1
|
Karimzadeh I, Strader M, Kane-Gill SL, Murray PT. Prevention and management of antibiotic associated acute kidney injury in critically ill patients: new insights. Curr Opin Crit Care 2023; 29:595-606. [PMID: 37861206 DOI: 10.1097/mcc.0000000000001099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
PURPOSE OF REVIEW Drug associated kidney injury (D-AKI) occurs in 19-26% of hospitalized patients and ranks as the third to fifth leading cause of acute kidney injury (AKI) in the intensive care unit (ICU). Given the high use of antimicrobials in the ICU and the emergence of new resistant organisms, the implementation of preventive measures to reduce the incidence of D-AKI has become increasingly important. RECENT FINDINGS Artificial intelligence is showcasing its capabilities in early recognition of at-risk patients for acquiring AKI. Furthermore, novel synthetic medications and formulations have demonstrated reduced nephrotoxicity compared to their traditional counterparts in animal models and/or limited clinical evaluations, offering promise in the prevention of D-AKI. Nephroprotective antioxidant agents have had limited translation from animal studies to clinical practice. The control of modifiable risk factors remains pivotal in avoiding D-AKI. SUMMARY The use of both old and new antimicrobials is increasingly important in combating the rise of resistant organisms. Advances in technology, such as artificial intelligence, and alternative formulations of traditional antimicrobials offer promise in reducing the incidence of D-AKI, while antioxidant medications may aid in minimizing nephrotoxicity. However, maintaining haemodynamic stability using isotonic fluids, drug monitoring, and reducing nephrotoxic burden combined with vigilant antimicrobial stewardship remain the core preventive measures for mitigating D-AKI while optimizing effective antimicrobial therapy.
Collapse
Affiliation(s)
- Iman Karimzadeh
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Michael Strader
- Department of Medicine, School of Medicine, University College Dublin, Dublin, Ireland
| | - Sandra L Kane-Gill
- Department of Pharmacy and Therapeutics, School of Pharmacy, University of Pittsburgh
- Department of Pharmacy, UPMC, Pittsburgh, Pennsylvania, USA
| | - Patrick T Murray
- Department of Medicine, School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
2
|
Li H, Dai W, Xiao L, Sun L, He L. Biopolymer-Based Nanosystems: Potential Novel Carriers for Kidney Drug Delivery. Pharmaceutics 2023; 15:2150. [PMID: 37631364 PMCID: PMC10459991 DOI: 10.3390/pharmaceutics15082150] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Kidney disease has become a serious public health problem throughout the world, and its treatment and management constitute a huge global economic burden. Currently, the main clinical treatments are not sufficient to cure kidney diseases. During its development, nanotechnology has shown unprecedented potential for application to kidney diseases. However, nanotechnology has disadvantages such as high cost and poor bioavailability. In contrast, biopolymers are not only widely available but also highly bioavailable. Therefore, biopolymer-based nanosystems offer new promising solutions for the treatment of kidney diseases. This paper reviews the biopolymer-based nanosystems that have been used for renal diseases and describes strategies for the specific, targeted delivery of drugs to the kidney as well as the physicochemical properties of the nanoparticles that affect the targeting success.
Collapse
Affiliation(s)
| | | | | | | | - Liyu He
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha 410011, China; (H.L.)
| |
Collapse
|
3
|
Tomşa AM, Răchişan AL, Pandrea SL, Benea A, Uifălean A, Toma C, Popa R, Pârvu AE, Junie LM. Curcumin and Vitamin C Attenuate Gentamicin-Induced Nephrotoxicity by Modulating Distinctive Reactive Species. Metabolites 2022; 13:metabo13010049. [PMID: 36676974 PMCID: PMC9866787 DOI: 10.3390/metabo13010049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Gentamicin remains widely used in all age groups despite its well-documented nephrotoxicity; however, no adjuvant therapies have been established to counteract this side effect. Our study aimed to experimentally determine whether curcumin and vitamin C have nephroprotective effects and whether certain reactive species could be used as markers of early gentamicin nephrotoxicity. Wistar adult male rats were evenly distributed into four groups: control, gentamicin, curcumin and gentamicin, vitamin C and gentamicin (gentamicin: 60 mg/kg/day, intraperitoneally, 7 days). We determined renal function (urea, creatinine), oxidative stress (malondialdehyde, nitric oxide, 3-nitrotyrosine, total oxidative stress), and antioxidant and anti-inflammatory status (thiols, total antioxidant capacity, interleukin-10). Nephrotoxicity was successfully induced, as shown by the elevated creatinine levels in the gentamicin group. In contrast, supplementation with curcumin and vitamin C prevented an increase in urea levels while decreasing total oxidative stress levels compared to the gentamicin group. Moreover, vitamin C and curcumin distinctively modulate the levels of nitric oxide and malondialdehyde. Histological analysis showed more discrete lesions in rats that received vitamin C compared to the curcumin group.
