1
|
Ahmad I, Xuan T, Wang Q, Zhang S, Wang L, Gu J, Qi F, Luan W. Bacterial Lipoteichoic Acid Induces Capsular Contracture by Activating Innate Immune Response. Plast Reconstr Surg 2024; 154:333-342. [PMID: 37699551 DOI: 10.1097/prs.0000000000011054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
BACKGROUND Capsular contracture is attributed to an exaggerated fibrosis response within the capsule and is partly associated with bacterial contamination in situ. However, the cellular mechanisms that initiate this response are unclear. METHODS The authors developed a mouse model of capsular contracture by repeated injection of 10 μg/mL lipoteichoic acid (LTA). The histological changes in the capsule tissue were measured by hematoxylin and eosin, Masson trichrome, and immunohistochemical staining. The expression of cytokines was measured by quantitative reverse transcription polymerase chain reaction. The authors also used pharmacological methods to verify the roles of macrophages and toll-like receptor 2 (TLR2) signaling in this pathological process. RESULTS The authors discovered that repeated LTA injection, at a low concentration, could induce thickening of the capsule tissue. Macrophage infiltration and TLR2/nuclear factor-κB signaling activated in this process could be suppressed by macrophage depletion or TLR2 receptor inhibition. CONCLUSION As TLR2 signal activation was found to cause capsular contracture by inducing macrophage infiltration as a consequence of trace amounts of LTA contamination in situ, this target is helpful for understanding that chronic or repeated subclinical infection can activate capsular contracture. CLINICAL RELEVANCE STATEMENT This finding is of significant importance for understanding that chronic or repeated subclinical infection could activate a persistent immune response and capsular contracture, and provides novel strategies to interfere with the formation of capsular contracture.
Collapse
Affiliation(s)
- Ikram Ahmad
- From the Department of Plastic Surgery, Zhongshan Hospital, Fudan University
| | - Tianfan Xuan
- From the Department of Plastic Surgery, Zhongshan Hospital, Fudan University
- Treatment Center of Burn and Trauma, Affiliated Hospital of Jiangnan University, Jiangnan University
| | - Qiang Wang
- From the Department of Plastic Surgery, Zhongshan Hospital, Fudan University
| | - Simin Zhang
- From the Department of Plastic Surgery, Zhongshan Hospital, Fudan University
| | - Lu Wang
- From the Department of Plastic Surgery, Zhongshan Hospital, Fudan University
| | - Jianying Gu
- From the Department of Plastic Surgery, Zhongshan Hospital, Fudan University
| | - Fazhi Qi
- From the Department of Plastic Surgery, Zhongshan Hospital, Fudan University
| | - Wenjie Luan
- From the Department of Plastic Surgery, Zhongshan Hospital, Fudan University
| |
Collapse
|
2
|
Srivastava A, Verma N, Kumar V, Apoorva P, Agarwal V. Biofilm inhibition/eradication: exploring strategies and confronting challenges in combatting biofilm. Arch Microbiol 2024; 206:212. [PMID: 38616221 DOI: 10.1007/s00203-024-03938-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/04/2024] [Accepted: 03/20/2024] [Indexed: 04/16/2024]
Abstract
Biofilms are complex communities of microorganisms enclosed in a self-produced extracellular matrix, posing a significant threat to different sectors, including healthcare and industry. This review provides an overview of the challenges faced due to biofilm formation and different novel strategies that can combat biofilm formation. Bacteria inside the biofilm exhibit increased resistance against different antimicrobial agents, including conventional antibiotics, which can lead to severe problems in livestock and animals, including humans. In addition, biofilm formation also imposes heavy economic pressure on industries. Hence it becomes necessary to explore newer alternatives to eradicate biofilms effectively without applying selection pressure on the bacteria. Excessive usage of antibiotics may also lead to an increase in the number of resistant strains as bacteria employ an advanced antimicrobial resistance mechanism. This review provides insight into multifaceted technologies like quorum sensing inhibition, enzymes, antimicrobial peptides, bacteriophage, phytocompounds, and nanotechnology to neutralize biofilms without developing antimicrobial resistance (AMR). Furthermore, it will pave the way for developing newer therapeutic agents to deal with biofilms more efficiently.
