1
|
Nisar S, Shah AH, Nazir R. The clinical praxis of bacteriocins as natural anti-microbial therapeutics. Arch Microbiol 2024; 206:451. [PMID: 39476181 DOI: 10.1007/s00203-024-04152-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 11/10/2024]
Abstract
In recent decades, the excessive use of antibiotics has resulted in a rise in antimicrobial drug resistance (ADR). Annually, a significant number of human lives are lost due to resistant infectious diseases, leading to around 700,000 deaths, and it is estimated that by 2050, there could be up to 10 million casualties. Apart from their possible application as preservatives in the food sector, bacteriocins are gaining acknowledgment as potential clinical treatments. Not only this, these antimicrobial peptides have revealed in modulating the host immune system producing anti-inflammatory and anti-modulatory responses. At the same time, due to the ever-increasing global threat of antibiotic resistance, bacteriocins have gained attraction among researchers due to their potential clinical applications. Bacteriocins as antimicrobial peptides, represent one of the most important natural defense mechanisms among bacterial species, particularly lactic acid bacteria (LAB), that can fight against infection-causing pathogens. In this review, we are highlighting the potential of bacteriocins as novel therapeutics for inhibiting a wide range of clinically relevant and multi-drug-resistant pathogens (MDR). We also highlight the effectiveness and potential applications of current bacteriocin treatments in combating antimicrobial resistance (AMR), thereby promoting human health.
Collapse
Affiliation(s)
- Safura Nisar
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar, 190006, India
| | - Abdul Haseeb Shah
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar, 190006, India.
| | - Ruqeya Nazir
- Centre of Research for Development (CORD), School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar, 190006, India.
| |
Collapse
|
2
|
Rastegar S, Skurnik M, Tadjrobehkar O, Samareh A, Samare-Najaf M, Lotfian Z, Khajedadian M, Hosseini-Nave H, Sabouri S. Synergistic effects of bacteriophage cocktail and antibiotics combinations against extensively drug-resistant Acinetobacter baumannii. BMC Infect Dis 2024; 24:1208. [PMID: 39455951 PMCID: PMC11515142 DOI: 10.1186/s12879-024-10081-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND The extensively drug-resistant (XDR) strains of Acinetobacter baumannii have become a major cause of nosocomial infections, increasing morbidity and mortality worldwide. Many different treatments, including phage therapy, are attractive ways to overcome the challenges of antibiotic resistance. METHODS This study investigates the biofilm formation ability of 30 XDR A. baumannii isolates and the efficacy of a cocktail of four tempetate bacteriophages (SA1, Eve, Ftm, and Gln) and different antibiotics (ampicillin/sulbactam, meropenem, and colistin) in inhibiting and degrading the biofilms of these strains. RESULTS The majority (83.3%) of the strains exhibited strong biofilm formation. The bacteriophage cocktail showed varying degrees of effectiveness against A. baumannii biofilms, with higher concentrations generally leading to more significant inhibition and degradation rates. The antibiotics-bacteriophage cocktail combinations also enhanced the inhibition and degradation of biofilms. CONCLUSION The findings suggested that the bacteriophage cocktail is an effective tool in combating A. baumannii biofilms, with its efficacy depending on the concentration. Combining antibiotics with the bacteriophage cocktail improved the inhibition and removal of biofilms, indicating a promising strategy for managing A. baumannii infections. These results contribute to our understanding of biofilm dynamics and the potential of bacteriophage cocktails as a novel therapeutic approach to combat antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Sanaz Rastegar
- Student Research Committee, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Omid Tadjrobehkar
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Medical Microbiology(Bacteriology and Virology), Afzalipour School of Medicine, Kerman, Iran
| | - Ali Samareh
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Samare-Najaf
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Zahra Lotfian
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Khajedadian
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Hossein Hosseini-Nave
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Medical Microbiology(Bacteriology and Virology), Afzalipour School of Medicine, Kerman, Iran.
- Department of Microbiology and Virology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Salehe Sabouri
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
3
|
Sakalauskienė GV, Radzevičienė A. Antimicrobial Resistance: What Lies Beneath This Complex Phenomenon? Diagnostics (Basel) 2024; 14:2319. [PMID: 39451642 PMCID: PMC11506786 DOI: 10.3390/diagnostics14202319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Antimicrobial Resistance (AMR) has evolved from a mere concern into a significant global threat, with profound implications for public health, healthcare systems, and the global economy. Since the introduction of antibiotics between 1945 and 1963, their widespread and often indiscriminate use in human medicine, agriculture, and animal husbandry has led to the emergence and rapid spread of antibiotic-resistant genes. Bacteria have developed sophisticated mechanisms to evade the effects of antibiotics, including drug uptake limitation, drug degradation, target modification, efflux pumps, biofilm formation, and outer membrane vesicles production. As a result, AMR now poses a threat comparable to climate change and the COVID-19 pandemic, and projections suggest that death rates will be up to 10 million deaths annually by 2050, along with a staggering economic cost exceeding $100 trillion. Addressing AMR requires a multifaceted approach, including the development of new antibiotics, alternative therapies, and a significant shift in antibiotic usage and regulation. Enhancing global surveillance systems, increasing public awareness, and prioritizing investments in research, diagnostics, and vaccines are critical steps. By recognizing the gravity of the AMR threat and committing to collaborative action, its impact can be mitigated, and global health can be protected for future generations.
Collapse
Affiliation(s)
- Giedrė Valdonė Sakalauskienė
- Institute of Physiology and Pharmacology, Medical Academy, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania;
| | | |
Collapse
|
4
|
Khan RT, Sharma V, Khan SS, Rasool S. Prevention and potential remedies for antibiotic resistance: current research and future prospects. Front Microbiol 2024; 15:1455759. [PMID: 39421555 PMCID: PMC11484029 DOI: 10.3389/fmicb.2024.1455759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
The increasing threat of antibiotic resistance and shrinking treatment options for infections have pushed mankind into a difficult position. The looming threat of the return of the pre-antibiotic era has caused a sense of urgency to protect and conserve the potency of antibiotic therapy. One of the perverse effects of antibiotic resistance is the dissemination of its causative agents from non-clinically important strains to clinically important strains and vice versa. The popular saying "Prevention is better than cure" is appropriate for tackling antibiotic resistance. On the one hand, new and effective antibiotics are required; on the other hand, better measures for the use of antibiotics, along with increased awareness in the general public related to antibiotic use, are essential. Awareness, especially of appropriate antibiotic use, antibiotic resistance, its dissemination, and potential threats, can help greatly in controlling the use and abuse of antibiotics, and the containment of antibiotic resistance. Antibiotic drugs' effectiveness can be enhanced by producing novel antibiotic analogs or adding adjuvants to current antibiotics. Combinatorial therapy of antibiotics has proven successful in treating multidrug-resistant (MDR) bacterial infections. This review aims to highlight the current global situation of antibiotic resistance and discuss the methods used to monitor, prevent, inhibit, or reverse bacterial resistance mechanisms in the fight against antibiotic resistance.
