1
|
Steier V, Prigolovkin L, Reiter A, Neddermann T, Wiechert W, Reich SJ, Riedel CU, Oldiges M. Automated workflow for characterization of bacteriocin production in natural producers Lactococcus lactis and Latilactobacillus sakei. Microb Cell Fact 2024; 23:74. [PMID: 38433206 PMCID: PMC10910668 DOI: 10.1186/s12934-024-02349-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/25/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Lactic acid bacteria are commonly used as protective starter cultures in food products. Among their beneficial effects is the production of ribosomally synthesized peptides termed bacteriocins that kill or inhibit food-spoiling bacteria and pathogens, e.g., members of the Listeria species. As new bacteriocins and producer strains are being discovered rapidly, modern automated methods for strain evaluation and bioprocess development are required to accelerate screening and development processes. RESULTS In this study, we developed an automated workflow for screening and bioprocess optimization for bacteriocin producing lactic acid bacteria, consisting of microcultivation, sample processing and automated antimicrobial activity assay. We implemented sample processing workflows to minimize bacteriocin adsorption to producer cells via addition of Tween 80 and divalent cations to the cultivation media as well as acidification of culture broth prior to cell separation. Moreover, we demonstrated the applicability of the automated workflow to analyze influence of media components such as MES buffer or yeast extract for bacteriocin producers Lactococcus lactis B1629 and Latilactobacillus sakei A1608. CONCLUSIONS Our automated workflow provides advanced possibilities to accelerate screening and bioprocess optimization for natural bacteriocin producers. Based on its modular concept, adaptations for other strains, bacteriocin products and applications are easily carried out and a unique tool to support bacteriocin research and bioprocess development is provided.
Collapse
Affiliation(s)
- Valentin Steier
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Lisa Prigolovkin
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Alexander Reiter
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | | | - Wolfgang Wiechert
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Computational Systems Biotechnology (AVT.CSB), RWTH Aachen University, Aachen, Germany
| | | | | | - Marco Oldiges
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany.
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
2
|
Zhang Q, Zúñiga M, Alcántara C, Wolf D, Mascher T, Revilla-Guarinos A. Cross-regulation of Aps-promoters in Lacticaseibacillus paracasei by the PsdR response regulator in response to lantibiotics. Sci Rep 2024; 14:3319. [PMID: 38336830 PMCID: PMC10858260 DOI: 10.1038/s41598-024-53592-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
The PsdRSAB and ApsRSAB detoxification modules, together with the antimicrobial peptides (AMPs)-resistance determinants Dlt system and MprF protein, play major roles in the response to AMPs in Lacticaseibacillus paracasei BL23. Sensitivity assays with a collection of mutants showed that the PsdAB ABC transporter and the Dlt system are the main subtilin resistance determinants. Quantification of the transcriptional response to subtilin indicate that this response is exclusively regulated by the two paralogous systems PsdRSAB and ApsRSAB. Remarkably, a cross-regulation of the derAB, mprF and dlt-operon genes-usually under control of ApsR-by PsdR in response to subtilin was unveiled. The high similarity of the predicted structures of both response regulators (RR), and of the RR-binding sites support this possibility, which we experimentally verified by protein-DNA binding studies. ApsR-P shows a preferential binding in the order PderA > Pdlt > PmprF > PpsdA. However, PsdR-P bound with similar apparent affinity constants to the four promoters. This supports the cross-regulation of derAB, mprF and the dlt-operon by PsdR. The possibility of cross-regulation at the level of RR-promoter interaction allows some regulatory overlap with two RRs controlling the expression of systems involved in maintenance of critical cell membrane functions in response to lantibiotics.
Collapse
Affiliation(s)
- Qian Zhang
- Chair of General Microbiology, Technische Universität Dresden, 01217, Dresden, Germany
| | - Manuel Zúñiga
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), 46980, Paterna, Valencia, Spain
| | - Cristina Alcántara
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), 46980, Paterna, Valencia, Spain
| | - Diana Wolf
- Chair of General Microbiology, Technische Universität Dresden, 01217, Dresden, Germany
| | - Thorsten Mascher
- Chair of General Microbiology, Technische Universität Dresden, 01217, Dresden, Germany.
| | - Ainhoa Revilla-Guarinos
- Chair of General Microbiology, Technische Universität Dresden, 01217, Dresden, Germany.