Collapse
Affiliation(s)
- Anmol Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India
| | - Nidhi Verma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India
| | - Vivek Kumar
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India
| | - Pragati Apoorva
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India
| | - Vishnu Agarwal
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India.
| |
Collapse
|
3
|
Sanjai C, Hakkimane SS, Guru BR, Gaonkar SL. A comprehensive review on anticancer evaluation techniques. Bioorg Chem 2024; 142:106973. [PMID: 37984104 DOI: 10.1016/j.bioorg.2023.106973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
The development of effective anticancer strategies and the improvement of our understanding of cancer need analytical tools. Utilizing a variety of analytical approaches while investigating anti-cancer medicines gives us a thorough understanding of the traits and mechanisms concerned to cancer cells, which enables us to develop potent treatments to combat them. The importance of anticancer research may be attributed to various analytical techniques that contributes to the identification of therapeutic targets and the assessment of medication efficacy, which are crucial things in expanding our understanding of cancer biology. The study looks at methods that are often used in cancer research, including cell viability assays, clonogenic assay, flow cytometry, 2D electrophoresis, microarray, immunofluorescence, western blot caspase activation assay, bioinformatics, etc. The fundamentals, applications, and how each technique analytical advances our understanding of cancer are briefly reviewed.
Collapse
Affiliation(s)
- Chetana Sanjai
- Department of Biotechnology, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sushruta S Hakkimane
- Department of Biotechnology, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Bharath Raja Guru
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Santosh L Gaonkar
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
4
|
Zhu C, Bai Y, Zhao X, Liu S, Xia X, Zhang S, Wang Y, Zhang H, Xu Y, Chen S, Jiang J, Wu Y, Wu X, Zhang G, Zhang X, Hu J, Wang L, Zhao Y, Bai Y. Antimicrobial Peptide MPX with Broad-Spectrum Bactericidal Activity Promotes Proper Abscess Formation and Relieves Skin Inflammation. Probiotics Antimicrob Proteins 2023; 15:1608-1625. [PMID: 36626016 DOI: 10.1007/s12602-022-10035-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2022] [Indexed: 01/11/2023]
Abstract
Bacteria have developed antibiotic resistance during the large-scale use of antibiotics, and multidrug-resistant strains are common. The development of new antibiotics or antibiotic substitutes has become an important challenge for humankind. MPX is a 14 amino acid peptide belonging to the MP antimicrobial peptide family. In this study, the antibacterial spectrum of the antimicrobial peptide MPX was first tested. The antimicrobial peptide MPX was tested for antimicrobial activity against the gram-positive bacterium S. aureus ATCC 25923, the gram-negative bacteria E. coli ATCC 25922 and Salmonella enterica serovar Typhimurium CVCC541, and the fungus Candida albicans ATCC 90029. The results showed that MPX had good antibacterial activity against the above four strains, especially against E. coli, for which the MIC was as low as 15.625 μg/mL. The study on the bactericidal mechanism of the antimicrobial peptide revealed that MPX can destroy the integrity of the cell membrane, increase membrane permeability, and change the electromotive force of the membrane, thereby allowing the contents to leak out and mediating bacterial death. A mouse acute infection model was used to evaluate the therapeutic effect of MPX after acute infection of subcutaneous tissue by S. aureus. The study showed that MPX could promote tissue repair in S. aureus infection and alleviate lung damage caused by S. aureus. In addition, skin H&E staining showed that MPX treatment facilitated the formation of appropriate abscesses at the subcutaneous infection site and facilitated the clearance of bacteria by the skin immune system. The above results show that MPX has good antibacterial activity and broad-spectrum antibacterial potential and can effectively prevent the invasion of subcutaneous tissue by S. aureus, providing new ideas and directions for the immunotherapy of bacterial infections.