Collapse
Affiliation(s)
| | | | | | - Shafaq Rasool
- Molecular Biology Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, India
| |
Collapse
|
5
|
Lo CC, Yeh TH, Jao YH, Wang TH, Lo HR. Efficacy of outer membrane permeabilization in promoting aromatic isothiocyanates-mediated eradication of multidrug resistant Gram-negative bacteria and bacterial persisters. Folia Microbiol (Praha) 2024; 69:993-1002. [PMID: 38319459 DOI: 10.1007/s12223-024-01143-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/27/2024] [Indexed: 02/07/2024]
Abstract
Multidrug resistant (MDR) bacteria are recognized to be one of the most important problems in public health. The outer membrane permeability is a critical intrinsic mechanism of bacterial resistance. In addition, bacteria produce a small number of dormant persister cells causing multidrug tolerance that reduces antimicrobial efficacy. This study aimed to evaluate the inhibitory effects of the combination of aromatic isothiocyanates (ITCs) with membrane-active agents on bacterial persisters and MDR Gram-negative bacteria. Our study demonstrated that membrane-active agents, particularly ethylenediaminetetraacetic acid (EDTA) synergistically enhanced the inhibitory activity of aromatic benzyl ITC and phenethyl ITC against most Gram-negative bacteria strains with fractional inhibitory concentration index values ranging from 0.18 to 0.5 and 0.16 to 0.5, respectively, and contributed to an 8- to 64-fold minimal inhibitory concentration reduction compared with those of aromatic ITCs alone. The EDTA-aromatic ITCs combination effectively reduced the survival rates of tested bacteria and significantly eradicated bacterial persisters (p = 0.033 and 0.037, respectively). The growth kinetics analysis also supported the enhanced inhibitory effect of EDTA-aromatic ITCs combination against tested bacteria. Our results suggested an alternate treatment strategy against Gram-negative bacteria, promoting the entry of aromatic ITCs into bacterial cytoplasm to facilitate bacterial clearance and thus preventing the development of bacterial resistance.
Collapse
Affiliation(s)
- Chung-Cheng Lo
- Department of Internal Medicine, Pingtung Veterans General Hospital Longquan Branch, Pingtung, 912012, Taiwan
| | - Tzu-Hui Yeh
- Department of Pathology and Laboratory Medicine, Pingtung Veterans General Hospital, Pingtung, 900053, Taiwan
| | - Ya-Hsuan Jao
- Department of Clinical Laboratory, Kaohsiung Municipal Min-Sheng Hospital, Kaohsiung, 802511, Taiwan
| | - Tzu-Hui Wang
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, 813414, Taiwan
| | - Horng-Ren Lo
- Department of Medical Laboratory Science and Biotechnology, Fooyin University, Kaohsiung, 831301, Taiwan.
| |
Collapse
|
6
|
Huang S, Su G, Yang L, Yue L, Chen L, Huang J, Yang F. Single-Molecule-Level Quantification Based on Atomic Force Microscopy Data Reveals the Interaction between Melittin and Lipopolysaccharide in Gram-Negative Bacteria. Int J Mol Sci 2024; 25:10508. [PMID: 39408837 PMCID: PMC11477153 DOI: 10.3390/ijms251910508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
The interaction forces and mechanical properties of the interaction between melittin (Mel) and lipopolysaccharide (LPS) are considered to be crucial driving forces for Mel when killing Gram-negative bacteria (GNB). However, how their interaction forces perform at the single-molecule level and the dissociation kinetic characteristics of the Mel/LPS complex remain poorly understood. In this study, the single-molecule-level interaction forces between Mel and LPSs from E. coli K-12, O55:B5, O111:B4, and O128:B12 were explored using atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS). AFM-based dynamic force spectroscopy (DFS) and an advanced analytical model were employed to investigate the kinetic characteristics of the Mel/LPS complex dissociation. The results indicated that Mel could interact with both rough (R)-form LPS (E. coli K-12) and smooth (S)-form LPSs (E. coli O55:B5, O111:B4, and O128:B12). The S-form LPS showed a more robust interaction with Mel than the R-form LPS, and a slight difference existed in the interaction forces between Mel and the diverse S-form LPS. Mel interactions with the S-form LPSs showed greater specific and non-specific interaction forces than the R-form LPS (p < 0.05), as determined by AFM-based SMFS. However, there was no significant difference in the specific and non-specific interaction forces among the three samples of S-form LPSs (p > 0.05), indicating that the variability in the O-antigen did not affect the interaction between Mel and LPSs. The DFS result showed that the Mel/S-form LPS complexes had a lower dissociation rate constant, a shorter energy barrier width, a longer bond lifetime, and a higher energy barrier height, demonstrating that Mel interacted with S-form LPS to form more stable complexes. This research enhances the existing knowledge of the interaction micromechanics and kinetic characteristics of Mel and LPS at the single-molecule level. Our research may help with the design and evaluation of new anti-GNB drugs.
Collapse
Affiliation(s)
- Sheng Huang
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing 402460, China; (S.H.); (G.S.); (L.C.)
- Institute of Nutrition and Feed, National Center of Technology Innovation for Pigs, Chongqing 402460, China; (L.Y.); (L.Y.)
| | - Guoqi Su
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing 402460, China; (S.H.); (G.S.); (L.C.)
- Institute of Nutrition and Feed, National Center of Technology Innovation for Pigs, Chongqing 402460, China; (L.Y.); (L.Y.)
| | - Li Yang
- Institute of Nutrition and Feed, National Center of Technology Innovation for Pigs, Chongqing 402460, China; (L.Y.); (L.Y.)
| | - Liangguang Yue
- Institute of Nutrition and Feed, National Center of Technology Innovation for Pigs, Chongqing 402460, China; (L.Y.); (L.Y.)
| | - Li Chen
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing 402460, China; (S.H.); (G.S.); (L.C.)
- Institute of Nutrition and Feed, National Center of Technology Innovation for Pigs, Chongqing 402460, China; (L.Y.); (L.Y.)
| | - Jinxiu Huang
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing 402460, China; (S.H.); (G.S.); (L.C.)
- Institute of Nutrition and Feed, National Center of Technology Innovation for Pigs, Chongqing 402460, China; (L.Y.); (L.Y.)
| | - Feiyun Yang
- Animal Nutrition Institute, Chongqing Academy of Animal Science, Chongqing 402460, China; (S.H.); (G.S.); (L.C.)
