1
|
Koumans CIM, Tandar ST, Liakopoulos A, van Hasselt JGC. Interspecies interactions alter the antibiotic sensitivity of Pseudomonas aeruginosa. Microbiol Spectr 2024; 12:e0201224. [PMID: 39495005 PMCID: PMC11619387 DOI: 10.1128/spectrum.02012-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024] Open
Abstract
Polymicrobial infections are infections that are caused by multiple pathogens and are common in patients with cystic fibrosis (CF). Although polymicrobial infections are associated with poor treatment responses in CF, the effects of the ecological interactions between co-infecting pathogens on antibiotic sensitivity and treatment outcome are poorly characterized. To this end, we systematically quantified the impact of these effects on the antibiotic sensitivity of Pseudomonas aeruginosa for nine antibiotics in medium conditioned by 13 secondary cystic fibrosis-associated bacterial and fungal pathogens through time-kill assays. We fitted pharmacodynamic models to these kill curves for each antibiotic-species combination and found that interspecies interactions changing the antibiotic sensitivity of P. aeruginosa are abundant. Interactions that lower antibiotic sensitivity are more common than those that increase it, with generally more substantial reductions than increases in sensitivity. For a selection of co-infecting species, we performed pharmacokinetic-pharmacodynamic modeling of P. aeruginosa treatment. We predicted that interspecies interactions can either improve or reduce treatment response to the extent that treatment is rendered ineffective from a previously effective antibiotic dosing schedule and vice versa. In summary, we show that quantifying the ecological interaction effects as pharmacodynamic parameters is necessary to determine the abundance and the extent to which these interactions affect antibiotic sensitivity in polymicrobial infections.IMPORTANCEIn cystic fibrosis (CF) patients, chronic respiratory tract infections are often polymicrobial, involving multiple pathogens simultaneously. Polymicrobial infections are difficult to treat as they often respond unexpectedly to antibiotic treatment, which might possibly be explained because co-infecting pathogens can influence each other's antibiotic sensitivity, but it is unknown to what extent such effects occur. To investigate this, we systematically quantified the impact of co-infecting species on antibiotic sensitivity, focusing on P. aeruginosa, a common CF pathogen. We studied for a large set co-infecting species and antibiotics whether changes in antibiotic response occur. Based on these experiments, we used mathematical modeling to simulate P. aeruginosa's response to colistin and tobramycin treatment in the presence of multiple pathogens. This study offers comprehensive data on altered antibiotic sensitivity of P. aeruginosa in polymicrobial infections, serves as a foundation for optimizing treatment of such infections, and consolidates the importance of considering co-infecting pathogens.
Collapse
Affiliation(s)
- C. I. M. Koumans
- Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
| | - S. T. Tandar
- Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
| | - A. Liakopoulos
- Microbiology, Department of Biology, Utrecht University, Utrecht, the Netherlands
| | - J. G. C. van Hasselt
- Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
| |
Collapse
|
2
|
Sigudu TT, Oguttu JW, Qekwana DN. Antimicrobial Resistance of Staphylococcus spp. from Human Specimens Submitted to Diagnostic Laboratories in South Africa, 2012-2017. Microorganisms 2024; 12:1862. [PMID: 39338536 PMCID: PMC11433687 DOI: 10.3390/microorganisms12091862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a significant worldwide health challenge associated with prolonged illnesses, increased healthcare costs, and high mortality rates. The present study examined the patterns and predictors of AMR among human Staphylococcus isolates obtained from diagnostic laboratories in South Africa between 2012 and 2017. This study examined data from 404 217 isolates, assessing resistance rates across different characteristics such as age, sample origin, Staphylococcus species, and study period. The highest resistance was observed against cloxacillin (70.3%), while the lowest resistance was against Colistin (0.1%). A significant (p < 0.05) decreasing trend in AMR was observed over the study period, while a significant increasing temporal trend (p < 0.05) was observed for multidrug resistance (MDR) over the same period. A significant (p < 0.05) association was observed between specimen type, species of organism, and year of isolation with AMR outcome. Significant (p < 0.05) associations were observed between specimen type and season with MDR. The observed high levels of AMR and a growing trend in MDR are concerning for public health. Clinicians should take these findings into account when deciding on therapeutic options. Continued monitoring of AMR among Staphylococcus spp. and judicious use of antimicrobials in human medicine should be promoted.
Collapse
Affiliation(s)
- Themba Titus Sigudu
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Johannesburg 1710, South Africa;
- Department of Health and Society, School of Public Health, Faculty of Health Sciences, University of Witwatersrand, Johannesburg 2193, South Africa
| | - James Wabwire Oguttu
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Johannesburg 1710, South Africa;
| | - Daniel Nenene Qekwana
- Section Veterinary Public Health, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa;
| |
Collapse
|
3
|
Zhou N, An T, Zhang Y, Zhao G, Wei C, Shen X, Li F, Wang X. Improving Photocleavage Efficiency of Photocleavable Protein for Antimicrobial Peptide Histatin 1 Expression. Protein Pept Lett 2024; 31:141-152. [PMID: 38243926 DOI: 10.2174/0109298665276722231212053009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 01/22/2024]
Abstract
BACKGROUND Antimicrobial peptides (AMPs) are promising alternative agents for antibiotics to overcome antibiotic resistance problems. But, it is difficult to produce large-scale antimicrobial research due to the toxicity towards expression hosts or degradation by peptidases in the host. Therefore, heterologous recombinant expression of antimicrobial peptides has always been a challenging issue. OBJECTIVES To overcome toxicity to the expression host and low expression level, a new photocleavable protein fusion expression method for antimicrobial peptides is provided.3 Methods: Through directed evolution and high throughput screening, a photocleavable protein mutant R6-2-6-4 with a higher photocleavage efficiency was obtained. The DNA coding sequence of antimicrobial peptide Histatin 1 was fused within the sequence of R6-2-6-4 gene. The fusion gene was successfully expressed in Escherichia coli expression system. RESULTS Antimicrobial peptide Histatin 1 could be successfully expressed and purified by fusing within PhoCl mutant R6-2-6-4. The antimicrobial activity was rarely affected, and the MIC value was 33 ug/mL, which was basically equivalent to 32 ug/mL of the chemically synthesized Histatin 1. After amplification in a 5 L fermenter, the expression of PhoCl mutant (R6-2-6-4)-Histatin1 improved up to 87.6 mg/L in fermenter, and Histatin1 obtained by photocleavage also could up to 11 mg/L. The prepared Histatin1 powder remained stable when stored at 4oC for up to 4 months without any degradation. In addition, the expression and photocleavage of β -Defensin105 and Lysostaphin verified the certain universality of the PhoCl mutant fusion expression system. CONCLUSION Antimicrobial peptides Histatin 1, β -Defensin 105 and Lysostaphin were successfully expressed and purified by photocleavable protein mutant. This may provide a novel strategy to express and purify antimicrobial peptides in the Escherichia coli expression system.