Collapse
Affiliation(s)
- Chunling Zhu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
- College of Veterinary Medicine, Jilin University, Changchun, 130000, China
| | - Yilin Bai
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Xueqin Zhao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Shanqin Liu
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Xiaojing Xia
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Shouping Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Yimin Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Huihui Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Yanzhao Xu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Shijun Chen
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Jinqing Jiang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Yundi Wu
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, China
- School of Biomedical Engineering, State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, China
| | - Xilong Wu
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, China
- School of Biomedical Engineering, State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, China
| | - Gaiping Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Xueming Zhang
- College of Veterinary Medicine, Jilin University, Changchun, 130000, China
| | - Jianhe Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Lei Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China.
- School of Biomedical Engineering, State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, China.
| | - Yaya Zhao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| | - Yueyu Bai
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| |
Collapse
|
5
|
Antibacterial Potential of Extracts and Phytoconstituents Isolated from Syncarpia hillii Leaves In Vitro. PLANTS 2022; 11:plants11030283. [PMID: 35161262 PMCID: PMC8838964 DOI: 10.3390/plants11030283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 01/02/2023]
Abstract
(1) Background: Rapidly increasing antibiotic resistance is one of the greatest threats to global health, affecting individuals regardless of age. Medicinal plants are widely used in traditional medicine to prevent and attenuate infectious conditions with minimal adverse effects. However, only a few have been phytochemically investigated for their medicinal properties and subsequent biological activities. Syncarpia hillii, a plant traditionally used by Indigenous Australians to treat sores, wounds, and skin infections, is no exception. (2) Methods: Primary extracts obtained from mature S. hillii leaves were evaluated for their antibacterial potential against 19 bacterial strains. The methanol extract was subjected to compound isolation and identification due to its preliminary bactericidal efficacy. (3) Results: Staphylococcal species were the most susceptible bacterial strain with a MIC value of 0.63 mg/mL to the S. hillii methanol extract. Quercetin-3-O-β-D-glucuronide and shikimic acid isolated from S. hillii methanol leaf extracts exhibited enhanced antibacterial effects against the tested bacteria with quercetin-3-O-β-D-glucuronide eliciting a MIC value of 0.78 µg/mL against E. faecalis. (4) Conclusions: S. hillii leaves are comprised of bioactive compounds that are bactericidal against several Gram-positive and Gram-negative bacteria.
Collapse
|
6
|
Enhancement of Antibiofilm Activity of Ciprofloxacin against Staphylococcus aureus by Administration of Antimicrobial Peptides. Antibiotics (Basel) 2021; 10:antibiotics10101159. [PMID: 34680739 PMCID: PMC8532819 DOI: 10.3390/antibiotics10101159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 11/17/2022] Open
Abstract
Staphylococcus aureus can develop resistance by mutation, transfection or biofilm formation. Resistance was induced in S. aureus by growth in sub-inhibitory concentrations of ciprofloxacin for 30 days. The ability of the antimicrobials to disrupt biofilms was determined using crystal violet and live/dead staining. Effects on the cell membranes of biofilm cells were evaluated by measuring release of dyes and ATP, and nucleic acids. None of the strains developed resistance to AMPs while only S. aureus ATCC 25923 developed resistance (128 times) to ciprofloxacin after 30 passages. Only peptides reduced biofilms of ciprofloxacin-resistant cells. The antibiofilm effect of melimine with ciprofloxacin was more (27%) than with melimine alone at 1X MIC (p < 0.001). Similarly, at 1X MIC the combination of Mel4 and ciprofloxacin produced more (48%) biofilm disruption than Mel4 alone (p < 0.001). Combinations of either of the peptides with ciprofloxacin at 2X MIC released ≥ 66 nM ATP, more than either peptide alone (p ≤ 0.005). At 2X MIC, only melimine in combination with ciprofloxacin released DNA/RNA which was three times more than that released by melimine alone (p = 0.043). These results suggest the potential use of melimine and Mel4 with conventional antibiotics for the treatment of S. aureus biofilms.