- Oral Microbiome Group, Genomics and Health Department, FISABIO Foundation, 46020, Valencia, Spain.
| |
Collapse
|
3
|
Pandi A, Adam D, Zare A, Trinh VT, Schaefer SL, Burt M, Klabunde B, Bobkova E, Kushwaha M, Foroughijabbari Y, Braun P, Spahn C, Preußer C, Pogge von Strandmann E, Bode HB, von Buttlar H, Bertrams W, Jung AL, Abendroth F, Schmeck B, Hummer G, Vázquez O, Erb TJ. Cell-free biosynthesis combined with deep learning accelerates de novo-development of antimicrobial peptides. Nat Commun 2023; 14:7197. [PMID: 37938588 PMCID: PMC10632401 DOI: 10.1038/s41467-023-42434-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/10/2023] [Indexed: 11/09/2023] Open
Abstract
Bioactive peptides are key molecules in health and medicine. Deep learning holds a big promise for the discovery and design of bioactive peptides. Yet, suitable experimental approaches are required to validate candidates in high throughput and at low cost. Here, we established a cell-free protein synthesis (CFPS) pipeline for the rapid and inexpensive production of antimicrobial peptides (AMPs) directly from DNA templates. To validate our platform, we used deep learning to design thousands of AMPs de novo. Using computational methods, we prioritized 500 candidates that we produced and screened with our CFPS pipeline. We identified 30 functional AMPs, which we characterized further through molecular dynamics simulations, antimicrobial activity and toxicity. Notably, six de novo-AMPs feature broad-spectrum activity against multidrug-resistant pathogens and do not develop bacterial resistance. Our work demonstrates the potential of CFPS for high throughput and low-cost production and testing of bioactive peptides within less than 24 h.
Collapse
Affiliation(s)
- Amir Pandi
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
| | - David Adam
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Bundeswehr Institute of Microbiology, Munich, Germany
| | - Amir Zare
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Van Tuan Trinh
- Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Stefan L Schaefer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Marie Burt
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Björn Klabunde
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Elizaveta Bobkova
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Manish Kushwaha
- Université Paris-Saclay, INRAe, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Yeganeh Foroughijabbari
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Peter Braun
- Bundeswehr Institute of Microbiology, Munich, Germany
- German Center for Infection Research (DZIF), Munich, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Immunology, Infection and Pandemic Research, Munich, Germany
| | - Christoph Spahn
- Department of Natural Products in Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Christian Preußer
- Institute for Tumor Immunology, Center for Tumor Biology and Immunology, Philipps-University Marburg, Marburg, Germany
- Core Facility Extracellular Vesicles, Center for Tumor Biology and Immunology, Philipps-University of Marburg, Marburg, Germany
| | - Elke Pogge von Strandmann
- Institute for Tumor Immunology, Center for Tumor Biology and Immunology, Philipps-University Marburg, Marburg, Germany
- Core Facility Extracellular Vesicles, Center for Tumor Biology and Immunology, Philipps-University of Marburg, Marburg, Germany
| | - Helge B Bode
- Department of Natural Products in Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Chemistry, Chemical Biology, Philipps-University Marburg, Marburg, Germany
- Senckenberg Gesellschaft für Naturforschung, Frankfurt, Germany
- SYNMIKRO Center of Synthetic Microbiology, Marburg, Germany
| | - Heiner von Buttlar
- Bundeswehr Institute of Microbiology, Munich, Germany
- German Center for Infection Research (DZIF), Munich, Germany
| | - Wilhelm Bertrams
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Anna Lena Jung
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
- Core Facility Flow Cytometry - Bacterial Vesicles, Philipps-University Marburg, Marburg, Germany
| | - Frank Abendroth
- Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Bernd Schmeck
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
- SYNMIKRO Center of Synthetic Microbiology, Marburg, Germany
- Core Facility Flow Cytometry - Bacterial Vesicles, Philipps-University Marburg, Marburg, Germany
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Marburg, Philipps-University Marburg, Marburg, Germany
- Institute for Lung Health (ILH), Giessen, Germany
- Member of the German Center for Infectious Disease Research (DZIF), Marburg, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
- Institute for Biophysics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Olalla Vázquez
- Department of Chemistry, Philipps-University Marburg, Marburg, Germany
- SYNMIKRO Center of Synthetic Microbiology, Marburg, Germany
| | - Tobias J Erb
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
- SYNMIKRO Center of Synthetic Microbiology, Marburg, Germany.