Collapse
Affiliation(s)
- Nana Zhou
- Nutrition and Health Research Institute, COFCO Corporation, Beijing 102209, China
| | - Tai An
- Nutrition and Health Research Institute, COFCO Corporation, Beijing 102209, China
| | - Yuan Zhang
- Nutrition and Health Research Institute, COFCO Corporation, Beijing 102209, China
| | - Guomiao Zhao
- Nutrition and Health Research Institute, COFCO Corporation, Beijing 102209, China
| | - Chao Wei
- Nutrition and Health Research Institute, COFCO Corporation, Beijing 102209, China
| | - Xuemei Shen
- Nutrition and Health Research Institute, COFCO Corporation, Beijing 102209, China
| | - Fan Li
- Nutrition and Health Research Institute, COFCO Corporation, Beijing 102209, China
| | - Xiaoyan Wang
- Nutrition and Health Research Institute, COFCO Corporation, Beijing 102209, China
| |
Collapse
|
4
|
Finazzi S, Luci G, Olivieri C, Langer M, Mandelli G, Corona A, Viaggi B, Di Paolo A. Tissue Penetration of Antimicrobials in Intensive Care Unit Patients: A Systematic Review—Part I. Antibiotics (Basel) 2022; 11:antibiotics11091164. [PMID: 36139944 PMCID: PMC9495190 DOI: 10.3390/antibiotics11091164] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/14/2022] [Accepted: 08/26/2022] [Indexed: 11/19/2022] Open
Abstract
The challenging severity of some infections, especially in critically ill patients, makes the diffusion of antimicrobial drugs within tissues one of the cornerstones of chemotherapy. The knowledge of how antibacterial agents penetrate tissues may come from different sources: preclinical studies in animal models, phase I–III clinical trials and post-registration studies. However, the particular physiopathology of critically ill patients may significantly alter drug pharmacokinetics. Indeed, changes in interstitial volumes (the third space) and/or in glomerular filtration ratio may influence the achievement of bactericidal concentrations in peripheral compartments, while inflammation can alter the systemic distribution of some drugs. On the contrary, other antibacterial agents may reach high and effective concentrations thanks to the increased tissue accumulation of macrophages and neutrophils. Therefore, the present review explores the tissue distribution of beta-lactams and other antimicrobials acting on the cell wall and cytoplasmic membrane of bacteria in critically ill patients. A systematic search of articles was performed according to PRISMA guidelines, and tissue/plasma penetration ratios were collected. Results showed a highly variable passage of drugs within tissues, while large interindividual variability may represent a hurdle which must be overcome to achieve therapeutic concentrations in some compartments. To solve that issue, off-label dosing regimens could represent an effective solution in particular conditions.
Collapse
Affiliation(s)
- Stefano Finazzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24020 Ranica, Italy
- Associazione GiViTI, c/o Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Giacomo Luci
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Carlo Olivieri
- Associazione GiViTI, c/o Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
- Anesthesia and Intensive Care, Sant’Andrea Hospital, ASL VC, 13100 Vercelli, Italy
| | - Martin Langer
- Associazione GiViTI, c/o Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Giulia Mandelli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24020 Ranica, Italy
| | - Alberto Corona
- ICU and Accident & Emergency Department, ASST Valcamonica, 25043 Breno, Italy
| | - Bruno Viaggi
- Associazione GiViTI, c/o Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
- Department of Anesthesiology, Neuro-Intensive Care Unit, Florence Careggi University Hospital, 50139 Florence, Italy
| | - Antonello Di Paolo
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
- Correspondence:
| |
Collapse
|
5
|
A Retrospective Study of Risk Factors, Mortality, and Treatment Outcomes for Infections with Carbapenemase-Producing Enterobacterales in a Tertiary Hospital in Havana, Cuba. Antibiotics (Basel) 2022; 11:antibiotics11070942. [PMID: 35884196 PMCID: PMC9312119 DOI: 10.3390/antibiotics11070942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 12/02/2022] Open
Abstract
(1) Background: The spread of carbapenem-resistant Enterobacterales in hospitals constitutes an important epidemiological and therapeutic problem that especially affects vulnerable patients such as perioperative patients. (2) Methods: We conducted a descriptive, observational, retrospective case-control study of patients infected with carbapenemase-producing carbapenem-resistant Enterobacterales (CP-CRE) and carbapenem-susceptible Enterobacterales during the perioperative period in a tertiary hospital. (3) Results: Metallo-β-lactamase was detected in all 124 CRE isolates, with NDM-type carbapenemase being dominant, while 3 isolates coproduced KPC-type enzyme and showed high resistance rates against all antibiotics except colistin (25.2%). By analyzing the risk factors for infection, steroid use (OR: 3.22, p < 0.01), prior use of two or more antibiotics (OR: 4.04, p = 0.01), prior use of broad-spectrum cephalosporins (OR: 2.40, p = 0.04), and prior use of carbapenem (OR: 4.77, p = 0.03) were found to be independent risk factors for CP-CRE infection. In addition, in this study, we observed that the clinical outcomes of bloodstream infections and pneumonia associated with CP-CRE posed higher mortality risks. However, by analyzing the associations between treatment options and mortality, it was found that, in bloodstream infections caused by CP-CRE, colistin-based regimens showed a significant advantage (PR = 0.40, p = 0.03). (4) Conclusions: High mortality is associated with nosocomial infections in the perioperative period caused by carbapenemase-producing Enterobacterales, the dissemination of which in health care settings in Cuba remains a public health challenge.