Collapse
|
7
|
Gulati R, Sharma S, Sharma RK. Antimicrobial textile: recent developments and functional perspective. Polym Bull (Berl) 2021; 79:5747-5771. [PMID: 34276116 PMCID: PMC8275915 DOI: 10.1007/s00289-021-03826-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/21/2022]
Abstract
Antimicrobial textiles are functionally active textiles, which may kill the microorganisms or inhibit their growth. The present article explores the applications of different synthetic and natural antimicrobial compounds used to prepare antimicrobial textiles. Different types of antimicrobial textiles including: antibacterial, antifungal and antiviral have also been discussed. Different strategies and methods used for the detection of a textile's antimicrobial properties against bacterial and fungal pathogens as well as viral particles have also been highlighted. These antimicrobial textiles are used in a variety of applications ranging from households to commercial including air filters, food packaging, health care, hygiene, medical, sportswear, storage, ventilation and water purification systems. Public awareness on antimicrobial textiles and growth in commercial opportunities has been observed during past few years. Not only antimicrobial properties, but its durability along with the color, prints and designing are also important for fashionable clothing; thus, many commercial brands are now focusing on such type of materials. Overall, this article summarizes the scientific aspect dealing with different fabrics including natural or synthetic antimicrobial agents along with their current functional perspective and future opportunities. Graphic abstract
Collapse
Affiliation(s)
- Rehan Gulati
- Department of Biosciences, Manipal University Jaipur, Jaipur-303007, Rajasthan, India
| | - Saurav Sharma
- Department of Fashion Design, Manipal University Jaipur, Jaipur-303007, Rajasthan, India
| | - Rakesh Kumar Sharma
- Department of Biosciences, Manipal University Jaipur, Jaipur-303007, Rajasthan, India
| |
Collapse
|
8
|
Gonik E, Rodríguez Sartori D, David Gara P, Miñán A, Fernández Lorenzo de Mele M, Gonzalez MC. Staphylococcus aureus biofilm eradication by the synergistic effect exerted by PEG-coated silicon dots immobilized in silica films and light irradiation. NANOTECHNOLOGY 2021; 32:095105. [PMID: 33137803 DOI: 10.1088/1361-6528/abc6dd] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Immobilization of PEG-covered silicon dots, PEGSiDs, on glass substrates was performed following a simple strategy involving particle embedding by a sol-gel process forming a silica film on glass slides. The obtained films, denoted as fSiO x -PEGSiD, constitute a water-wettable, strongly supported, photoluminescent glass coating. The films showed high capacity for photosensitizing singlet oxygen (1O2) in the UVA when immersed in water. Staphylococcus aureus colonies formed on fSiO x -PEGSiDs modified glasses revealed the inhibition of bacterial adhesion and bacterial growth leading to the formation of loosely-packed and smaller S. aureus colonies. Upon 350 nm light irradiation of the biofilmed fSiO x -PEGSiDs -modified glasses, S. aureus growth was inhibited and bacteria killed reducing the number of living bacteria by three orders of magnitude. Eradication of attached bacteria was achieved by the synergistic effect exerted by a less adherent fSiO x -PEGSiDs surface that inhibits biofilm formation and the ability of the surface to photosensitize 1O2 to kill bacteria.