- Institute of Nutrition and Feed, National Center of Technology Innovation for Pigs, Chongqing 402460, China; (L.Y.); (L.Y.)
| |
Collapse
|
7
|
Gattinger D, Schlenz V, Weil T, Sattler B. From remote to urbanized: Dispersal of antibiotic-resistant bacteria under the aspect of anthropogenic influence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171532. [PMID: 38458439 DOI: 10.1016/j.scitotenv.2024.171532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Antibiotic resistance is a growing global concern, but our understanding of the spread of resistant bacteria in remote regions remains limited. While some level of intrinsic resistance likely contributes to reduced susceptibility to antimicrobials in the environment, it is evident that human actions, particularly the (mis)use of antibiotics, play a significant role in shaping the environmental resistome, even in seemingly distant habitats like glacier ice sheets. Our research aims to bridge this knowledge gap by investigating the direct influence of human activities on the presence of antibiotic-resistant bacteria in various habitats. To achieve a comprehensive assessment of anthropogenic impact across diverse and seemingly isolated sampling sites, we developed an innovative approach utilizing Corine Land Cover data and heatmaps generated from sports activity trackers. This method allowed us to make meaningful comparisons across relatively pristine environments. Our findings indicate a noteworthy increase in culturable antibiotic-resistant bacteria with heightened human influence, as evidenced by our analysis of glacier, snow, and lake water samples. Notably, the most significant concentrations of antibiotic-resistant and multidrug-resistant microorganisms were discovered in two highly impacted sampling locations, namely the Tux Glacier and Gas Station Ellmau.
Collapse
Affiliation(s)
- Daniel Gattinger
- Institute of Ecology, University of Innsbruck, Innsbruck, Austria.
| | - Valentin Schlenz
- Institute of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Tobias Weil
- Research and Innovation Centre, Fondazione Edmund Mach, All'adige, Italy
| | - Birgit Sattler
- Institute of Ecology, University of Innsbruck, Innsbruck, Austria; Austrian Polar Research Institute, Vienna, Austria
| |
Collapse
|
8
|
Adam S, Fries F, von Tesmar A, Rasheed S, Deckarm S, Sousa CF, Reberšek R, Risch T, Mancini S, Herrmann J, Koehnke J, Kalinina OV, Müller R. The Peptide Antibiotic Corramycin Adopts a β-Hairpin-like Structure and Is Inactivated by the Kinase ComG. J Am Chem Soc 2024; 146:8981-8990. [PMID: 38513269 PMCID: PMC10996006 DOI: 10.1021/jacs.3c13208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024]
Abstract
The rapid development of antibiotic resistance, especially among difficult-to-treat Gram-negative bacteria, is recognized as a serious and urgent threat to public health. The detection and characterization of novel resistance mechanisms are essential to better predict the spread and evolution of antibiotic resistance. Corramycin is a novel and modified peptidic antibiotic with activity against several Gram-negative pathogens. We demonstrate that the kinase ComG, part of the corramycin biosynthetic gene cluster, phosphorylates and thereby inactivates corramycin, leading to the resistance of the host. Remarkably, we found that the closest structural homologues of ComG are aminoglycoside phosphotransferases; however, ComG shows no activity toward this class of antibiotics. The crystal structure of ComG in complex with corramycin reveals that corramycin adopts a β-hairpin-like structure and allowed us to define the changes leading to a switch in substrate from sugar to peptide. Bioinformatic analyses suggest a limited occurrence of ComG-like proteins, which along with the absence of cross-resistance to clinically used drugs positions corramycin as an attractive antibiotic for further development.
Collapse
Affiliation(s)
- Sebastian Adam
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre
for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
| | - Franziska Fries
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre
for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
- Department
of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
- German
Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Alexander von Tesmar
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre
for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
| | - Sari Rasheed
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre
for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
- German
Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Selina Deckarm
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre
for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
| | - Carla F. Sousa
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre
for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
| | - Roman Reberšek
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre
for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
| | - Timo Risch
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre
for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
- Department
of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Stefano Mancini
- Institute
of Medical Microbiology, University of Zürich, 8006 Zürich, Switzerland
| | - Jennifer Herrmann
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre
for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
- German
Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Jesko Koehnke
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre
for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
- Institute
of Food Chemistry, Leibniz University Hannover, Callinstraße 5, 30167 Hannover, Germany
| | - Olga V. Kalinina
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre
for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
- Faculty of
Medicine, Saarland University, 66421 Homburg , Germany
- Center for
Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Rolf Müller
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre
for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
- Department
of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
- German
Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| |
Collapse
|
9
|
Kim SJ, Jo J, Kim J, Ko KS, Lee W. Polymyxin B nonapeptide potentiates the eradication of Gram-negative bacterial persisters. Microbiol Spectr 2024; 12:e0368723. [PMID: 38391225 PMCID: PMC10986493 DOI: 10.1128/spectrum.03687-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
Antibiotic-resistant Gram-negative bacteria remain a globally leading cause of bacterial infection-associated mortality, and it is imperative to identify novel therapeutic strategies. Recently, the advantage of using antibacterials selective against Gram-negative bacteria has been demonstrated with polymyxins that specifically target the lipopolysaccharides of Gram-negative bacteria. However, the severe cytotoxicity of polymyxins limits their clinical use. Here, we demonstrate that polymyxin B nonapeptide (PMBN), a polymyxin B derivative without the terminal amino acyl residue, can significantly enhance the effectiveness of commonly used antibiotics against only Gram-negative bacteria and their persister cells. We show that although PMBN itself does not exhibit antibacterial activity or cytotoxicity well above the 100-fold minimum inhibitory concentration of polymyxin B, PMBN can increase the potency of co-treated antibiotics. We also demonstrate that using PMBN in combination with other antibiotics significantly reduces the frequency of resistant mutant formation. Together, this work provides evidence of the utilities of PMBN as a novel potentiator for antibiotics against Gram-negative bacteria and insights for the eradication of bacterial persister cells during antibiotic treatment. IMPORTANCE The significance of our study lies in addressing the problem of antibiotic-resistant Gram-negative bacteria, which continue to be a global cause of mortality associated with bacterial infections. Therefore, identifying innovative therapeutic approaches is an urgent need. Recent research has highlighted the potential of selective antibacterials like polymyxins, which specifically target the lipopolysaccharides of Gram-negative bacteria. However, the clinical use of polymyxins is limited by their severe cytotoxicity. This study unveils the effectiveness of polymyxin B nonapeptide (PMBN) in significantly enhancing the eradication of persister cells in Gram-negative bacteria. Although PMBN itself does not exhibit antibacterial activity or cytotoxicity, it remarkably reduces persister cells during the treatment of antibiotics. Moreover, combining PMBN with other antibiotics reduces the emergence of resistant mutants. Our research emphasizes the utility of PMBN as a novel potentiator to decrease persister cells during antibiotic treatments for Gram-negative bacteria.
Collapse
Affiliation(s)
- Sun Ju Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jeongwoo Jo
- Department of Microbiology, School of Medicine, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jihyeon Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Kwan Soo Ko
- Department of Microbiology, School of Medicine, Sungkyunkwan University, Suwon, Republic of Korea
| | - Wonsik Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
10
|
Feng Y, Bian J, Yu G, Zhao P, Yue J. Quaternary ammonium-tethered hyperbranched polyurea nanoassembly synergized with antibiotics for enhanced antimicrobial efficacy. Biomater Sci 2024; 12:1185-1196. [PMID: 38226542 DOI: 10.1039/d3bm01519j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The effective transportation of antibiotics to bacteria embedded within a biofilm consisting of a dense matrix of extracellular polymeric substances is still a challenge in the treatment of bacterial biofilm associated infections. Here, we developed an antibiotic nanocarrier constructed from quaternary ammonium-tethered hyperbranched polyureas (HPUs-QA), which showed high loading capacity for a model antibiotic, rifampicin, and high efficacy in the transportation of rifampicin to biofilms. The rifampicin-loaded HPUs-QA nanoassembly (HPUs-Rif/QA) demonstrated a synergistic antimicrobial effect in killing planktonic bacteria and eradicating the corresponding biofilms. Compared to the treatment of bacteria-infected chronic wounds by either HPUs-QA or rifampicin alone, HPUs-Rif/QA showed superior efficacy in promoting wound healing by more effectively inhibiting bacteria colonization. This study highlights the potential of the HPUs-QA nanoassembly in synergistic action with antibiotics for the treatment of biofilm associated infections.