Collapse
|
6
|
AL-Dulaimi M, Algburi A, Abdelhameed A, Mazanko MS, Rudoy DV, Ermakov AM, Chikindas ML. Antimicrobial and Anti-Biofilm Activity of Polymyxin E Alone and in Combination with Probiotic Strains of Bacillus subtilis KATMIRA1933 and Bacillus amyloliquefaciens B-1895 against Clinical Isolates of Selected Acinetobacter spp.: A Preliminary Study. Pathogens 2021; 10:1574. [PMID: 34959528 PMCID: PMC8707300 DOI: 10.3390/pathogens10121574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/16/2021] [Accepted: 11/29/2021] [Indexed: 01/23/2023] Open
Abstract
Acinetobacter spp., the nosocomial pathogen, forms strong biofilms and is resistant to numerous antibiotics, causing persistent infections. This study investigates the antibacterial and anti-biofilm activity of polymyxin E alone and in combination with the cell-free supernatants (CFS) of the tested probiotic bacilli, Bacillus subtilis KATMIRA1933 and Bacillus amyloliquefaciens B-1895 against the selected Acinetobacter spp. starins. Three isolates of Acinetobacter spp., designated as Acinetobacter spp. isolate 1; Acinetobacter spp. isolate 2, and Acinetobacter spp. isolate 3, were collected from patients with burns, wounds, and blood infections, respectively. Bacterial identification and antibiotic susceptibility testing were conducted using the VITEK2 system. Auto-aggregation and coaggregation of the tested bacilli strains with the selected Acinetobacter spp. isolates were evaluated. A disk diffusion assay was used to identify the microorganism's susceptibility to the selected antibiotics, alone and in combination with the CFS of the bacilli. The MIC and MBIC (minimum inhibitory and minimum biofilm inhibitory concentrations) of polymyxin E combined with bacilli CFS were determined. Acinetobacter spp. isolates were (i) sensitive to polymyxin E, (ii) able to form a strong biofilm, and (iii) resistant to the tested antibiotics and the CFS of tested bacilli. Significant inhibition of biofilm formation was noticed when CFS of the tested bacilli were combined with polymyxin E. The bacilli CFS showed synergy with polymyxin E against planktonic cells and biofilms of the isolated pathogens.
Collapse
Affiliation(s)
- Munaf AL-Dulaimi
- Educational Laboratories, Baqubah General Hospital, Baqubah 32001, Iraq;
| | - Ammar Algburi
- Scholarship and Cultural Relations Department, University of Diyala, Baqubah 32001, Iraq;
- Biotechnology Department, College of Science, University of Diyala, Baqubah 32001, Iraq
| | - Alyaa Abdelhameed
- Scholarship and Cultural Relations Department, University of Diyala, Baqubah 32001, Iraq;
| | - Maria S. Mazanko
- Center for Agrobiotechnology, Don State Technical University, 344002 Rostov-on-Don, Russia; (M.S.M.); (D.V.R.); (A.M.E.); (M.L.C.)
| | - Dmitry V. Rudoy
- Center for Agrobiotechnology, Don State Technical University, 344002 Rostov-on-Don, Russia; (M.S.M.); (D.V.R.); (A.M.E.); (M.L.C.)
| | - Alexey M. Ermakov
- Center for Agrobiotechnology, Don State Technical University, 344002 Rostov-on-Don, Russia; (M.S.M.); (D.V.R.); (A.M.E.); (M.L.C.)
| | - Michael L. Chikindas
- Center for Agrobiotechnology, Don State Technical University, 344002 Rostov-on-Don, Russia; (M.S.M.); (D.V.R.); (A.M.E.); (M.L.C.)
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ 08904, USA
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, 119146 Moscow, Russia
| |
Collapse
|
7
|
Jeong YJ, Gu N, Kwack WG, Kang Y, Park SY, Yoon YS. Prospective observational study of the impact of plasma colistin levels in patients with carbapenem-resistant Acinetobacter baumannii pneumonia. J Glob Antimicrob Resist 2021; 27:315-323. [PMID: 34775134 DOI: 10.1016/j.jgar.2021.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 09/26/2021] [Accepted: 10/19/2021] [Indexed: 10/19/2022] Open
Abstract
OBJECTIVES Colistin, an important drug to treat carbapenem-resistant Acinetobacter baumannii (CRAB) infections, has a narrow therapeutic window with nephrotoxicity. This study was conducted to determine the importance of colistin concentrations in predicting nephrotoxicity when treating CRAB pneumonia with colistin. METHODS A prospective cohort study was performed in one teaching hospital from May 2015 to January 2018. Patients with CRAB pneumonia were treated with intravenous colistin methanesulfonate (CMS) at 2.5-5.0 mg/kg/day. On Days 3 and 4, plasma colistin and CMS concentrations were determined by six serial blood samples (immediately prior to dosing and 1 h and 4 h after the end of infusion). RESULTS The 25 patients included in the analysis had hospital-acquired pneumonia caused by CRAB. Nephrotoxicity occurred in five patients (20%) on Day 7. There was no difference in clinical characteristics of patients with or without nephrotoxicity. The maximum plasma CMS concentration (mean ± standard deviation) was significantly higher in patients with nephrotoxicity on Day 7 than those without nephrotoxicity (15.3 ± 4.2 mg/L vs. 8.3 ± 3.8 mg/L; P = 0.014). The maximum plasma colistin concentration (Cmax,col) was significantly higher in the nephrotoxicity group on Day 7 (4.8 ± 2.0 mg/L vs. 2.1 ± 1.0 mg/L; P = 0.002). Cmax,col was lower in patients with microbiological failure than those without microbiological failure (1.92 mg/L vs. 3.01 mg/L; P = 0.038). CONCLUSION This study confirmed that plasma levels of CMS and colistin, especially maximum levels, are important for predicting nephrotoxicity in patients with CRAB pneumonia. [ClinicalTrials.gov ID NCT02482961].
