1
|
Kim J, Ndegwa E. One Health Landscape of Antimicrobial Resistance in Bacteria Isolated from Virginia between 2007-2021. Antibiotics (Basel) 2024; 13:504. [PMID: 38927171 PMCID: PMC11201128 DOI: 10.3390/antibiotics13060504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
The emergence of antimicrobial-resistant (AMR) bacteria has become a critical global One Health issue, mainly attributed to the extensive use of antimicrobial agents in human and agricultural settings. Regional and local AMR surveillance data is essential for implementing awareness and mitigation strategies. This article assesses AMR frequency in 1604 bacterial isolates consisting of Escherichia coli (E. coli) and Salmonella spp. isolated from diverse sources in Virginia, including farm animals, wildlife, environment, and food samples from 2007 to 2021. The results are based on the Kirby-Bauer disc diffusion assessment method of susceptibility to select antimicrobial agents, spanning nine distinct categories approved by the US Food and Drug Administration for clinical use. Streptomycin (STR) and tetracycline (TCY) exhibited the highest frequency of resistance in E. coli (39.1%) and Salmonella (25.2%), respectively. Multidrug resistance (MDR) was evident in 6.6% of E. coli and 10.9% of Salmonella isolates. Notably, 51% of E. coli and 36% of Salmonella isolates demonstrated resistance to more than one antimicrobial. None of the tested antimicrobials guaranteed effectiveness against the bacteria isolated from the surveyed sources and regions. The study found heightened MDR and distinct AMR patterns in bacteria isolated from food products compared to other sampled sources. These findings are vital for comprehending the current AMR landscape, prompting the development of strategies to mitigate the emergence of AMR bacteria, and advocating prudent antimicrobial use from a One Health perspective.
Collapse
Affiliation(s)
- Jimin Kim
- Columbia College, Columbia University, New York, NY 10027, USA
| | - Eunice Ndegwa
- Agricultural Research Station, Virginia State University, 1 Hayden Drive, Petersburg, VA 23806, USA
| |
Collapse
|
2
|
Duangurai T, Rungruengkitkul A, Kong-Ngoen T, Tunyong W, Kosoltanapiwat N, Adisakwattana P, Vanaporn M, Indrawattana N, Pumirat P. Phylogenetic analysis and antibiotic resistance of Escherichia coli isolated from wild and domestic animals at an agricultural land interface area of Salaphra wildlife sanctuary, Thailand. Vet World 2022; 15:2800-2809. [PMID: 36718336 PMCID: PMC9880845 DOI: 10.14202/vetworld.2022.2800-2809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/26/2022] [Indexed: 12/13/2022] Open
Abstract
Background and Aim Domestic and wild animals are important reservoirs for antibiotic-resistant bacteria. This study aimed to isolate Escherichia coli from feces of domestic and wild animals at an agricultural land interface area of Salaphra Wildlife Sanctuary, Thailand, and study the phylogenic characteristics and antibiotic resistance in these isolates. Materials and Methods In this cross-sectional, descriptive study, we randomly collected ground feces from free-ranging wild animals (deer and elephants) and domestic animals (cattle and goats). All fecal samples were inoculated onto MacConkey agar plates, and lactose-fermenting colonies were identified as E. coli. Antibiotic susceptibility of the E. coli isolates was determined using the disc diffusion method. Polymerase chain reaction assays were used to detect antibiotic resistance and virulence genes. Results We obtained 362 E. coli isolates from the collected fecal samples. The E. coli isolates were categorized into four phylogenetic groups according to the virulence genes (chuA, vjaA, and TspE4C2). Phylogenetic Group D was predominant in the deer (41.67%) and elephants (63.29%), whereas phylogenetic Group B1 was predominant in the cattle (62.31%), and phylogenetic Groups A (36.36%) and B2 (33.33%) were predominant in the goats. Antibiotic susceptibility testing revealed that most antibiotic-resistant E. coli were isolated from domestic goats (96.96%). Among the 362 E. coli isolates, 38 (10.5%) were resistant to at least one antibiotic, 21 (5.8%) were resistant to two antibiotics, and 6 (1.66%) were resistant to three or more antibiotics. Ampicillin (AMP) was the most common antibiotic (48.48%) to which the E. coli were resistant, followed by tetracycline (TET) (45.45%) and trimethoprim-sulfamethoxazole (3.03%). One isolate from an elephant was resistant to five antibiotics: AMP, amoxicillin, sulfisoxazole, TET, and ciprofloxacin. Determination of antibiotic resistance genes confirmed that E. coli isolates carried antibiotic resistance genes associated with phenotypic resistance to antibiotics. Most antibiotic-resistant E. coli belonged to phylogenic Groups A and B1, and most non-resistant E. coli belonged to phylogenic Groups B2 and D. Conclusion Monitoring E. coli isolates from wild and domestic animals showed that all four phylogenic groups of E. coli have developed antibiotic resistance and are potential sources of multidrug resistance. High levels of antibiotic resistance have been linked to domestic animals. Our results support strengthening surveillance to monitor the emergence and effects of antibiotic-resistant microorganisms in animals.