Collapse
Affiliation(s)
- Yanwen Feng
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P. R. China.
| | - Jiang Bian
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P. R. China.
| | - Guoyi Yu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P. R. China.
| | - Pei Zhao
- Laboratory Animal Center, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P. R. China.
| | - Jun Yue
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P. R. China.
| |
Collapse
|
11
|
Zhou Y, Tu T, Yao X, Luo Y, Yang Z, Ren M, Zhang G, Yu Y, Lu A, Wang Y. Pan-genome analysis of Streptococcus suis serotype 2 highlights genes associated with virulence and antibiotic resistance. Front Microbiol 2024; 15:1362316. [PMID: 38450165 PMCID: PMC10915096 DOI: 10.3389/fmicb.2024.1362316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/05/2024] [Indexed: 03/08/2024] Open
Abstract
Streptococcus suis serotype 2 (SS2) is a Gram-positive bacterium. It is a common and significant pathogen in pigs and a common cause of zoonotic meningitis in humans. It can lead to sepsis, endocarditis, arthritis, and pneumonia. If not diagnosed and treated promptly, it has a high mortality rate. The pan-genome of SS2 is open, and with an increasing number of genes, the core genome and accessory genome may exhibit more pronounced differences. Due to the diversity of SS2, the genes related to its virulence and resistance are still unclear. In this study, a strain of SS2 was isolated from a pig farm in Sichuan Province, China, and subjected to whole-genome sequencing and characterization. Subsequently, we conducted a Pan-Genome-Wide Association Study (Pan-GWAS) on 230 strains of SS2. Our analysis indicates that the core genome is composed of 1,458 genes related to the basic life processes of the bacterium. The accessory genome, consisting of 4,337 genes, is highly variable and a major contributor to the genetic diversity of SS2. Furthermore, we identified important virulence and resistance genes in SS2 through pan-GWAS. The virulence genes of SS2 are mainly associated with bacterial adhesion. In addition, resistance genes in the core genome may confer natural resistance of SS2 to fluoroquinolone and glycopeptide antibiotics. This study lays the foundation for further research on the virulence and resistance of SS2, providing potential new drug and vaccine targets against SS2.
Collapse
Affiliation(s)
- You Zhou
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Teng Tu
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xueping Yao
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yan Luo
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zexiao Yang
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Meishen Ren
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Kowloon Tong, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Kowloon Tong, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Yuanyuan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Kowloon Tong, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Kowloon Tong, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Yin Wang
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
12
|
Perez-Bou L, Gonzalez-Martinez A, Gonzalez-Lopez J, Correa-Galeote D. Promising bioprocesses for the efficient removal of antibiotics and antibiotic-resistance genes from urban and hospital wastewaters: Potentialities of aerobic granular systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123115. [PMID: 38086508 DOI: 10.1016/j.envpol.2023.123115] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 11/07/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
The use, overuse, and improper use of antibiotics have resulted in higher levels of antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs), which have profoundly disturbed the equilibrium of the environment. Furthermore, once antibiotic agents are excreted in urine and feces, these substances often can reach wastewater treatment plants (WWTPs), in which improper treatments have been highlighted as the main reason for stronger dissemination of antibiotics, ARB, and ARGs to the receiving bodies. Hence, achieving better antibiotic removal capacities in WWTPs is proposed as an adequate approach to limit the spread of antibiotics, ARB, and ARGs into the environment. In this review, we highlight hospital wastewater (WW) as a critical hotspot for the dissemination of antibiotic resistance due to its high level of antibiotics and pathogens. Hence, monitoring the composition and structure of the bacterial communities related to hospital WW is a key factor in controlling the spread of ARGs. In addition, we discuss the advantages and drawbacks of the current biological WW treatments regarding the antibiotic-resistance phenomenon. Widely used conventional activated sludge technology has proved to be ineffective in mitigating the dissemination of ARB and ARGs to the environment. However, aerobic granular sludge (AGS) technology is a promising technology-with broad adaptability and excellent performance-that could successfully reduce antibiotics, ARB, and ARGs in the generated effluents. We also outline the main operational parameters involved in mitigating antibiotics, ARB, and ARGs in WWTPs. In this regard, WW operation under long hydraulic and solid retention times allows better removal of antibiotics, ARB, and ARGs independently of the WW technology employed. Finally, we address the current knowledge of the adsorption and degradation of antibiotics and their importance in removing ARB and ARGs. Notably, AGS can enhance the removal of antibiotics, ARB, and ARGs due to the complex microbial metabolism within the granular biomass.
Collapse
Affiliation(s)
- Lizandra Perez-Bou
- Microbiology Department, Faculty of Pharmacy, University of Granada, Granada, Andalucía, Spain; Microbiology and Environmental Technology Section, Institute of Water Research, University of Granada, Granada, Andalucía, Spain; Microbial Biotechnology Group, Microbiology and Virology Department, Faculty of Biology, University of Havana, Cuba
| | - Alejandro Gonzalez-Martinez
- Microbiology Department, Faculty of Pharmacy, University of Granada, Granada, Andalucía, Spain; Microbiology and Environmental Technology Section, Institute of Water Research, University of Granada, Granada, Andalucía, Spain
| | - Jesus Gonzalez-Lopez
- Microbiology Department, Faculty of Pharmacy, University of Granada, Granada, Andalucía, Spain; Microbiology and Environmental Technology Section, Institute of Water Research, University of Granada, Granada, Andalucía, Spain
| | - David Correa-Galeote
- Microbiology Department, Faculty of Pharmacy, University of Granada, Granada, Andalucía, Spain; Microbiology and Environmental Technology Section, Institute of Water Research, University of Granada, Granada, Andalucía, Spain.
| |
Collapse
|
13
|
Cumming JG, Kreis L, Kühne H, Wermuth R, Vercruysse M, Cantrill C, Bissantz C, Qiu H, Kramer C, Andreotti D, Fossati G. Novel Indane-Containing NBTIs with Potent Anti-Gram-Negative Activity and Minimal hERG Inhibition. ACS Med Chem Lett 2023; 14:1791-1799. [PMID: 38116438 PMCID: PMC10726470 DOI: 10.1021/acsmedchemlett.3c00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 12/21/2023] Open
Abstract
Novel bacterial topoisomerase inhibitors (NBTIs) make up a promising new class of antibiotics with the potential to combat the growing threat of antimicrobial resistance. Two key challenges in the development of NBTIs have been to obtain broad spectrum activity against multidrug-resistant Gram-negative bacteria and to diminish inhibition of the hERG cardiac ion channel. Here we report the optimization of a series of NBTIs bearing a novel indane DNA intercalating moiety. The addition of a basic, polar side chain connected to the indane by an ether or an N-linked secondary amide linkage together with a lipophilicity-lowering modification of the enzyme binding moiety led to compounds such as 2a and 2g which showed excellent broad spectrum potency and minimal hERG inhibition. Compound 2a demonstrated robust bactericidal in vivo activity in a mouse lung infection model with the strain P. aeruginosa ATCC 27853 which is resistant to several clinically relevant antibiotics. Rodent pharmacokinetic studies with 2a revealed an unusual profile characterized by rapid tissue distribution and a prolonged, flat terminal phase. This profile precluded further development of these compounds as potential new antibiotics.