| |
Collapse
|
4
|
Mayorga-Ramos A, Zúñiga-Miranda J, Carrera-Pacheco SE, Barba-Ostria C, Guamán LP. CRISPR-Cas-Based Antimicrobials: Design, Challenges, and Bacterial Mechanisms of Resistance. ACS Infect Dis 2023; 9:1283-1302. [PMID: 37347230 PMCID: PMC10353011 DOI: 10.1021/acsinfecdis.2c00649] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Indexed: 06/23/2023]
Abstract
The emergence of antibiotic-resistant bacterial strains is a source of public health concern across the globe. As the discovery of new conventional antibiotics has stalled significantly over the past decade, there is an urgency to develop novel approaches to address drug resistance in infectious diseases. The use of a CRISPR-Cas-based system for the precise elimination of targeted bacterial populations holds promise as an innovative approach for new antimicrobial agent design. The CRISPR-Cas targeting system is celebrated for its high versatility and specificity, offering an excellent opportunity to fight antibiotic resistance in pathogens by selectively inactivating genes involved in antibiotic resistance, biofilm formation, pathogenicity, virulence, or bacterial viability. The CRISPR-Cas strategy can enact antimicrobial effects by two approaches: inactivation of chromosomal genes or curing of plasmids encoding antibiotic resistance. In this Review, we provide an overview of the main CRISPR-Cas systems utilized for the creation of these antimicrobials, as well as highlighting promising studies in the field. We also offer a detailed discussion about the most commonly used mechanisms for CRISPR-Cas delivery: bacteriophages, nanoparticles, and conjugative plasmids. Lastly, we address possible mechanisms of interference that should be considered during the intelligent design of these novel approaches.
Collapse
Affiliation(s)
- Arianna Mayorga-Ramos
- Centro
de Investigación Biomédica (CENBIO), Facultad de Ciencias
de la Salud Eugenio Espejo, Universidad
UTE, Quito 170527, Ecuador
| | - Johana Zúñiga-Miranda
- Centro
de Investigación Biomédica (CENBIO), Facultad de Ciencias
de la Salud Eugenio Espejo, Universidad
UTE, Quito 170527, Ecuador
| | - Saskya E. Carrera-Pacheco
- Centro
de Investigación Biomédica (CENBIO), Facultad de Ciencias
de la Salud Eugenio Espejo, Universidad
UTE, Quito 170527, Ecuador
| | - Carlos Barba-Ostria
- Escuela
de Medicina, Colegio de Ciencias de la Salud Quito, Universidad San Francisco de Quito USFQ, Quito 170902, Ecuador
| | - Linda P. Guamán
- Centro
de Investigación Biomédica (CENBIO), Facultad de Ciencias
de la Salud Eugenio Espejo, Universidad
UTE, Quito 170527, Ecuador
| |
Collapse
|
5
|
Popp PF, Lozano-Cruz T, Dürr F, Londaitsbehere A, Hartig J, de la Mata FJ, Gómez R, Mascher T, Revilla-Guarinos A. The Novel Synthetic Antibiotic BDTL049 Based on a Dendritic System Induces Lipid Domain Formation while Escaping the Cell Envelope Stress Resistance Determinants. Pharmaceutics 2023; 15:297. [PMID: 36678925 PMCID: PMC9866484 DOI: 10.3390/pharmaceutics15010297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/17/2023] Open
Abstract
The threat of antimicrobial-resistant bacteria is ever increasing and over the past-decades development of novel therapeutic counter measurements have virtually come to a halt. This circumstance calls for interdisciplinary approaches to design, evaluate and validate the mode of action of novel antibacterial compounds. Hereby, carbosilane dendritic systems that exhibit antimicrobial properties have the potential to serve as synthetic and rationally designed molecules for therapeutic use. The bow-tie type topology of BDTL049 was recently investigated against the Gram-positive model organism Bacillus subtilis, revealing strong bactericidal properties. In this study, we follow up on open questions concerning the usability of BDTL049. For this, we synthesized a fluorescent-labeled version of BDTL049 that maintained all antimicrobial features to unravel the interaction of the compound and bacterial membrane. Subsequently, we highlight the bacterial sensitivity against BDTL049 by performing a mutational study of known resistance determinants. Finally, we address the cytotoxicity of the compound in human cells, unexpectedly revealing a high sensitivity of the eukaryotic cells upon BDTL049 exposure. The insights presented here further elaborate on the unique features of BDTL049 as a promising candidate as an antimicrobial agent while not precluding that further rounds of rational designing are needed to decrease cytotoxicity to ultimately pave the way for synthetic antibiotics toward clinical applicability.