Collapse
Affiliation(s)
- Taksaon Duangurai
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Amporn Rungruengkitkul
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Thida Kong-Ngoen
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Witawat Tunyong
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nathamon Kosoltanapiwat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Poom Adisakwattana
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Muthita Vanaporn
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nitaya Indrawattana
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Pornpan Pumirat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand,Corresponding author: Pornpan Pumirat, e-mail: Co-authors: TD: , AR: , TK: , WT: , NK: , PA: , MV: , NI:
| |
Collapse
|
3
|
Banerjee J, Bhattacharyya D, Habib M, Chaudhary S, Biswas S, Maji C, Nanda PK, Das AK, Dandapat P, Samanta I, Lorenzo JM, Dutt T, Bandyopadhyay S. Antimicrobial Resistance Pattern, Clustering Mechanisms and Correlation Matrix of Drug-Resistant Escherichia coli in Black Bengal Goats in West Bengal, India. Antibiotics (Basel) 2022; 11:1344. [PMID: 36290002 PMCID: PMC9598321 DOI: 10.3390/antibiotics11101344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022] Open
Abstract
A cross-sectional study covering four agro-climatic zones of West Bengal, India, was carried out to understand the risk-factors, antimicrobial resistance mechanism and clustering of the resistance characteristics of Escherichia coli isolated from healthy (170) and diarrhoeic (74) goats reared under intensive (52) and semi-intensive (192) farming practices. Of the 488 E. coli isolates, the majority, including the extended spectrum (n: 64, 13.11%) and AmpC β-lactamase (ACBL) (n: 86, 17.62%) producers, were resistant to tetracycline (25.2%), followed by enrofloxacin (24.5%), cefotaxime (21.5%) and amikacin (20.5%). Statistical modelling revealed that the isolates from diarrhoeic animals (p < 0.001) are likely to be more ACBL-positive than those from the healthy counterparts. Similarly, cefotaxime (p < 0.05) and enrofloxacin-resistance (p < 0.01) were significantly higher in diarrhoeic goats and in goats reared intensively. The isolates (n = 35) resistant to multiple drugs revealed the presence of β-lactamase [blaCTXM-1-(21), blaSHV-(7), blaTEM-(3), blaCMY-6-(1), blaCITM-(3)]; quinolone [qnrB-(10), qnrS-(7), aac(6’)-Ib-cr-(3)]; tetracycline [tetA-(19), tetB-(4)] and sulphonamide resistance determinants [sul1-(4)]; multiple plasmids, especially those belonging to the IncF and IncI1 replicon types; and active acrAB efflux pumps. Further, two isolates harbored the carbapenem resistance (blaNDM-5) gene and eight were strong biofilm producers. This first ever study conducted to unravel the status of AMR in goat farming reveals that not only the intensive farming practices but also certain clinical ailments such as diarrhoea can increase the shedding of the drug-resistant isolate. The emergence of multi-drug resistant (MDR) E. coli in goats, particularly those that are carbapenem resistant, is a cause for concern that indicates the spread of such pathogens even in the livestock sub-sector generally considered as naive.