Collapse
Affiliation(s)
- Eduardo Gonik
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Casilla de Correo 16, Sucursal 4, (1900) La Plata, Argentina
- Instituto Tecnológico de Chascomús (INTECH), Universidad Nacional de San Martín (UNSAM)-Consejo Nacional deInvestigaciones Científicas y Técnicas (CONICET), Intendente Marino Km 8.2, CC 164 (B7130IWA), Chascomús, Argentina
| | - Damián Rodríguez Sartori
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Casilla de Correo 16, Sucursal 4, (1900) La Plata, Argentina
| | - Pedro David Gara
- Centro de Investigaciones Ópticas (CONICET-CIC-UNLP), C.C.3 (1897) Gonnet, Bs. As., Argentina and Dpto. de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina
| | - Alejandro Miñán
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Casilla de Correo 16, Sucursal 4, (1900) La Plata, Argentina
| | - Mónica Fernández Lorenzo de Mele
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Casilla de Correo 16, Sucursal 4, (1900) La Plata, Argentina
- Facultad de Ingeniería, Universidad Nacional de La Plata, (1900) La Plata, Argentina
| | - Mónica C Gonzalez
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Casilla de Correo 16, Sucursal 4, (1900) La Plata, Argentina
| |
Collapse
|
9
|
Wang N, Qi F, Yu H, Yestrepsky BD, Larsen SD, Shi H, Ji J, Anderson DW, Li H, Sun H. Physicochemical properties and formulation development of a novel compound inhibiting Staphylococcus aureus biofilm formation. PLoS One 2021; 16:e0246408. [PMID: 33556134 PMCID: PMC7870075 DOI: 10.1371/journal.pone.0246408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/18/2021] [Indexed: 11/25/2022] Open
Abstract
The emergence of antibiotic resistance over the past several decades has given urgency to new antibacterial strategies that apply less selective pressure. A new class of anti-virulence compounds were developed that are active against methicillin-resistant Staphylococcus aureus (MRSA), by inhibiting bacterial virulence without hindering their growth to reduce the selective pressure for resistance development. One of the compounds CCG-211790 has demonstrated potent anti-biofilm activity against MRSA. This new class of anti-virulence compounds inhibited the gene expression of virulence factors involved in biofilm formation and disrupted the biofilm structures. In this study, the physicochemical properties of CCG-211790, including morphology, solubility in pure water or in water containing sodium dodecyl sulfate, solubility in organic solvents, and stability with respect to pH were investigated for the first time. Furthermore, a topical formulation was developed to enhance the therapeutic potential of the compound. The formulation demonstrated acceptable properties for drug release, viscosity, pH, cosmetic elegance and stability of over nine months.
Collapse
Affiliation(s)
- Nan Wang
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, Missouri, United States of America
| | - Feng Qi
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, Missouri, United States of America
| | - Haqing Yu
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri, Columbia, Missouri, United States of America
| | - Bryan D. Yestrepsky
- Vahlteich Medicinal Chemistry Core, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Scott D. Larsen
- Vahlteich Medicinal Chemistry Core, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Honglan Shi
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri, United States of America
| | - Juan Ji
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
| | - David W. Anderson
- Ivogen Inc. (Subsidiary of Nanova, Inc.), Columbia, Missouri, United States of America
| | - Hao Li
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, Missouri, United States of America
- * E-mail: (HS); (HL)
| | - Hongmin Sun
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri, Columbia, Missouri, United States of America
- * E-mail: (HS); (HL)
| |
Collapse
|
10
|
Reigada I, Guarch-Pérez C, Patel JZ, Riool M, Savijoki K, Yli-Kauhaluoma J, Zaat SAJ, Fallarero A. Combined Effect of Naturally-Derived Biofilm Inhibitors and Differentiated HL-60 Cells in the Prevention of Staphylococcus aureus Biofilm Formation. Microorganisms 2020; 8:E1757. [PMID: 33182261 PMCID: PMC7695255 DOI: 10.3390/microorganisms8111757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 02/07/2023] Open
Abstract
Nosocomial diseases represent a huge health and economic burden. A significant portion is associated with the use of medical devices, with 80% of these infections being caused by a bacterial biofilm. The insertion of a foreign material usually elicits inflammation, which can result in hampered antimicrobial capacity of the host immunity due to the effort of immune cells being directed to degrade the material. The ineffective clearance by immune cells is a perfect opportunity for bacteria to attach and form a biofilm. In this study, we analyzed the antibiofilm capacity of three naturally derived biofilm inhibitors when combined with immune cells in order to assess their applicability in implantable titanium devices and low-density polyethylene (LDPE) endotracheal tubes. To this end, we used a system based on the coculture of HL-60 cells differentiated into polymorphonuclear leukocytes (PMNs) and Staphylococcus aureus (laboratory and clinical strains) on titanium, as well as LDPE surfaces. Out of the three inhibitors, the one coded DHA1 showed the highest potential to be incorporated into implantable devices, as it displayed a combined activity with the immune cells, preventing bacterial attachment on the titanium and LDPE. The other two inhibitors seemed to also be good candidates for incorporation into LDPE endotracheal tubes.