Collapse
Affiliation(s)
- John G. Cumming
- Roche
Pharma Research & Early Development, F. Hoffmann-La Roche Ltd., CH-4070 Basel, Switzerland
| | - Lukas Kreis
- Roche
Pharma Research & Early Development, F. Hoffmann-La Roche Ltd., CH-4070 Basel, Switzerland
| | - Holger Kühne
- Roche
Pharma Research & Early Development, F. Hoffmann-La Roche Ltd., CH-4070 Basel, Switzerland
| | - Roger Wermuth
- Roche
Pharma Research & Early Development, F. Hoffmann-La Roche Ltd., CH-4070 Basel, Switzerland
| | - Maarten Vercruysse
- Roche
Pharma Research & Early Development, F. Hoffmann-La Roche Ltd., CH-4070 Basel, Switzerland
| | - Carina Cantrill
- Roche
Pharma Research & Early Development, F. Hoffmann-La Roche Ltd., CH-4070 Basel, Switzerland
| | - Caterina Bissantz
- Roche
Pharma Research & Early Development, F. Hoffmann-La Roche Ltd., CH-4070 Basel, Switzerland
| | - Hongxia Qiu
- China
Innovation Center of Roche, Roche R&D
Center (China) Ltd., Shanghai 201203, China
| | - Christian Kramer
- Roche
Pharma Research & Early Development, F. Hoffmann-La Roche Ltd., CH-4070 Basel, Switzerland
| | | | | |
Collapse
|
14
|
Tarín-Pelló A, Suay-García B, Forés-Martos J, Falcó A, Pérez-Gracia MT. Computer-aided drug repurposing to tackle antibiotic resistance based on topological data analysis. Comput Biol Med 2023; 166:107496. [PMID: 37793206 DOI: 10.1016/j.compbiomed.2023.107496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/29/2023] [Accepted: 09/15/2023] [Indexed: 10/06/2023]
Abstract
The progressive emergence of antimicrobial resistance has become a global health problem in need of rapid solution. Research into new antimicrobial drugs is imperative. Drug repositioning, together with computational mathematical prediction models, could be a fast and efficient method of searching for new antibiotics. The aim of this study was to identify compounds with potential antimicrobial capacity against Escherichia coli from US Food and Drug Administration-approved drugs, and the similarity between known drug targets and E. coli proteins using a topological structure-activity data analysis model. This model has been shown to identify molecules with known antibiotic capacity, such as carbapenems and cephalosporins, as well as new molecules that could act as antimicrobials. Topological similarities were also found between E. coli proteins and proteins from different bacterial species such as Mycobacterium tuberculosis, Pseudomonas aeruginosa and Salmonella Typhimurium, which could imply that the selected molecules have a broader spectrum than expected. These molecules include antitumor drugs, antihistamines, lipid-lowering agents, hypoglycemic agents, antidepressants, nucleotides, and nucleosides, among others. The results presented in this study prove the ability of computational mathematical prediction models to predict molecules with potential antimicrobial capacity and/or possible new pharmacological targets of interest in the design of new antibiotics and in the better understanding of antimicrobial resistance.
Collapse
Affiliation(s)
- Antonio Tarín-Pelló
- Área de Microbiología, Departamento de Farmacia, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud Universidad Cardenal Herrera-CEU, CEU Universities, C/ Santiago Ramón y Cajal, 46115, Alfara del Patriarca, Valencia, Spain
| | - Beatriz Suay-García
- ESI International Chair@CEU-UCH, Departamento de Matemáticas, Física y Ciencias Tecnológicas, Universidad Cardenal Herrera-CEU, CEU Universities, C/ San Bartolomé 55, 46115, Alfara del Patriarca, Valencia, Spain
| | - Jaume Forés-Martos
- ESI International Chair@CEU-UCH, Departamento de Matemáticas, Física y Ciencias Tecnológicas, Universidad Cardenal Herrera-CEU, CEU Universities, C/ San Bartolomé 55, 46115, Alfara del Patriarca, Valencia, Spain
| | - Antonio Falcó
- ESI International Chair@CEU-UCH, Departamento de Matemáticas, Física y Ciencias Tecnológicas, Universidad Cardenal Herrera-CEU, CEU Universities, C/ San Bartolomé 55, 46115, Alfara del Patriarca, Valencia, Spain
| | - María-Teresa Pérez-Gracia
- Área de Microbiología, Departamento de Farmacia, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud Universidad Cardenal Herrera-CEU, CEU Universities, C/ Santiago Ramón y Cajal, 46115, Alfara del Patriarca, Valencia, Spain.