Collapse
Affiliation(s)
- Anamaria Magdalena Tomşa
- 2nd Pediatrics Clinic, ‘Iuliu Hatieganu’ University of Medicine and Pharmacy, 400177 Cluj-Napoca, Romania
- Department of Microbiology, ‘Iuliu Hatieganu’ University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Correspondence:
| | - Andreea Liana Răchişan
- 2nd Pediatrics Clinic, ‘Iuliu Hatieganu’ University of Medicine and Pharmacy, 400177 Cluj-Napoca, Romania
| | - Stanca Lucia Pandrea
- Department of Microbiology, ‘Iuliu Hatieganu’ University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- ‘Prof. Dr. Octavian Fodor’ Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| | - Andreea Benea
- ‘Prof. Dr. Octavian Fodor’ Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| | - Ana Uifălean
- Department of Pathophysiology, ‘Iuliu Hatieganu’ University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Corina Toma
- Department of Veterinary Pathology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Roxana Popa
- Department of Veterinary Pathology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Alina Elena Pârvu
- Department of Pathophysiology, ‘Iuliu Hatieganu’ University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Lia Monica Junie
- Department of Microbiology, ‘Iuliu Hatieganu’ University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
4
|
Zhu Y, Jin H, Huo X, Meng Q, Wang C, Sun P, Ma X, Sun H, Dong D, Wu J, Liu K. Protective effect of Rhein against vancomycin-induced nephrotoxicity through regulating renal transporters and Nrf2 pathway. Phytother Res 2022; 36:4244-4262. [PMID: 35820659 DOI: 10.1002/ptr.7559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 12/21/2022]
Abstract
Vancomycin (VCM)'s nephrotoxicity limits its application and therapeutic efficiency. The aim of this study was to determine the protective effect of rhein against VCM-induced nephrotoxicity (VIN). VIN models were established in rats and NRK-52E cells. Rhein up-regulated the expressions of renal organic anion transporter (Oat) 1, Oat3, organic cation transporter 2 (Oct2), multidrug resistance-associated protein 2 (Mrp2), mammal multidrug and toxin extrusion proteins 1 (Mate 1) and P-glycoprotein (P-gp) to facilitate the efflux of plasma creatinine, blood urea nitrogen (BUN), and plasma indoxyl sulfate. Rhein increased the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) to regulate the expression of Mrp2, P-gp, and Mate 1. The increased level of superoxide dismutase (SOD), decreased level of malondialdehyde (MDA) and reduced number of apoptosis cells were observed after treatment of rhein. Rhein decreased the number of apoptosis cells as well as increased the expression of B-cell lymphoma-2 (Bcl-2) and decreased expressions of Bcl-2-like protein 4 (Bax). ML385, as a typical inhibitor of Nrf2, reversed the protective effects of rhein in cells. Rhein oriented itself in the site of Keap1, inhibiting the Keap1-Nrf2 interaction. Rhein ameliorated VIN mainly through regulating the expressions of renal transporters and acting on Nrf2 pathway.
Collapse
Affiliation(s)
- Yanna Zhu
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Huan Jin
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Xiaokui Huo
- Pharmaceutical Research Center, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, China
| | - Pengyuan Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, China
| | - Xiaodong Ma
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, China
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, China
| | - Deshi Dong
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jingjing Wu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, China
| | - Kexin Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, China
| |
Collapse
|
5
|
Bera S, Mondal D. Antibacterial Efficacies of Nanostructured Aminoglycosides. ACS OMEGA 2022; 7:4724-4734. [PMID: 35187293 PMCID: PMC8851436 DOI: 10.1021/acsomega.1c04399] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
The widespread use of broad-spectrum aminoglycoside antibiotics is restricted from various clinical applications due to the emergence of bacterial resistance and the adverse effects such as ototoxicity and nephrotoxicity. The intensive applicability of nanoparticles in modern medicinal chemistry has gained the interest of researchers for modification of aminoglycosides as nanoconjugates either via covalent conjugation or physical interactions to alleviate their undesirable effects and bacterial resistance. In this context, various carbohydrates, polymers, lipids, silver, gold, and silica-attached aminoglycoside nanoparticles have been reported with improvements in physicochemical properties, bioavailability, and biocompatibility in physiological medium. Overall, this review encompassed the synthesis of nanostructured aminoglycosides and their applications in the development of new antibacterial therapeutics.