Collapse
Affiliation(s)
- Yun-Jeong Jeong
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | - Namyi Gu
- Department of Clinical Pharmacology and Therapeutics, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | - Won Gun Kwack
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Kyung Hee University Hospital, Seoul, Republic of Korea
| | - Yunseong Kang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | - Seong Yeon Park
- Division of Infectious Diseases, Department of Internal Medicine, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | - Young-Soon Yoon
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Dongguk University Ilsan Hospital, Goyang, Republic of Korea.
| |
Collapse
|
8
|
Estimation of the Difference in Colistin Plasma Levels in Critically Ill Patients with Favorable or Unfavorable Clinical Outcomes. Pharmaceutics 2021; 13:pharmaceutics13101630. [PMID: 34683923 PMCID: PMC8540821 DOI: 10.3390/pharmaceutics13101630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 11/26/2022] Open
Abstract
In recent decades, antimicrobial resistance (AMR) has led to an increased use of therapeutic alternatives. Among these options, colistin continues to be an option for the treatment of multi-resistant (MDR) Gram-negative bacterial infections. However, due to its high toxicity (nephrotoxicity and neurotoxicity) and narrow therapeutic window, colistin treatment must be utilized carefully. Colistin-treated patients have been observed to have higher mortality due to inadequate therapeutic levels. The objective of this study was to estimate the difference in colistin plasma levels in critically ill patients, and its relationship to favorable or unfavorable clinical outcomes. This prospective observational study was conducted between September 2017 and June 2020 at the Universidad de La Sabana Clinic, in patients who had been treated with colistimethate sodium (CMS) for at least 72 h until day 7 of drug treatment in the critical care unit of a university hospital. There were no statistically significant differences in colistin levels between groups with favorable or unfavorable clinical outcomes (0.16 SD vs. 0.54 SD p-value = 0.167). There was higher mortality in patients with subtherapeutic levels (18% vs. 0%), and additionally, there was a greater rate of renal failure in the group with higher therapeutic levels (50% vs. 20.7%). Due to the loss of power of the study, we were unable to demonstrate a possible difference between colistin levels related to favorable or unfavorable clinical outcomes at day 7. However, we recommend further studies to evaluate the impact of measuring levels in terms of mortality and security.
Collapse
|
9
|
Efficacy of tigecycline alone or in combination for experimental infections by KPC carbapenemase-producing Klebsiella pneumoniae. Int J Antimicrob Agents 2021; 58:106384. [PMID: 34161789 DOI: 10.1016/j.ijantimicag.2021.106384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/09/2021] [Accepted: 06/05/2021] [Indexed: 11/21/2022]
Abstract
Although in vitro data suggest that tigecycline is active against Klebsiella pneumoniae carbapenemase-producing K. pneumoniae (KPC-Kp), experimental and clinical data are limited. We studied the effect of tigecycline alone or in combination for experimental infections by KPC-Kp. A total of 540 male C57BL/6 mice were infected with three genetically diverse KPC-Kp isolates susceptible to tigecycline with meropenem minimum inhibitory concentrations (MICs) of 4, 16 and 256 μg/mL, respectively. Mice were randomly treated with water for injection, tigecycline, meropenem and colistin alone, and double or triple combinations of tigecycline, colistin and meropenem. Mouse survival was recorded for 14 days. In separate experiments, mice were sacrificed 6 h and 24 h after bacterial challenge for quantitative culture of tissues and serological analysis. Time-kill curves were performed. Tigecycline, colistin and meropenem concentrations were measured in tissues and serum by high-performance liquid chromatography (HPLC). Survival was significantly prolonged when mice were treated with tigecycline alone and tigecycline-containing regimens compared with control mice and mice treated with tigecycline-sparing regimens. Tigecycline-sparing regimens were active only against the isolate with a meropenem MIC of 4 μg/mL. Mortality was associated with progression to multiple organ failure. Tigecycline and tigecycline-containing regimens achieved a rapid decrease of bacterial loads both in tissues and in vitro. Tigecycline concentrations in tissues were negatively correlated with tissue bacterial load. Tigecycline alone or in combination with meropenem and/or colistin achieves effective treatment of experimental KPC-Kp infections irrespective of the meropenem MIC.