Collapse
Affiliation(s)
- Jaydeep Banerjee
- ICAR-Indian Veterinary Research Institute, Eastern Regional Station, 37 Belgachia Road, Kolkata 700 037, India
| | - Debaraj Bhattacharyya
- ICAR-Indian Veterinary Research Institute, Eastern Regional Station, 37 Belgachia Road, Kolkata 700 037, India
| | - Md Habib
- ICAR-Indian Veterinary Research Institute, Eastern Regional Station, 37 Belgachia Road, Kolkata 700 037, India
| | - Siddharth Chaudhary
- ICAR-Indian Veterinary Research Institute, Eastern Regional Station, 37 Belgachia Road, Kolkata 700 037, India
| | - Suman Biswas
- Faculty of Veterinary Science, West Bengal University of Animal and Fishery Sciences, Kolkata 700 037, India
| | - Chinmoy Maji
- Faculty of Veterinary Science, West Bengal University of Animal and Fishery Sciences, Kolkata 700 037, India
| | - Pramod Kumar Nanda
- ICAR-Indian Veterinary Research Institute, Eastern Regional Station, 37 Belgachia Road, Kolkata 700 037, India
| | - Arun K. Das
- ICAR-Indian Veterinary Research Institute, Eastern Regional Station, 37 Belgachia Road, Kolkata 700 037, India
| | - Premanshu Dandapat
- ICAR-Indian Veterinary Research Institute, Eastern Regional Station, 37 Belgachia Road, Kolkata 700 037, India
| | - Indranil Samanta
- Faculty of Veterinary Science, West Bengal University of Animal and Fishery Sciences, Kolkata 700 037, India
| | - Jose M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia nº 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
- Área de Tecnoloxía dos Alimentos, Facultade de Ciencias, Universidade de Vigo, 32004 Ourense, Spain
| | - Triveni Dutt
- Division of Livestock Production and Management, ICAR-Indian Veterinary Research Institute, Izatnagar 243 122, India
| | - Samiran Bandyopadhyay
- ICAR-Indian Veterinary Research Institute, Eastern Regional Station, 37 Belgachia Road, Kolkata 700 037, India
| |
Collapse
|
4
|
Kim C, Fatani A, Almuqati R, Rahemi A, Abujamous A, Wynn C, Nartea T, Ndegwa E, Rutto L, Dhakal R. Prevalence and antimicrobial resistance of foodborne pathogens in value‐added commodities procured from farmers' markets in Central Virginia. J Food Saf 2021. [DOI: 10.1111/jfs.12931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chyer Kim
- Agricultural Research Station Virginia State University Petersburg Virginia USA
| | - Abeer Fatani
- Department of Biology Virginia State University Petersburg Virginia USA
| | - Rehab Almuqati
- Department of Biology Virginia State University Petersburg Virginia USA
| | - Alireza Rahemi
- Agricultural Research Station Virginia State University Petersburg Virginia USA
| | - Abeer Abujamous
- Agricultural Research Station Virginia State University Petersburg Virginia USA
| | - Crystal Wynn
- Department of Family and Consumer Sciences Virginia State University Petersburg Virginia USA
| | - Theresa Nartea
- Cooperative Extension Virginia State University Petersburg Virginia USA
| | - Eunice Ndegwa
- Agricultural Research Station Virginia State University Petersburg Virginia USA
| | - Laban Rutto
- Agricultural Research Station Virginia State University Petersburg Virginia USA
| | - Ramesh Dhakal
- Agricultural Research Station Virginia State University Petersburg Virginia USA
| |
Collapse
|
5
|
Kim C, Almuqati R, Fatani A, Rahemi A, Kaseloo P, Wynn C, Nartea T, Ndegwa E, Rutto L. Prevalence and antimicrobial resistance of foodborne pathogens in select fresh produce procured from farmers' markets in Central Virginia. J Food Saf 2021. [DOI: 10.1111/jfs.12895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Chyer Kim
- Agricultural Research Station Virginia State University Petersburg Virginia USA
| | - Rehab Almuqati
- Department of Biology Virginia State University Petersburg Virginia USA
| | - Abeer Fatani
- Department of Biology Virginia State University Petersburg Virginia USA