| |
Collapse
|
15
|
Abdelbary ER, Elsaghier AM, Abd El-Baky RM, Waly NGFM, Ramadan M, Abd- Elsamea FS, Ali ME, Alzahrani HA, Salah M. First Emergence of NDM-5 and OqxAB Efflux Pumps Among Multidrug-Resistant Klebsiella pneumoniae Isolated from Pediatric Patients in Assiut, Egypt. Infect Drug Resist 2023; 16:5965-5976. [PMID: 37705515 PMCID: PMC10496925 DOI: 10.2147/idr.s421978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/16/2023] [Indexed: 09/15/2023] Open
Abstract
Introduction New Delhi metallo-β-lactamase (NDM)-producing K. pneumoniae poses a high risk, especially among Egyptian pediatric patients who consume carbapenems antibiotics very widely and without adequate diagnostic sources. In addition, presence of efflux pump genes such as OqxAB increases resistance against many groups of antimicrobials which exacerbates the problem faced for human health. This study aimed to determine NDM variants among K. pneumoniae strains isolated from pediatric patients in Egypt, analyze the presence of OqxAB genes, and molecular characterization of blaNDM-5-positive K. pneumoniae. Methods Fifty-six K. pneumoniae isolates were recovered from pediatric patients, and tested for carbapenemase by modified carbapenem inactivation methods (mCIM) test. Minimum inhibitory concentrations of meropenem and colistin were determined by meropenem E-test strips and broth microdilution, respectively. PCR was used for the detection of the resistant genes (ESBL gene (blaCTX-M), carbapenemase genes (blaNDM, blaKPC) colistin resistant (mcr1, mcr2)) and genes for efflux pump (oqxA and oqxB). BlaNDM was sequenced. The effect of efflux pump in NDM-5-producing isolates was assessed by measuring MIC of ciprofloxacin and meropenem before and after exposure to the carbonyl cyanide 3-chlorophenylhydrazone (CCCP). The horizontal gene transfer ability of blaNDM-5 was determined using liquid mating assay and PCR-based replicon typing (PBRT) was done to determine the major plasmid incompatibility group. Results Twenty-nine isolates were positive for blaNDM-1, nine isolates were positive for blaNDM-5, and 15 isolates were positive for blaKPC. There is a significant increase of meropenem MIC of NDM-5-positive isolates compared with NDM-1-positive isolates. In addition, 38 isolates were positive for CTX-M, and 15 isolates were positive for mcr1. Both OqxA and OqxB were detected in 26 isolates and 13 isolates were positive for OqxA while 11 isolates were positive for OqxB only. All NDM-5-producing isolates except one isolate could transfer their plasmids by conjugation to their corresponding transconjugants (E. coli J53). Plasmid replicon typing showed that FII was predominant in NDM-5-producing K. pneumoniae. Similar strains were found between the three isolates and similarity was also detected between the two isolates. Conclusion The highly resistant K. pneumoniae producing blaNDM-5 type was firstly isolated from pediatric patients. The association of efflux pump genes such as OqxAB is involved in resistance to ciprofloxacin. This highlighted the severity risk of blaNDM-5-positive K. pneumonia as it could transfer blaNDM-5 to other bacteria and has more resistance against carbapenems. This underlines the importance of continuous monitoring of infection control guidelines, and the urgent need for a national antimicrobial stewardship plan in Egyptian hospitals.
Collapse
Affiliation(s)
- Eman R Abdelbary
- Microbiology and Immunology Department, Faculty of Pharmacy, Al-Azhar University-Assiut Branch, Assiut, 11651, Egypt
| | - Ashraf M Elsaghier
- Gastroenterology and Hepatology Unit, University Children Hospital, Faculty of Medicine, Assiut University, Assiut, 11651, Egypt
| | - Rehab M Abd El-Baky
- Microbiology and Immunology Department, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
- Microbiology and Immunology Department, Faculty of Pharmacy, Deraya University, Minia, 11566, Egypt
| | - Nancy G F M Waly
- Microbiology and Immunology Department, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Mohammed Ramadan
- Microbiology and Immunology Department, Faculty of Pharmacy, Al-Azhar University-Assiut Branch, Assiut, 11651, Egypt
| | - Fatma S Abd- Elsamea
- Medical Microbiology and Immunology Department, Faculty of Medicine, Assiut University, Assiut, 11651, Egypt
| | - Mohamed E Ali
- Microbiology and Immunology Department, Faculty of Pharmacy, Al-Azhar University-Assiut Branch, Assiut, 11651, Egypt
| | - Hayat A Alzahrani
- Department of Medical Laboratory Technology, Faculty of Applied Medical Science, Northern Border University, Arar, 91431, Saudi Arabia
| | - Mohammed Salah
- Microbiology and Immunology Department, Faculty of Pharmacy, Port Said University, Port Said City, 42526, Egypt
| |
Collapse
|
16
|
Stupar J, Hoel S, Strømseth S, Lerfall J, Rustad T, Jakobsen AN. Selection of lactic acid bacteria for biopreservation of salmon products applying processing-dependent growth kinetic parameters and antimicrobial mechanisms. Heliyon 2023; 9:e19887. [PMID: 37810133 PMCID: PMC10559289 DOI: 10.1016/j.heliyon.2023.e19887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Biopreservation using lactic acid bacteria (LAB) is a promising technology to prevent the growth of pathogenic microorganisms in fresh and mildly processed food. The main aim of this study was to select LAB, originally isolated from ready-to-eat (RTE) seafood, for biopreservation of fresh salmon and processed salmon products. Ten LAB strains (five Carnobacterium and five Leuconostoc) were selected based on previously demonstrated bioprotective properties to investigate their antimicrobial mechanisms and temperature-dependent growth kinetics in a sterile salmon juice model system. Furthermore, five strains (three Carnobacterium and two Leuconostoc) were selected to test process-dependent growth kinetic parameters relevant to the secondary processing of salmon. Two strains (Carnobacterium maltaromaticum 35 and C. divergens 468) showed bacteriocin-like activity against Listeria innocua, while inhibitory effect of cell-free supernatants (CFS) was not observed against Escherichia coli. All selected strains were able to grow in sterile salmon juice at tested temperatures (4, 8, 12 and 16 °C), with specific growth rates (μ) ranging from 0.01 to 0.04/h at 4 °C and reaching a maximum population density of 8.4-9 log CFU/ml. All five strains tested for process-dependent growth kinetic parameters were able to grow in the range of 0.5-5% NaCl and 0.13-0.26% purified condensed smoke (VTABB and JJT01), with inter- and intraspecies variation in growth kinetics. According to the temperature-dependent growth kinetics and antimicrobial assay results, two strains, Leuconostoc mesenteroides 68 (Le.m.68) and C. divergens 468 (C d.468), were selected for in situ test to validate their ability to grow in vacuum-packed fresh salmon at 4 °C. Both strains were able to grow at maximum growth rates of 0.29 ± 0.04/d for Le. m.68 and 0.39 ± 0.06/d for C.d.468, and their final concentrations were 7.91 ± 0.31 and 8.02 ± 0.25 log CFU/g, respectively. This study shows that LAB, originally isolated from RTE seafood, have promising potential as bioprotective strains in fresh and processed salmon products.
Collapse
Affiliation(s)
- Jelena Stupar
- Norwegian University of Science and Technology, Department of Biotechnology and Food Science, NO-7491, Trondheim, Norway
| | - Sunniva Hoel
- Norwegian University of Science and Technology, Department of Biotechnology and Food Science, NO-7491, Trondheim, Norway
| | - Sigrid Strømseth
- Norwegian University of Science and Technology, Department of Biotechnology and Food Science, NO-7491, Trondheim, Norway
| | - Jørgen Lerfall
- Norwegian University of Science and Technology, Department of Biotechnology and Food Science, NO-7491, Trondheim, Norway
| | - Turid Rustad
- Norwegian University of Science and Technology, Department of Biotechnology and Food Science, NO-7491, Trondheim, Norway
| | - Anita Nordeng Jakobsen
- Norwegian University of Science and Technology, Department of Biotechnology and Food Science, NO-7491, Trondheim, Norway
| |
Collapse
|
17
|
Liu E, Prinzi AM, Borjan J, Aitken SL, Bradford PA, Wright WF. #AMRrounds: a systematic educational approach for navigating bench to bedside antimicrobial resistance. JAC Antimicrob Resist 2023; 5:dlad097. [PMID: 37583473 PMCID: PMC10424884 DOI: 10.1093/jacamr/dlad097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
Abstract
Antimicrobial resistance (AMR) continues to serve as a major global health crisis. Clinicians practising in this modern era are faced with ongoing challenges in the therapeutic management of patients suffering from antimicrobial-resistant infections. A strong educational understanding and synergistic application of clinical microbiology, infectious disease and pharmacological concepts can assist the adventuring clinician in the navigation of such cases. Important items include mobilizing laboratory testing for pathogen identification and susceptibility data, harnessing an understanding of intrinsic pathogen resistance, acknowledging epidemiological resistance trends, recognizing acquired AMR mechanisms, and consolidating these considerations when constructing an ideal pharmacological plan. In this article, we outline a novel framework by which to systematically approach clinical AMR, encourage AMR-related education and optimize therapeutic decision-making in AMR-related illnesses.