Collapse
Affiliation(s)
- Philipp F. Popp
- Department of General Microbiology, Institut Für Mikrobiologie, Technische Universität Dresden, 01217 Dresden, Germany
| | - Tania Lozano-Cruz
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry “Andrés M. Del Río” (IQAR), University de Alcalá, 28805 Madrid, Spain
- Ramón y Cajal Health Research Institute (IRYCIS), 28805 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28805 Madrid, Spain
| | - Franziska Dürr
- Department of General Microbiology, Institut Für Mikrobiologie, Technische Universität Dresden, 01217 Dresden, Germany
| | - Addis Londaitsbehere
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry “Andrés M. Del Río” (IQAR), University de Alcalá, 28805 Madrid, Spain
| | - Johanna Hartig
- Department of General Microbiology, Institut Für Mikrobiologie, Technische Universität Dresden, 01217 Dresden, Germany
| | - Francisco Javier de la Mata
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry “Andrés M. Del Río” (IQAR), University de Alcalá, 28805 Madrid, Spain
- Ramón y Cajal Health Research Institute (IRYCIS), 28805 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28805 Madrid, Spain
| | - Rafael Gómez
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry “Andrés M. Del Río” (IQAR), University de Alcalá, 28805 Madrid, Spain
- Ramón y Cajal Health Research Institute (IRYCIS), 28805 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28805 Madrid, Spain
| | - Thorsten Mascher
- Department of General Microbiology, Institut Für Mikrobiologie, Technische Universität Dresden, 01217 Dresden, Germany
| | - Ainhoa Revilla-Guarinos
- Department of General Microbiology, Institut Für Mikrobiologie, Technische Universität Dresden, 01217 Dresden, Germany
| |
Collapse
|
6
|
Revilla-Guarinos A, Popp PF, Dürr F, Lozano-Cruz T, Hartig J, de la Mata FJ, Gómez R, Mascher T. Synthesis and mechanism-of-action of a novel synthetic antibiotic based on a dendritic system with bow-tie topology. Front Microbiol 2022; 13:912536. [PMID: 36090105 PMCID: PMC9459136 DOI: 10.3389/fmicb.2022.912536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/26/2022] [Indexed: 12/05/2022] Open
Abstract
Over the course of the last decades, the continuous exposure of bacteria to antibiotics-at least in parts due to misprescription, misuse, and misdosing-has led to the widespread development of antimicrobial resistances. This development poses a threat to the available medication in losing their effectiveness in treating bacterial infections. On the drug development side, only minor advances have been made to bring forward novel therapeutics. In addition to increasing the efforts and approaches of tapping the natural sources of new antibiotics, synthetic approaches to developing novel antimicrobials are being pursued. In this study, BDTL049 was rationally designed using knowledge based on the properties of natural antibiotics. BDTL049 is a carbosilane dendritic system with bow-tie type topology, which has antimicrobial activity at concentrations comparable to clinically established natural antibiotics. In this report, we describe its mechanism of action on the Gram-positive model organism Bacillus subtilis. Exposure to BDTL049 resulted in a complex transcriptional response, which pointed toward disturbance of the cell envelope homeostasis accompanied by disruption of other central cellular processes of bacterial metabolism as the primary targets of BDTL049 treatment. By applying a combination of whole-cell biosensors, molecular staining, and voltage sensitive dyes, we demonstrate that the mode of action of BDTL049 comprises membrane depolarization concomitant with pore formation. As a result, this new molecule kills Gram-positive bacteria within minutes. Since BDTL049 attacks bacterial cells at different targets simultaneously, this might decrease the chances for the development of bacterial resistances, thereby making it a promising candidate for a future antimicrobial agent.