| | - Alireza Rahemi
- Agricultural Research Station Virginia State University Petersburg Virginia USA
| | - Paul Kaseloo
- Department of Biology Virginia State University Petersburg Virginia USA
| | - Crystal Wynn
- Department of Family and Consumer Sciences Virginia State University Petersburg Virginia USA
| | - Theresa Nartea
- Cooperative Extension Virginia State University Petersburg Virginia USA
| | - Eunice Ndegwa
- Agricultural Research Station Virginia State University Petersburg Virginia USA
| | - Laban Rutto
- Agricultural Research Station Virginia State University Petersburg Virginia USA
| |
Collapse
|
6
|
Ndegwa E, Alahmde A, Kim C, Kaseloo P, O'Brien D. Age related differences in phylogenetic diversity, prevalence of Shiga toxins, Intimin, Hemolysin genes and select serogroups of Escherichia. coli from pastured meat goats detected in a longitudinal cohort study. BMC Vet Res 2020; 16:266. [PMID: 32731899 PMCID: PMC7391229 DOI: 10.1186/s12917-020-02479-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/15/2020] [Indexed: 12/24/2022] Open
Abstract
Background Little is known on significance, diversity and characteristics of gut E. coli in goats despite their importance as food animals globally. We characterized the temporal dynamics in diversity of E. coli in fecal samples from a cohort of goat kids and adult meat goats on pasture over a one-year period. Isolates were characterized based on phylogenetic grouping, virulence genes; shiga toxins 1 and 2 (Stx1&Stx2) (STEC), intimin (eaeA), hemolysin (hly) and select important sero-groups (026, 045, 0103, 0126 and 0146) using molecular methods. Results A total of 516 E. coli isolates were screened. Prevalence of virulence genes and STEC was 65 and 56% respectively. Prevalence of virulence genes and STEC was significantly higher in goat kids less than six months (76% /66%) than adults (48% /28%). Isolates with virulence profiles of two or more genes were also higher in young goat kids (50%) than adults (20%). Entero-pathogenic E. coli (EPEC-eaeA gene only) were mostly from pre-weaned goat kids while hly gene only isolates were significantly higher in adults. The stx1, stx2 and hly genes peaked around weaning (60, 63 and 52%) respectively. Goats kids were mostly hosts to group D (59%) while adults older than one year had B1 (75%) isolates. Group D isolates were most abundant at weaning (64%) and diarrhea samples (74%). Group B2 isolates overall (6%) were mostly detected around weaning (63%) while A isolates were 4% overall. Twenty-four isolates belonged to sero-groups 026, 0103 and 0146 with 70% of the isolates detected around weaning. Nineteen of these isolates were STEC with most harboring the stx1/stx2/hly/eae (25%) profile. Most belonged to O26 sero-group (75%) and phylogroup D (75%). Conclusion To our knowledge this is the first study to highlight longitudinal age related differences in E. coli phylogenetic diversity, abundance of virulence genes and select important sero-groups in goats. Differences detected suggest a possible role of age and weaning stress in influencing E. coli diversity in the gut of goats. The findings are relevant to both animal and public health to advise on further studies on caprine E. coli isolates as animal and human pathogens.
Collapse
Affiliation(s)
- Eunice Ndegwa
- Agricultural Research Station, Virginia State University, Petersburg, VA, 23806, USA.
| | - Aber Alahmde
- Department of Biology, Virginia State University, Petersburg, VA, 23806, USA
| | - Chyer Kim
- Agricultural Research Station, Virginia State University, Petersburg, VA, 23806, USA
| | - Paul Kaseloo
- Department of Biology, Virginia State University, Petersburg, VA, 23806, USA
| | - Dahlia O'Brien
- College of Agriculture, Virginia Cooperative Extension, Virginia State University, Petersburg, VA, 23806, USA
| |
Collapse
|