients and bioactive compounds that can help boost the immune system. This review identified significant traditional fermented foods and herbal remedies available within the African continent with the potential to boost the immune system in epidemics and pandemics. Methodology: Databases, such as PubMed, the Web of Science, and Scopus, were searched using relevant search terms to identify traditional African fermented foods and medicinal plants with immune-boosting or antiviral capabilities. Cereal-based fermented foods, meat-, and fish-based fermented foods, and dairy-based fermented foods containing antioxidants, immunomodulatory effects, probiotics, vitamins, and peptides were identified and discussed. In addition, nine herbal remedies and spices belonging to eight plant families have antioxidant, immunomodulatory, anti-inflammatory, neuroprotective, hepatoprotective, cardioprotective, and antiviral properties. Peptides, flavonoids, alkaloids, sterols, ascorbic acid, minerals, vitamins, and saponins are some of the bioactive compounds in the remedies. Bioactive compounds in food and plants significantly support the immune system and help increase resistance against infectious diseases. The variety of food and medicinal plants found on the African continent could play an essential role in providing community resilience against infectious diseases during epidemics and pandemics. The African continent should investigate nutritional, herbal, and environmental factors that support healthy living and longevity.
Collapse
|
5
|
Antimicrobial evaluation and molecular docking studies of Swertiamarin and Quercetin targeting dihydropteroate synthase enzyme. ADVANCES IN TRADITIONAL MEDICINE 2022. [DOI: 10.1007/s13596-022-00643-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Phytochemical and chemotaxonomic study on Piper pleiocarpum Chang ex Tseng. BIOCHEM SYST ECOL 2021. [DOI: 10.1016/j.bse.2020.104187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Mittal RP, Jaitak V. Plant-Derived Natural Alkaloids as New Antimicrobial and Adjuvant Agents in Existing Antimicrobial Therapy. Curr Drug Targets 2020; 20:1409-1433. [PMID: 31215387 DOI: 10.2174/1389450120666190618124224] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/06/2019] [Accepted: 05/28/2019] [Indexed: 11/22/2022]
Abstract
Infectious diseases, instigated by pathogenic microorganisms are the cause of numerous health problems in developing countries. Infectious diseases got a place in the list of top ten death causes worldwide. The reason behind that level of severity is antimicrobial resistance. Antimicrobial resistance makes the antimicrobial agents useless when used in the treatment of infectious diseases. Microbes have very smartly achieved resistance against synthetic and semi-synthetic antimicrobial agents for their survival. Therefore, the handling of these diseases has become challenging. The resistance developing power is the reason for their existence since a million years. Due to their highly dangerous nature, proper treatment of infectious diseases has become a topic of concern. This leads the scientists or researchers to focus their research towards natural agents. Plants synthesize secondary metabolites to cope up with biotic and abiotic changes in the environment. Alkaloids are one of the secondary metabolites, synthesized by plants. Alkaloids protect the plant from predators and help them to fight with pathogens. The protecting nature of alkaloids can be used as a strong weapon in battle with resistant microorganisms. The purpose of this review is to provide information about the antimicrobial activity of alkaloids obtained from different plants and their combination with synthetic antimicrobials. Their mechanism of action against microorganisms is also given in the review.
Collapse
Affiliation(s)
- Rajinder Pal Mittal
- Laboratory of Natural Product Chemistry, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, 151001, India
| | - Vikas Jaitak
- Laboratory of Natural Product Chemistry, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, 151001, India
| |
Collapse
|
8
|
Hałas-Wiśniewska M, Zielińska W, Izdebska M, Grzanka A. The Synergistic Effect of Piperlongumine and Sanguinarine on the Non-Small Lung Cancer. Molecules 2020; 25:E3045. [PMID: 32635287 PMCID: PMC7411589 DOI: 10.3390/molecules25133045] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Cancers are one of the leading causes of deaths nowadays. The development of new treatment schemes for oncological diseases is an interesting direction in experimental medicine. Therefore, the evaluation of the influence of two alkaloids-piperlongumine (PL), sanguinarine (SAN) and their combination-on the basic life processes of the A549 cell line was considered reasonable. METHODS The aim was achieved by analyzing the cytotoxic effects of PL and SAN and their combination in the ratio of 4:1 on the induction of cell death, changes in the distribution of cell cycle phases, reorganization of cytoskeleton and metastatic potential of A549 cells. The versatility of the applied concentration ratio was evaluated in terms of other cancer cell lines: MCF-7, H1299 and HepG2. RESULTS The results obtained from the MTT assay indicated that the interaction between the alkaloids depends on the concentration and type of cells. Additionally, the compounds and their combination did not exhibit a cytotoxic effect against normal cells. The combined effects of PL and SAN increased apoptosis and favored metastasis inhibition. CONCLUSION Selected alkaloids exhibit a cytotoxic effect on A549 cells. In turn, treatment with the combination of PL and SAN in a 4:1 ratio indicates a synergistic effect and is associated with an increase in the level of reactive oxygen species (ROS).
Collapse
Affiliation(s)
- Marta Hałas-Wiśniewska
- Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Karłowicza 24, 85-092 Bydgoszcz, Poland; (W.Z.); (M.I.); (A.G.)
| | | | | | | |
Collapse
|
9
|
Evaluation of Antioxidant and Antimicrobial Activity of Some Plants Collected from Malaysia. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.4.52] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
10
|
Mgbeahuruike EE, Stålnacke M, Vuorela H, Holm Y. Antimicrobial and Synergistic Effects of Commercial Piperine and Piperlongumine in Combination with Conventional Antimicrobials. Antibiotics (Basel) 2019; 8:E55. [PMID: 31060239 PMCID: PMC6627571 DOI: 10.3390/antibiotics8020055] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 04/29/2019] [Accepted: 05/02/2019] [Indexed: 01/08/2023] Open
Abstract
Microbial resistance to currently available antibiotics is a public health problem in the fight against infectious diseases. Most antibiotics are characterized by numerous side effects that may be harmful to normal body cells. To improve the efficacy of these antibiotics and to find an alternative way to minimize the adverse effects associated with most conventional antibiotics, piperine and piperlongumine were screened in combination with conventional rifampicin, tetracycline, and itraconazole to evaluate their synergistic, additive, or antagonistic interactions against Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. The fractional inhibitory concentration index was used to estimate the synergistic effects of various combination ratios of the piperamides and antibiotics against the bacterial and fungal strains. Both piperine and piperlongumine showed synergistic effects against S. aureus when combined at various ratios with rifampicin. Synergistic interaction was also observed with piperine in combination with tetracycline against S. aureus, while antagonistic interaction was recorded for piperlongumine and tetracycline against S. aureus. All the piperamide/antibacterial combinations tested against P. aeruginosa showed antagonistic effects, with the exception of piperine and rifampicin, which recorded synergistic interaction at a ratio of 9:1 rifampicin/piperine. No synergistic interaction was observed when the commercial compounds were combined with itraconazole and tested against C. albicans. The results showed that piperine and piperlongumine are capable of improving the effectiveness of rifampicin and tetracycline. Dosage combinations of these bioactive compounds with the antibiotics used may be a better option for the treatment of bacterial infections that aims to minimize the adverse effects associated with the use of these conventional antibacterial drugs.
Collapse
Affiliation(s)
- Eunice Ego Mgbeahuruike
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland.
| | - Milla Stålnacke
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Box 431, SE-40530 Gothenburg, Sweden.
| | - Heikki Vuorela
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland.
| | - Yvonne Holm
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland.
| |
Collapse
|