Collapse
|
10
|
Schito AM, Piatti G, Caviglia D, Zuccari G, Alfei S. Broad-Spectrum Bactericidal Activity of a Synthetic Random Copolymer Based on 2-Methoxy-6-(4-Vinylbenzyloxy)-Benzylammonium Hydrochloride. Int J Mol Sci 2021; 22:5021. [PMID: 34065133 PMCID: PMC8125966 DOI: 10.3390/ijms22095021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022] Open
Abstract
Low-molecular-weight organic ammonium salts exert excellent antimicrobial effects by interacting lethally with bacterial membranes. Unfortunately, short-term functionality and high toxicity limit their clinical application. On the contrary, the equivalent macromolecular ammonium salts, derived from the polymerization of monomeric ammonium salts, have demonstrated improved antibacterial potency, a lower tendency to develop resistance, higher stability, long-term activity, and reduced toxicity. A water-soluble non-quaternary copolymeric ammonium salt (P7) was herein synthetized by copolymerizing 2-methoxy-6-(4-vinylbenzyloxy)-benzylammonium hydrochloride monomer with N, N-di-methyl-acrylamide. The antibacterial activity of P7 was assessed against several multidrug-resistant (MDR) clinical isolates of both Gram-positive and Gram-negative species. Except for colistin-resistant Pseudomonas aeruginosa, most isolates were susceptible to P7, also including some Gram-negative bacteria with a modified charge in the external membrane. P7 showed remarkable antibacterial activity against isolates of Enterococcus, Staphylococcus, Acinetobacter, and Pseudomonas, and on different strains of Escherichia coli and Stenotrophomonas maltophylia, regardless of their antibiotic resistance. The lowest minimal inhibitory concentrations (MICs) observed were 0.6-1.2 µM and the minimal bactericidal concentrations (MBC) were frequently overlapping with the MICs. In 24-h time-kill and turbidimetric studies, P7 displayed a rapid non-lytic bactericidal activity. P7 could therefore represent a novel and potent tool capable of counteracting infections sustained by several bacteria that are resistant to the presently available antibiotics.
Collapse
Affiliation(s)
- Anna Maria Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, I-16132 Genova, Italy; (A.M.S.); (G.P.); (D.C.)
| | - Gabriela Piatti
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, I-16132 Genova, Italy; (A.M.S.); (G.P.); (D.C.)
| | - Debora Caviglia
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, I-16132 Genova, Italy; (A.M.S.); (G.P.); (D.C.)
| | - Guendalina Zuccari
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy;
| | - Silvana Alfei
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy;
| |
Collapse
|
11
|
Badr El-Din KM, Abdelmajed MA, Omar MA, Attia TZ. The first spectrofluorimetric approach for quantification of colistin sulfate and its prodrug colistimethate sodium in pharmaceutical dosage form and human plasma. LUMINESCENCE 2021; 36:1249-1256. [PMID: 33843139 DOI: 10.1002/bio.4050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/30/2021] [Accepted: 04/04/2021] [Indexed: 12/24/2022]
Abstract
A new, accurate, nonextractive, and sensitive fluorimetric approach was proposed and validated for the first time estimation of colistin sulfate and its inactive prodrug colistimethate sodium in its bulk form, pharmaceutical formulations, and human plasma. The approach relied on condensation between acetylacetone/formaldehyde and the primary amino moiety of nonfluorescent colistin in Teorell and Stenhagen buffer (pH 2.8) by the Hantzsch reaction to form a highly fluorescent dihydropyridine derivative. The fluorescent product was measured at 460 nm (λex = 402 nm). A plot of relative fluorescence intensity (RFI) versus concentration was rectilinear over the range 200-4000 ng ml-1 with excellent correlation (r) and determination (r2 ) coefficients of 0.9999 and 0.9998, respectively. The limit of detection (LOD) and limit of quantitation (LOQ) were 40.91 and 123.99 ng ml-1 , respectively. The present procedure was useful for determination of colistin sulfate either in powder form for suspension or in its parenteral prodrug colistimethate sodium in vial formulation. The investigated approach was applied for in vitro quantification of this drug in spiked human plasma, with a per cent mean recovery of 98.24 ± 1.34. The proposed method is reliable, selective, and does not require tedious sample pretreatment steps, expensive instrumentation, or harmful reagents, all of which make it ideally suited for use in quality control laboratories.
Collapse
Affiliation(s)
- Khalid M Badr El-Din
- Analytical Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Mahmoud A Abdelmajed
- Analytical Chemistry Department, Faculty of Pharmacy, Deraya University, New Minia, Egypt
| | - Mahmoud A Omar
- Analytical Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt.,Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, Taibah University, Medinah, Saudi Arabia
| | - Tamer Z Attia
- Analytical Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
12
|
Alfei S, Piatti G, Caviglia D, Schito AM. Synthesis, Characterization, and Bactericidal Activity of a 4-Ammoniumbuthylstyrene-Based Random Copolymer. Polymers (Basel) 2021; 13:1140. [PMID: 33918374 PMCID: PMC8038196 DOI: 10.3390/polym13071140] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 01/04/2023] Open
Abstract
The growing resistance of bacteria to current chemotherapy is a global concern that urgently requires new and effective antimicrobial agents, aimed at curing untreatable infection, reducing unacceptable healthcare costs and human mortality. Cationic polymers, that mimic antimicrobial cationic peptides, represent promising broad-spectrum agents, being less susceptible to develop resistance than low molecular weight antibiotics. We, thus, designed, and herein report, the synthesis and physicochemical characterization of a water-soluble cationic copolymer (P5), obtained by copolymerizing the laboratory-made monomer 4-ammoniumbuthylstyrene hydrochloride with di-methyl-acrylamide as uncharged diluent. The antibacterial activity of P5 was assessed against several multi-drug-resistant clinical isolates of both Gram-positive and Gram-negative species. Except for strains characterized by modifications of the membrane charge, most of the tested isolates were sensible to the new molecule. P5 showed remarkable antibacterial activity against several isolates of genera Enterococcus, Staphylococcus, Pseudomonas, Klebsiella, and against Escherichia coli, Acinetobacter baumannii and Stenotrophomonas maltophilia, displaying a minimum MIC value of 3.15 µM. In time-killing and turbidimetric studies, P5 displayed a rapid non-lytic bactericidal activity. Due to its water-solubility and wide bactericidal spectrum, P5 could represent a promising novel agent capable of overcoming severe infections sustained by bacteria resistant the presently available antibiotics.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy
| | - Gabriella Piatti
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genova, Italy; (G.P.); (D.C.); (A.M.S.)