Collapse
|
6
|
Babaeenezhad E, Nouryazdan N, Nasri M, Ahmadvand H, Moradi Sarabi M. Cinnamic acid ameliorate gentamicin-induced liver dysfunctions and nephrotoxicity in rats through induction of antioxidant activities. Heliyon 2021; 7:e07465. [PMID: 34278037 PMCID: PMC8264605 DOI: 10.1016/j.heliyon.2021.e07465] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/29/2021] [Accepted: 06/29/2021] [Indexed: 11/22/2022] Open
Abstract
This study was the first to evaluate the possible protective effects of cinnamic acid (CA) against Gentamicin (GM) induced liver and kidney dysfunctions in rats. Adult male Wistar rats were randomly assigned to 4 equal groups (n = 8): Control group (saline, 0.5 ml/day), CA group (CA, 50 mg/kg/day), GM group (GM, 100 mg/kg/day), and GM + CA group (100 & 50 mg/kg/day). Following 12 days of treatments, blood and 24 h urine samples were collected and kidneys were taken out for biochemical, histopathological, and molecular studies. Following CA treatment, renal function markers and transaminases activities including serum urea (59.92%) and creatinine (50.41%), protein excretion rate (43.67%), and serum activities of aspartate aminotransferase (AST) (54.34%) and alanine aminotransferase (ALT) (47.26%) significantly reduced in the treated group as compared with the GM group (P < 0.05). Also, CA could significantly ameliorate the levels of triglyceride (29.70%), cholesterol (13.02%), very low-density lipoprotein (29.69%) and high-density lipoprotein-cholesterol (7.28%). CA could also attenuate oxidative stress through a decrease of serum malondialdehyde (MDA) (50.86%) and nitric oxide (NO) (0.85%) and an increase of renal catalase (CAT) (196.14%) and glutathione peroxidase (GPX) activities (45.88%) as well as GPX mRNA expression (44.42-fold) as compared with the GM group (P < 0.05). Moreover, histopathological evaluations revealed attenuated tubular damages and reduced inflammatory cellular infiltration in CA treated animals. Overall, CA alleviates GM-induced nephrotoxicity and alterations in transaminases activities in rats through its antioxidant activities.
Collapse
Affiliation(s)
- Esmaeel Babaeenezhad
- Department of Clinical Biochemistry, School of Medicine, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Negar Nouryazdan
- Department of Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Maryam Nasri
- Department of Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hassan Ahmadvand
- Department of Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mostafa Moradi Sarabi
- Department of Clinical Laboratory Sciences, School of Allied Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
7
|
Elfaky MA, Sirwi A, Tolba HH, Shaik RA, Selmi NM, Alattas AH, Albreki RS, Alshreef NM, Gad HA. Development, Optimization, and Antifungal Assessment of Ocular Gel Loaded With Ketoconazole Cubic Liquid Crystalline Nanoparticles. J Pharm Sci 2021; 110:2210-2220. [PMID: 33621518 DOI: 10.1016/j.xphs.2021.02.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 12/20/2022]
Abstract
Ketoconazole is a drug that belongs to azole antifungal group. The current available marketed products of ketoconazole are accompanied with potential drawbacks such as short retention time at the eye surface and eye irritation. The aim of this research is to find a solution for the previously mentioned limitations through loading of ketoconazole within cubosomes (KZ-Cub) to be used as ophthalmic drug delivery systems. Cubosomes properties will help to keep the encapsulated drug in the solubilized form. Further incorporation of cubosomes into biodegradable polymer based gel could prolong the ocular retention time of the drug. Three studied independent variables included glyceryl-mono-oleate, Pluronic-F127 and Polyvinyl alcohol percentage with respect to the dispersion media, while particle size, entrapment efficiency and stability index were the dependent variables that have been evaluated. The optimized cubosomes was assessed for its in-vitro and in-vivo antifungal activity. The prepared gel loaded with KZ-Cub formula had an enhanced permeability, ocular availability, antifungal activity and significant decrease in MIC values compared to commercial one, which reflected the strong impact on the activity of KZ in the management of eye infection.
Collapse
Affiliation(s)
- Mahmoud A Elfaky
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Alaa Sirwi
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Heba H Tolba
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October University for Modern Sciences and Arts, 6 October City, Giza, Egypt
| | - Rasheed A Shaik
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Nouf M Selmi
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Ahlam H Alattas
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Raghad S Albreki
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Nuha M Alshreef
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Heba A Gad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Abbasseya, Cairo, 11566, Egypt
| |
Collapse
|