Collapse
Affiliation(s)
- Ainhoa Revilla-Guarinos
- Department of General Microbiology, Institut Für Mikrobiologie, Technische Universität Dresden, Dresden, Germany
| | - Philipp F. Popp
- Department of General Microbiology, Institut Für Mikrobiologie, Technische Universität Dresden, Dresden, Germany
| | - Franziska Dürr
- Department of General Microbiology, Institut Für Mikrobiologie, Technische Universität Dresden, Dresden, Germany
| | - Tania Lozano-Cruz
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry “Andrés M. Del Río” (IQAR), University de Alcalá, Madrid, Spain
- Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Johanna Hartig
- Department of General Microbiology, Institut Für Mikrobiologie, Technische Universität Dresden, Dresden, Germany
| | - Francisco Javier de la Mata
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry “Andrés M. Del Río” (IQAR), University de Alcalá, Madrid, Spain
- Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Rafael Gómez
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry “Andrés M. Del Río” (IQAR), University de Alcalá, Madrid, Spain
- Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Thorsten Mascher
- Department of General Microbiology, Institut Für Mikrobiologie, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
7
|
Martin A, Bland MJ, Rodriguez-Villalobos H, Gala JL, Gabant P. Promising Antimicrobial Activity and Synergy of Bacteriocins Against Mycobacterium tuberculosis. Microb Drug Resist 2022; 29:165-174. [PMID: 35852864 DOI: 10.1089/mdr.2021.0429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this study, we assessed the potential of bacteriocins and their in vitro synergistic effects in combination with anti-tuberculosis drugs against Mycobacterium tuberculosis. We evaluated the in vitro activity of chemically synthesized bacteriocins in combination with rifampicin (RIF), ofloxacin, and moxifloxacin against the reference M. tuberculosis H37Rv and a clinical-resistant strain. We first screened the bacteriocin PARAGEN collection and found active bacteriocins. We then determined their minimal inhibitory concentration (MIC), minimal bactericidal concentration, and their fractional inhibitory index by the checkerboard microdilution assay. Remarkably, we identified four bacteriocins with interesting antimycobacterial activity alone and in combinations with RIF, ofloxacin, and moxifloxacin, with significant reduction of the MIC that showed impressive synergistic effects against the susceptible and resistant clinical strains. In conclusion, our preliminary results show promising bacteriocins candidate used in a synergistic combination with anti-tuberculosis drugs and emphasize the need for combined therapy as a new strategy to enhance the activity of existing drugs, which may confer very promising therapeutic benefits against M. tuberculosis.
Collapse
Affiliation(s)
| | | | - Hector Rodriguez-Villalobos
- Microbiology Department, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Jean-Luc Gala
- Center for Applied Molecular Technologies (CTMA), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | | |
Collapse
|
8
|
Skwarczynski M, Bashiri S, Yuan Y, Ziora ZM, Nabil O, Masuda K, Khongkow M, Rimsueb N, Cabral H, Ruktanonchai U, Blaskovich MAT, Toth I. Antimicrobial Activity Enhancers: Towards Smart Delivery of Antimicrobial Agents. Antibiotics (Basel) 2022; 11:412. [PMID: 35326875 PMCID: PMC8944422 DOI: 10.3390/antibiotics11030412] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/01/2023] Open
Abstract
The development of effective treatments against infectious diseases is an extensive and ongoing process due to the rapid adaptation of bacteria to antibiotic-based therapies. However, appropriately designed activity enhancers, including antibiotic delivery systems, can increase the effectiveness of current antibiotics, overcoming antimicrobial resistance and decreasing the chance of contributing to further bacterial resistance. The activity/delivery enhancers improve drug absorption, allow targeted antibiotic delivery, improve their tissue and biofilm penetration and reduce side effects. This review provides insights into various antibiotic activity enhancers, including polymer, lipid, and silver-based systems, designed to reduce the adverse effects of antibiotics and improve formulation stability and efficacy against multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Mariusz Skwarczynski
- School of Chemistry and Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sahra Bashiri
- School of Chemistry and Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ye Yuan
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zyta M Ziora
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Osama Nabil
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Keita Masuda
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Mattaka Khongkow
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Klong 1, Klong Luang 12120, Pathumthani, Thailand
| | - Natchanon Rimsueb
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Klong 1, Klong Luang 12120, Pathumthani, Thailand
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Uracha Ruktanonchai
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Klong 1, Klong Luang 12120, Pathumthani, Thailand
| | - Mark A T Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
9
|
Almeida-Santos AC, Novais C, Peixe L, Freitas AR. Enterococcus spp. as a Producer and Target of Bacteriocins: A Double-Edged Sword in the Antimicrobial Resistance Crisis Context. Antibiotics (Basel) 2021; 10:antibiotics10101215. [PMID: 34680796 PMCID: PMC8532689 DOI: 10.3390/antibiotics10101215] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 01/10/2023] Open
Abstract
Enterococcus spp. are one of the most frequent producers of bacteriocins (enterocins), which provides them with an advantage to compete in their natural environment, which is the gut of humans and many animals. The enterocins’ activity against microorganisms from different phylogenetic groups has raised interest in Enterococcus spp. in different contexts throughout the last decades, especially in the food industry. Nevertheless, some species can also cause opportunistic life-threatening infections and are frequently multidrug-resistant (MDR). Vancomycin-resistant Enterococcus (VRE), in particular, are an ongoing global challenge given the lack of therapeutic options. In this scenario, bacteriocins can offer a potential solution to this persistent threat, either alone or in combination with other antimicrobials. There are a handful of studies that demonstrate the advantages and applications of bacteriocins, especially against VRE. The purpose of this review is to present a current standpoint about the dual role of Enterococcus spp., from important producers to targets needed to be controlled, and the crucial role that enterocins may have in the expansion of enterococcal populations. Classification and distribution of enterocins, the current knowledge about the bacteriocinome of clinical enterococci, and the challenges of bacteriocin use in the fight against VRE infections are particularly detailed.