Collapse
Affiliation(s)
- Elaine Liu
- Division of Pharmacy and Division of Infectious Diseases, The Johns Hopkins Bayview Medical Center, 5200 Eastern Avenue, Baltimore, MD, USA
| | - Andrea M Prinzi
- US Medical Affairs, bioMérieux, Salt Lake City, UT 84104, USA
| | - Jovan Borjan
- Division of Pharmacy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samuel L Aitken
- Department of Pharmacy, Michigan Medicine, Ann Arbor, MI, USA
| | | | - William F Wright
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD, USA
| |
Collapse
|
18
|
Ao B, Du Q, Liu D, Shi X, Tu J, Xia X. A review on synthesis and antibacterial potential of bio-selenium nanoparticles in the food industry. Front Microbiol 2023; 14:1229838. [PMID: 37520346 PMCID: PMC10373938 DOI: 10.3389/fmicb.2023.1229838] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023] Open
Abstract
Effective control of foodborne pathogen contamination is a significant challenge to the food industry, but the development of new antibacterial nanotechnologies offers new opportunities. Notably, selenium nanoparticles have been extensively studied and successfully applied in various food fields. Selenium nanoparticles act as food antibacterial agents with a number of benefits, including selenium as an essential trace element in food, prevention of drug resistance induction in foodborne pathogens, and improvement of shelf life and food storage conditions. Compared to physical and chemical methods, biogenic selenium nanoparticles (Bio-SeNPs) are safer and more multifunctional due to the bioactive molecules in Bio-SeNPs. This review includes a summarization of (1) biosynthesized of Bio-SeNPs from different sources (plant extracts, fungi and bacteria) and their antibacterial activity against various foodborne bacteria; (2) the antibacterial mechanisms of Bio-SeNPs, including penetration of cell wall, damage to cell membrane and contents leakage, inhibition of biofilm formation, and induction of oxidative stress; (3) the potential antibacterial applications of Bio-SeNPs as food packaging materials, food additives and fertilizers/feeds for crops and animals in the food industry; and (4) the cytotoxicity and animal toxicity of Bio-SeNPs. The related knowledge contributes to enhancing our understanding of Bio-SeNP applications and makes a valuable contribution to ensuring food safety.
Collapse
|
19
|
Fu L, Deng S, Luo Y, Fu Q, Fan Y, Jia L. An ultrasensitive colorimetric biosensor for the detection of Gram-positive bacteria by integrating paper-based enrichment and carbon dot-based selective recognition. Talanta 2023; 265:124920. [PMID: 37451123 DOI: 10.1016/j.talanta.2023.124920] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/20/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Rapid screening of bacteria by low-cost and eco-friendly material-based approaches is still a major challenge. Herein, a colorimetric biosensor was designed for the ultrasensitive and rapid detection of Gram-positive bacteria. The biosensor exploited polydopamine and polyethyleneimine (PDA-PEI)-modified papers for separating bacteria and carbon dots (CDs) for selective colorimetric detection of Gram-positive bacteria. Noble metal-free CDs can target Gram-positive bacteria by binding with peptidoglycan and possess peroxidase-like activity. Thus, they can avert the step of modifying recognition probes, facilitating biosensor fabrication, and reducing the cost. This biosensor can detect S. aureus as low as 1 cfu mL-1, L. monocytogenes as low as 5 cfu mL-1, and B. subtilis as low as 9 cfu mL-1 within 55 min. In addition, a portable device was constructed to enable convenient and on-site quantitative detection of Gram-positive bacteria. The feasibility of the biosensor was verified by detecting Gram-positive bacteria in eggshell and sausage samples with recoveries ranging from 91.2% to 110%.
Collapse
Affiliation(s)
- Li Fu
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Suqi Deng
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Yimin Luo
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Qiang Fu
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Yi Fan
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Li Jia
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
20
|
Mackie ERR, Barrow AS, Giel MC, Hulett MD, Gendall AR, Panjikar S, Soares da Costa TP. Repurposed inhibitor of bacterial dihydrodipicolinate reductase exhibits effective herbicidal activity. Commun Biol 2023; 6:550. [PMID: 37217566 DOI: 10.1038/s42003-023-04895-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/02/2023] [Indexed: 05/24/2023] Open
Abstract
Herbicide resistance represents one of the biggest threats to our natural environment and agricultural sector. Thus, new herbicides are urgently needed to tackle the rise in herbicide-resistant weeds. Here, we employed a novel strategy to repurpose a 'failed' antibiotic into a new and target-specific herbicidal compound. Specifically, we identified an inhibitor of bacterial dihydrodipicolinate reductase (DHDPR), an enzyme involved in lysine biosynthesis in plants and bacteria, that exhibited no antibacterial activity but severely attenuated germination of the plant Arabidopsis thaliana. We confirmed that the inhibitor targets plant DHDPR orthologues in vitro, and exhibits no toxic effects against human cell lines. A series of analogues were then synthesised with improved efficacy in germination assays and against soil-grown A. thaliana. We also showed that our lead compound is the first lysine biosynthesis inhibitor with activity against both monocotyledonous and dicotyledonous weed species, by demonstrating its effectiveness at reducing the germination and growth of Lolium rigidum (rigid ryegrass) and Raphanus raphanistrum (wild radish). These results provide proof-of-concept that DHDPR inhibition may represent a much-needed new herbicide mode of action. Furthermore, this study exemplifies the untapped potential of repurposing 'failed' antibiotic scaffolds to fast-track the development of herbicide candidates targeting the respective plant enzymes.
Collapse
Affiliation(s)
- Emily R R Mackie
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Andrew S Barrow
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Marie-Claire Giel
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Mark D Hulett
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Anthony R Gendall
- Australian Research Council Industrial Transformation Research Hub for Medicinal Agriculture, AgriBio, La Trobe University, Bundoora, VIC, 3086, Australia
- Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Santosh Panjikar
- Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, VIC, 3168, Australia
- Department of Molecular Biology and Biochemistry, Monash University, Melbourne, VIC, 3800, Australia
| | - Tatiana P Soares da Costa
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia.