| | - Debora Caviglia
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genova, Italy; (G.P.); (D.C.); (A.M.S.)
| | - Anna Maria Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genova, Italy; (G.P.); (D.C.); (A.M.S.)
| |
Collapse
|
13
|
Upert G, Luther A, Obrecht D, Ermert P. Emerging peptide antibiotics with therapeutic potential. MEDICINE IN DRUG DISCOVERY 2021; 9:100078. [PMID: 33398258 PMCID: PMC7773004 DOI: 10.1016/j.medidd.2020.100078] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/15/2020] [Accepted: 12/27/2020] [Indexed: 02/09/2023] Open
Abstract
This review covers some of the recent progress in the field of peptide antibiotics with a focus on compounds with novel or established mode of action and with demonstrated efficacy in animal infection models. Novel drug discovery approaches, linear and macrocyclic peptide antibiotics, lipopeptides like the polymyxins as well as peptides addressing targets located in the plasma membrane or in the outer membrane of bacterial cells are discussed.
Collapse
Key Words
- ADMET, absorption, distribution, metabolism and excretion – toxicity in pharmacokinetics
- AMP, antimicrobial peptide
- AMR, antimicrobial resistance
- ATCC, ATCC cell collection
- Antibiotic
- BAM, β-barrel assembly machinery
- CC50, cytotoxic concentration to kill 50% of cells
- CD, circular dichroism
- CFU, colony forming unit
- CLSI, clinical and laboratory standards institute
- CMS, colistin methane sulfonate
- DMPC, 1,2-dimyristoyl-sn-glycero-3-phosphocholine
- ESKAPE, acronym encompassing six bacterial pathogens (often carrying antibiotic resistance): Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumonia, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp
- FDA, U. S. Food and Drug Administration
- HABP, hospital acquired bacterial pneumonia
- HDP, host-defense peptide
- HEK293, human embryonic kidney 293 cells
- HK-2, human kidney 2 cells (proximal tubular cell line)
- HepG2, human hepatocellular carcinoma cell line
- Hpg, 4-hydroxy-phenyl glycine
- ITC, isothermal titration calorimetry
- KPC, Klebsiella pneumoniae metallo-β-lactamase C resistant
- LPS, lipopolysaccharide
- LptA, lipopolysaccharide transport protein A
- LptC, lipopolysaccharide transport protein C
- LptD, lipopolysaccharide transport protein D
- MDR, multidrug-resistant
- MH-I, Müller-Hinton broth I
- MH-II, Müller-Hinton broth II (cation adjusted)
- MIC, minimal inhibitory concentration
- MRSA, methicilline-resistant S. aureus
- MSSA, methicilline-sensitive S. aureus
- MoA, mechanism (mode) of action
- NDM-1, New Delhi metallo-β-lactamase resistant
- NOAEL, no adverse effect level
- ODL, odilorhabdin
- OMPTA (outer membrane targeting antibiotic)
- OMPTA, outer membrane targeting antibiotic
- Omp, outer membrane protein
- PBMC, peripheral mononuclear blood cell
- PBP, penicillin-binding protein
- PBS, phosphate-buffered saline
- PK, pharmacokinetics
- POPC, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine
- POPG, 2-oleoyl-1-palmitoyl-sn-glycero-3-phospho-(1-glycerol)
- PrAMPs, polyproline antimicrobial peptides
- RBC, red blood cell
- SAR, structure-activity relationship
- SPR, surface plasmon resonance
- SPase I, signal peptidase I
- VABP, ventilator associated bacterial pneumonia
- VIM-1, beta-lactamase 2 (K. pneumoniae)
- VISA, vancomycin-intermediate S. aureus
- VRE, vancomycin-resistant enterococcus
- WHO, World Health Organization
- WT, wild type
- WTA, wall teichoic acid
- XDR, extremely drug-resistant
- antimicrobial peptide
- antimicrobial resistance
- bid, bis in die (two times a day)
- i.p., intraperitoneal
- i.v., intravenous
- lipopeptide
- mITT population, minimal intend-to-treat population
- peptide antibiotic
- s.c., subcutaneous
Collapse
Affiliation(s)
- Gregory Upert
- Polyphor Ltd, Hegenheimermattweg 125, 4123 Allschwil, Switzerland
| | - Anatol Luther
- Bachem AG, Hauptstrasse 114, 4416 Bubendorf, Switzerland
| | - Daniel Obrecht
- Polyphor Ltd, Hegenheimermattweg 125, 4123 Allschwil, Switzerland
| | - Philipp Ermert
- Polyphor Ltd, Hegenheimermattweg 125, 4123 Allschwil, Switzerland
| |
Collapse
|
14
|
Bibi M, Murphy S, Benhamou RI, Rosenberg A, Ulman A, Bicanic T, Fridman M, Berman J. Combining Colistin and Fluconazole Synergistically Increases Fungal Membrane Permeability and Antifungal Cidality. ACS Infect Dis 2021; 7:377-389. [PMID: 33471513 PMCID: PMC7887753 DOI: 10.1021/acsinfecdis.0c00721] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Indexed: 12/17/2022]
Abstract
The increasing emergence of drug-resistant fungal pathogens, together with the limited number of available antifungal drugs, presents serious clinical challenges to treating systemic, life-threatening infections. Repurposing existing drugs to augment the antifungal activity of well-tolerated antifungals is a promising antifungal strategy with the potential to be implemented rapidly. Here, we explored the mechanism by which colistin, a positively charged lipopeptide antibiotic, enhances the antifungal activity of fluconazole, the most widely used orally available antifungal. In a range of susceptible and drug-resistant isolates and species, colistin was primarily effective at reducing fluconazole tolerance, a property of subpopulations of cells that grow slowly in the presence of a drug and may promote the emergence of persistent infections and resistance. Clinically relevant concentrations of colistin synergized with fluconazole, reducing fluconazole minimum inhibitory concentration 4-fold. Combining fluconazole and colistin also increased survival in a C. albicans Galleria mellonella infection, especially for a highly fluconazole-tolerant isolate. Mechanistically, colistin increased permeability to fluorescent antifungal azole probes and to intracellular dyes, accompanied by an increase in cell death that was dependent upon pharmacological or genetic inhibition of the ergosterol biosynthesis pathway. The positive charge of colistin is critical to its antifungal, and antibacterial, activity: colistin directly binds to several eukaryotic membrane lipids (i.e., l-α-phosphatidylinositol, l-α-phosphatidyl-l-serine, and l-α-phosphatidylethanolamine) that are enriched in the membranes of ergosterol-depleted cells. These results support the idea that colistin binds to fungal membrane lipids and permeabilizes fungal cells in a manner that depends upon the degree of ergosterol depletion.