Collapse
Affiliation(s)
- Ana C. Almeida-Santos
- UCIBIO–Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal or (A.C.A.-S.); (C.N.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Carla Novais
- UCIBIO–Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal or (A.C.A.-S.); (C.N.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Luísa Peixe
- UCIBIO–Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal or (A.C.A.-S.); (C.N.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Correspondence: (L.P.); or (A.R.F.); Tel.: +351-220428580 (L.P. & A.R.F.)
| | - Ana R. Freitas
- UCIBIO–Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal or (A.C.A.-S.); (C.N.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- TOXRUN–Toxicology Research Unit, Department of Sciences, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal
- Correspondence: (L.P.); or (A.R.F.); Tel.: +351-220428580 (L.P. & A.R.F.)
| |
Collapse
|
10
|
Nainu F, Permana AD, Djide NJN, Anjani QK, Utami RN, Rumata NR, Zhang J, Emran TB, Simal-Gandara J. Pharmaceutical Approaches on Antimicrobial Resistance: Prospects and Challenges. Antibiotics (Basel) 2021; 10:981. [PMID: 34439031 PMCID: PMC8388863 DOI: 10.3390/antibiotics10080981] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/07/2021] [Accepted: 08/12/2021] [Indexed: 02/06/2023] Open
Abstract
The rapid increase in pathogenic microorganisms with antimicrobial resistant profiles has become a significant public health problem globally. The management of this issue using conventional antimicrobial preparations frequently results in an increase in pathogen resistance and a shortage of effective antimicrobials for future use against the same pathogens. In this review, we discuss the emergence of AMR and argue for the importance of addressing this issue by discovering novel synthetic or naturally occurring antibacterial compounds and providing insights into the application of various drug delivery approaches, delivered through numerous routes, in comparison with conventional delivery systems. In addition, we discuss the effectiveness of these delivery systems in different types of infectious diseases associated with antimicrobial resistance. Finally, future considerations in the development of highly effective antimicrobial delivery systems to combat antimicrobial resistance are presented.
Collapse
Affiliation(s)
- Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia; (A.D.P.); (N.J.N.D.); (Q.K.A.); (R.N.U.); (N.R.R.)
| | - Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia; (A.D.P.); (N.J.N.D.); (Q.K.A.); (R.N.U.); (N.R.R.)
| | - Nana Juniarti Natsir Djide
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia; (A.D.P.); (N.J.N.D.); (Q.K.A.); (R.N.U.); (N.R.R.)
| | - Qonita Kurnia Anjani
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia; (A.D.P.); (N.J.N.D.); (Q.K.A.); (R.N.U.); (N.R.R.)
- Medical Biology Centre, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Rifka Nurul Utami
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia; (A.D.P.); (N.J.N.D.); (Q.K.A.); (R.N.U.); (N.R.R.)
- Institute of Pharmaceutical Science, King’s College of London, London SE1 9NH, UK
| | - Nur Rahma Rumata
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia; (A.D.P.); (N.J.N.D.); (Q.K.A.); (R.N.U.); (N.R.R.)
- Sekolah Tinggi Ilmu Farmasi Makassar, Makassar 90242, Sulawesi Selatan, Indonesia
| | - Jianye Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China;
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo–Ourense Campus, E32004 Ourense, Spain
| |
Collapse
|