Collapse
Affiliation(s)
- Inés Reigada
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland; (K.S.); (A.F.)
| | - Clara Guarch-Pérez
- Department of Medical Microbiology and Infection Prevention, Amsterdam institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (C.G.-P.); (M.R.); (S.A.J.Z.)
| | - Jayendra Z. Patel
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland; (J.Z.P.); (J.Y.-K.)
| | - Martijn Riool
- Department of Medical Microbiology and Infection Prevention, Amsterdam institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (C.G.-P.); (M.R.); (S.A.J.Z.)
| | - Kirsi Savijoki
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland; (K.S.); (A.F.)
| | - Jari Yli-Kauhaluoma
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland; (J.Z.P.); (J.Y.-K.)
| | - Sebastian A. J. Zaat
- Department of Medical Microbiology and Infection Prevention, Amsterdam institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (C.G.-P.); (M.R.); (S.A.J.Z.)
| | - Adyary Fallarero
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland; (K.S.); (A.F.)
| |
Collapse
|
11
|
Effect of Ethanol Extracts of Propolis (EEPs) against Staphylococcal Biofilm-Microscopic Studies. Pathogens 2020; 9:pathogens9080646. [PMID: 32796690 PMCID: PMC7460694 DOI: 10.3390/pathogens9080646] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/29/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022] Open
Abstract
Staphylococci growing in the form of biofilm exhibit high resistance to a plethora of antibiotics. The aim of the study was to assess the influence of ethanolic extract of propolis (EEPs) on S. epidermidis ATCC 35984 biofilm using fluorescent microscopy. Propidium iodide (PI) and SYTO 9 were used for differentiation of live and dead cells, and calcofluor white was used to stain the extracellular matrix, the self-produced extracellular polymeric substances (EPS). The outcomes of the research confirm the promising potential of EEPs for eradication of staphylococcal biofilm. However, its activity cannot be classified as fully satisfactory, either in terms of the effectiveness of elimination of bacterial cells or disturbing the EPS structure. A two or even four times higher concentration of EEPs compared to MIC (Minimum Inhibitory Concentration) against planktonic cells (128 µg/mL) was necessary for effective (estimated for 90%) elimination of living cells from the biofilm structure. Unfortunately, even at that concentration of EEPs, the extracellular matrix was only partially disturbed and effectively protected the residual population of living cells of S. epidermidis ATCC 35984. In our opinion, a combination of EEPs with agents disrupting components of EPS, e.g., proteases, lysines, or enzymes degrading extracellular DNA or PIA (polysaccharide intercellular adhesin).
Collapse
|
12
|
Strategies to Prevent Biofilm Infections on Biomaterials: Effect of Novel Naturally-Derived Biofilm Inhibitors on a Competitive Colonization Model of Titanium by Staphylococcus aureus and SaOS-2 Cells. Microorganisms 2020; 8:microorganisms8030345. [PMID: 32121332 PMCID: PMC7143544 DOI: 10.3390/microorganisms8030345] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 12/12/2022] Open
Abstract
Biofilm-mediated infection is a major cause of bone prosthesis failure. The lack of molecules able to act in biofilms has driven research aimed at identifying new anti-biofilm agents via chemical screens. However, to be able to accommodate a large number of compounds, the testing conditions of these screenings end up being typically far from the clinical scenario. In this study, we assess the potential applicability of three previously discovered anti-biofilm compounds to be part of implanted medical devices by testing them on in vitro systems that more closely resemble the clinical scenario. To that end, we used a competition model based on the co-culture of SaOS-2 mammalian cells and Staphylococcus aureus (collection and clinical strains) on a titanium surface, as well as titanium pre-conditioned with high serum protein concentration. Additionally, we studied whether these compounds enhance the previously proven protective effect of pre-incubating titanium with SaOS-2 cells. Out of the three, DHA1 was the one with the highest potential, showing a preventive effect on bacterial adherence in all tested conditions, making it the most promising agent for incorporation into bone implants. This study emphasizes and demonstrates the importance of using meaningful experimental models, where potential antimicrobials ought to be tested for the protection of biomaterials in translational applications.
Collapse
|