Collapse
Affiliation(s)
- Maayan Bibi
- Shmunis
School of Biomedical and Cancer Research, George S. Wise Faculty of
Life Sciences, Tel Aviv University, Ramat Aviv 6997801, Israel
| | - Sarah Murphy
- Institute
for Infection and Immunity, St George’s
University, Cranmer Terrace, London SW17 0RE, United Kingdom
| | - Raphael I. Benhamou
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv 6997801, Israel
| | - Alex Rosenberg
- Shmunis
School of Biomedical and Cancer Research, George S. Wise Faculty of
Life Sciences, Tel Aviv University, Ramat Aviv 6997801, Israel
| | - Adi Ulman
- Shmunis
School of Biomedical and Cancer Research, George S. Wise Faculty of
Life Sciences, Tel Aviv University, Ramat Aviv 6997801, Israel
| | - Tihana Bicanic
- Institute
for Infection and Immunity, St George’s
University, Cranmer Terrace, London SW17 0RE, United Kingdom
- Clinical
Academic Group in Infection, St George’s
Hospital NHS Trust, London SW17 0QT, United Kingdom
| | - Micha Fridman
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv 6997801, Israel
| | - Judith Berman
- Shmunis
School of Biomedical and Cancer Research, George S. Wise Faculty of
Life Sciences, Tel Aviv University, Ramat Aviv 6997801, Israel
| |
Collapse
|
15
|
Adembri C, Novelli A, Nobili S. Some Suggestions from PK/PD Principles to Contain Resistance in the Clinical Setting-Focus on ICU Patients and Gram-Negative Strains. Antibiotics (Basel) 2020; 9:E676. [PMID: 33036190 PMCID: PMC7601871 DOI: 10.3390/antibiotics9100676] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 12/18/2022] Open
Abstract
The containment of the phenomenon of resistance towards antimicrobials is a priority, especially in preserving molecules acting against Gram-negative pathogens, which represent the isolates more frequently found in the fragile population of patients admitted to Intensive Care Units. Antimicrobial therapy aims to prevent resistance through several actions, which are collectively known as "antimicrobial stewardship", to be taken together, including the application of pharmacokinetic/pharmacodynamic (PK/PD) principles. PK/PD application has been shown to prevent the emergence of resistance in numerous experimental studies, although a straight translation to the clinical setting is not possible. Individualized antibiotic dosing and duration should be pursued in all patients, and even more especially when treating intensive care unit (ICU) septic patients in whom optimal exposure is both difficult to achieve and necessary. In this review, we report on the available data that support the application of PK/PD parameters to contain the development of resistance and we give some practical suggestions that can help to translate the benefit of PK/PD application to the bedside.
Collapse
Affiliation(s)
- Chiara Adembri
- Department of Health Sciences, Section of Anesthesiology and IC, University of Florence, 50134 Firenze, Italy;
| | - Andrea Novelli
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, 50139 Firenze, Italy;
| | - Stefania Nobili
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, 50139 Firenze, Italy;
| |
Collapse
|
16
|
Garzón V, Bustos RH, G. Pinacho D. Personalized Medicine for Antibiotics: The Role of Nanobiosensors in Therapeutic Drug Monitoring. J Pers Med 2020; 10:E147. [PMID: 32993004 PMCID: PMC7712907 DOI: 10.3390/jpm10040147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 01/01/2023] Open
Abstract
Due to the high bacterial resistance to antibiotics (AB), it has become necessary to adjust the dose aimed at personalized medicine by means of therapeutic drug monitoring (TDM). TDM is a fundamental tool for measuring the concentration of drugs that have a limited or highly toxic dose in different body fluids, such as blood, plasma, serum, and urine, among others. Using different techniques that allow for the pharmacokinetic (PK) and pharmacodynamic (PD) analysis of the drug, TDM can reduce the risks inherent in treatment. Among these techniques, nanotechnology focused on biosensors, which are relevant due to their versatility, sensitivity, specificity, and low cost. They provide results in real time, using an element for biological recognition coupled to a signal transducer. This review describes recent advances in the quantification of AB using biosensors with a focus on TDM as a fundamental aspect of personalized medicine.
Collapse
Affiliation(s)
- Vivian Garzón
- PhD Biosciences Program, Universidad de La Sabana, Chía 140013, Colombia;
| | - Rosa-Helena Bustos
- Therapeutical Evidence Group, Clinical Pharmacology, Universidad de La Sabana, Chía 140013, Colombia;
| | - Daniel G. Pinacho
- Therapeutical Evidence Group, Clinical Pharmacology, Universidad de La Sabana, Chía 140013, Colombia;
| |
Collapse
|
17
|
Moosavian M, Ahmadi K, Shoja S, Mardaneh J, Shahi F, Afzali M. Antimicrobial resistance patterns and their encoding genes among clinical isolates of Acinetobacter baumannii in Ahvaz, Southwest Iran. MethodsX 2020; 7:101031. [PMID: 32983919 PMCID: PMC7492985 DOI: 10.1016/j.mex.2020.101031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 08/10/2020] [Indexed: 01/08/2023] Open
Abstract
Acinetobacter baumannii is one of the most important organisms in nosocomial infections. Antibiotic resistance in this bacterium causes many problems in treating patients. This study aimed to investigate antibiotic resistance patterns and resistance-related, genes in clinical isolates of Acinetobacter baumannii. This descriptive study was conducted on 124 isolates of Acinetobacter baumannii collected from clinical samples in two teaching hospitals in Ahvaz. The antibiotic resistance pattern was determined by disk diffusion. The presence of genes coding for antibiotic resistance was determined using the polymerase chain reaction method. Out of 124 isolates, the highest rate of resistance was observed for rifampin (96.8%). The resistance rate for imipenem, meropenem, colistin, and polymyxin-B were 78.2%, 73.4%, 0.8% and 0.8%, respectively. The distribution of qnrA, qnrB, qnrS, Tet A, TetB, and Sul1genes were 52.6%, 0%, 3.2%, 93.5% 69.2%, and 6.42%, respectively. High prevalence of tetA, tetB, and qnrA genes among Acinetobacter baumannii isolated strains in this study indicate the important role of these genes in multidrug resistance in this bacteria. • Acinetobacter baumannii is an important human pathogen that has attracted the attention of many researchers Antibiotic resistance in this bacterium causes many problems in treating patients. • The resistance rate for imipenem, meropenem, colistin, and polymyxin-B were 78.2%, 73.4%, 0.8% and 0.8%, respectively. The distribution of qnrA, qnrB, qnrS, Tet A, TetB, and Sul1genes were 52.6%, 0%, 3.2%, 93.5% 69.2%, and 6.42%, respectively.
Collapse
Affiliation(s)
- Mojtaba Moosavian
- Infectious and Tropical Diseases Research Center, Health Research Institue, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Khadijeh Ahmadi
- Infectious and Tropical Diseases Research Center, Health Research Institue, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeed Shoja
- Infectious and Tropical Disease Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Jalal Mardaneh
- Department of Microbiology, School of Medicine, and Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Fatemeh Shahi
- Infectious and Tropical Diseases Research Center, Health Research Institue, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Afzali
- Infectious and Tropical Diseases Research Center, Health Research Institue, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
18
|
Is There a Role for the Therapeutic Drug Monitoring of Colistin? An Overview. Pharmaceuticals (Basel) 2020; 13:ph13030042. [PMID: 32155714 PMCID: PMC7151705 DOI: 10.3390/ph13030042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/27/2020] [Accepted: 03/01/2020] [Indexed: 02/06/2023] Open
Abstract
Colistin is used as a last-line antibiotic for the treatment of Gram-negative multiresistant bacteria. Due to its high nephrotoxicity, Therapeutic Drug Monitoring (TDM) is recommended for dose adjustment. We aimed to evaluate the available evidence of TDM in patients given colistin to treat Gram-negative infections. In this paper, we offer an overview, using an electronic search of the literature (published up to June 2019, without language restrictions) that compares the clinical outcomes and measurements of colistin TDM. Ultimately, the Therapeutic Drug Monitoring (TDM) of colistin in Plasma could prevent nephrotoxicity risk.
Collapse
|
19
|
Garzón V, Pinacho DG, Bustos RH, Garzón G, Bustamante S. Optical Biosensors for Therapeutic Drug Monitoring. BIOSENSORS 2019; 9:E132. [PMID: 31718050 PMCID: PMC6955905 DOI: 10.3390/bios9040132] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 12/26/2022]
Abstract
Therapeutic drug monitoring (TDM) is a fundamental tool when administering drugs that have a limited dosage or high toxicity, which could endanger the lives of patients. To carry out this monitoring, one can use different biological fluids, including blood, plasma, serum, and urine, among others. The help of specialized methodologies for TDM will allow for the pharmacodynamic and pharmacokinetic analysis of drugs and help adjust the dose before or during their administration. Techniques that are more versatile and label free for the rapid quantification of drugs employ biosensors, devices that consist of one element for biological recognition coupled to a signal transducer. Among biosensors are those of the optical biosensor type, which have been used for the quantification of different molecules of clinical interest, such as antibiotics, anticonvulsants, anti-cancer drugs, and heart failure. This review presents an overview of TDM at the global level considering various aspects and clinical applications. In addition, we review the contributions of optical biosensors to TDM.
Collapse
Affiliation(s)
- Vivian Garzón
- Doctoral Programme of Biosciences, Universidad de La Sabana, Chía 140013, Colombia
- Therapeutic Evidence Group, Clinical Pharmacology, Universidad de La Sabana, Chía 140013, Colombia
| | - Daniel G. Pinacho
- Therapeutic Evidence Group, Clinical Pharmacology, Universidad de La Sabana, Chía 140013, Colombia
| | - Rosa-Helena Bustos
- Therapeutic Evidence Group, Clinical Pharmacology, Universidad de La Sabana, Chía 140013, Colombia
| | - Gustavo Garzón
- Faculty of Medicine, Universidad de La Sabana, Chía 140013, Colombia
| | - Sandra Bustamante
- Physics Department, the Centre for NanoHealth, Swansea University, Swansea SA2 8PP, UK
- Vedas, Corporación de Investigación e Innovación, Medellín 050001, Colombia
| |
Collapse
|