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia.
| |
Collapse
|
21
|
Nguyen THT, Nguyen HD, Le MH, Nguyen TTH, Nguyen TD, Nguyen DL, Nguyen QH, Nguyen TKO, Michalet S, Dijoux-Franca MG, Pham HN. Efflux Pump Inhibitors in Controlling Antibiotic Resistance: Outlook under a Heavy Metal Contamination Context. Molecules 2023; 28:molecules28072912. [PMID: 37049674 PMCID: PMC10095785 DOI: 10.3390/molecules28072912] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/10/2023] [Accepted: 03/18/2023] [Indexed: 04/14/2023] Open
Abstract
Multi-drug resistance to antibiotics represents a growing challenge in treating infectious diseases. Outside the hospital, bacteria with the multi-drug resistance (MDR) phenotype have an increased prevalence in anthropized environments, thus implying that chemical stresses, such as metals, hydrocarbons, organic compounds, etc., are the source of such resistance. There is a developing hypothesis regarding the role of metal contamination in terrestrial and aquatic environments as a selective agent in the proliferation of antibiotic resistance caused by the co-selection of antibiotic and metal resistance genes carried by transmissible plasmids and/or associated with transposons. Efflux pumps are also known to be involved in either antibiotic or metal resistance. In order to deal with these situations, microorganisms use an effective strategy that includes a range of expressions based on biochemical and genetic mechanisms. The data from numerous studies suggest that heavy metal contamination could affect the dissemination of antibiotic-resistant genes. Environmental pollution caused by anthropogenic activities could lead to mutagenesis based on the synergy between antibiotic efficacy and the acquired resistance mechanism under stressors. Moreover, the acquired resistance includes plasmid-encoded specific efflux pumps. Soil microbiomes have been reported as reservoirs of resistance genes that are available for exchange with pathogenic bacteria. Importantly, metal-contaminated soil is a selective agent that proliferates antibiotic resistance through efflux pumps. Thus, the use of multi-drug efflux pump inhibitors (EPIs) originating from natural plants or synthetic compounds is a promising approach for restoring the efficacy of existing antibiotics, even though they face a lot of challenges.
Collapse
Affiliation(s)
- Thi Huyen Thu Nguyen
- Department of Life Sciences, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10072, Vietnam
- Saint Paul Hospital, 12 Chu Van An, Hanoi 11114, Vietnam
| | - Hai Dang Nguyen
- Department of Academic Affairs, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10072, Vietnam
| | - Mai Huong Le
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 1H Building, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10072, Vietnam
| | - Thi Thu Hien Nguyen
- Institute of Biological and Food Technology, Hanoi Open University, 101B Nguyen Hien, Hanoi 11615, Vietnam
| | - Thi Dua Nguyen
- Saint Paul Hospital, 12 Chu Van An, Hanoi 11114, Vietnam
| | | | - Quang Huy Nguyen
- Department of Life Sciences, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10072, Vietnam
| | - Thi Kieu Oanh Nguyen
- Department of Life Sciences, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10072, Vietnam
| | - Serge Michalet
- UMR 5557, Ecologie Microbienne, CNRS, INRAe, VetagroSup, UCBL, Université de Lyon, 43 Boulevard du 11 Novembre, F-69622 Villeurbanne, France
| | - Marie-Geneviève Dijoux-Franca
- UMR 5557, Ecologie Microbienne, CNRS, INRAe, VetagroSup, UCBL, Université de Lyon, 43 Boulevard du 11 Novembre, F-69622 Villeurbanne, France
| | - Hoang Nam Pham
- Department of Life Sciences, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10072, Vietnam
| |
Collapse
|
22
|
Sarkar P, De K, Modi M, Dhanda G, Priyadarshini R, Bandow JE, Haldar J. Next-generation membrane-active glycopeptide antibiotics that also inhibit bacterial cell division. Chem Sci 2023; 14:2386-2398. [PMID: 36873852 PMCID: PMC9977398 DOI: 10.1039/d2sc05600c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 01/02/2023] [Indexed: 01/09/2023] Open
Abstract
Resistance to vancomycin, a life-saving drug against Gram-positive bacterial infections necessitates developing alternative therapeutics. Herein, we report vancomycin derivatives that assimilate mechanisms beyond d-Ala-d-Ala binding. The role of hydrophobicity towards the structure and function of the membrane-active vancomycin showed that alkyl-cationic substitutions favored broad-spectrum activity. The lead molecule, VanQAmC10 delocalized the cell division protein MinD in Bacillus subtilis, implying an impact on bacterial cell division. Further examination of wild-type, GFP-FtsZ, or GFP-FtsI producing- and ΔamiAC mutants of Escherichia coli revealed filamentous phenotypes and delocalization of the FtsI protein. The findings indicate that VanQAmC10 also inhibits bacterial cell division, a property previously unknown for glycopeptide antibiotics. The conjunction of multiple mechanisms contributes to its superior efficacy against metabolically active and inactive bacteria, wherein vancomycin is ineffective. Additionally, VanQAmC10 exhibits high efficacy against methicillin-resistant Staphylococcus aureus (MRSA) and Acinetobacter baumannii in mouse models of infection.
Collapse
Affiliation(s)
- Paramita Sarkar
- Antimicrobial Research Laboratory, New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bengaluru 560064 Karnataka India +91 802208 2565
| | - Kathakali De
- Antimicrobial Research Laboratory, New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bengaluru 560064 Karnataka India +91 802208 2565
| | - Malvika Modi
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University Dadri 201314 UP India
| | - Geetika Dhanda
- Antimicrobial Research Laboratory, New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bengaluru 560064 Karnataka India +91 802208 2565
| | - Richa Priyadarshini
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University Dadri 201314 UP India
| | - Julia E Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstraße 150 44780 Bochum Germany
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bengaluru 560064 Karnataka India +91 802208 2565
| |
Collapse
|
23
|
Plant Secondary Metabolites on Efflux-Mediated Antibiotic Resistant Stenotrophomonas Maltophilia: Potential of Herbal-Derived Efflux Pump Inhibitors. Antibiotics (Basel) 2023; 12:antibiotics12020421. [PMID: 36830331 PMCID: PMC9952282 DOI: 10.3390/antibiotics12020421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
During the process of adapting to metal contamination, plants produce secondary metabolites that have the potential to modulate multidrug-resistant (MDR) phenotypes; this is achieved by inhibiting the activity of efflux pumps to reduce the minimum inhibitory concentrations (MICs) of antimicrobial substrates. Our study evaluated the effect of secondary metabolites of belowground parts of Pteris vittata L. and Fallopia japonica, two metal-tolerant plants from northern Vietnam, on six antibiotic-resistant Stenotrophomonas maltophilia strains possessing efflux pump resistance mechanisms that were isolated from soil and clinical samples. The chemical composition of aqueous and dichloromethane (DCM) fractions extracted from P. vittata and F. japonica was determined using UHPLC-DAD-ESI/QTOF analysis. The antibacterial and efflux pump inhibitory activities of the four fractions were evaluated for the six strains (K279a, 0366, BurA1, BurE1, PierC1, and 502) using a microdilution assay at fraction concentrations of 62.5, 125, and 250 μg/mL. The DCM fraction of F. japonica exhibited remarkable antibacterial activity against strain 0366, with a MIC of 31.25 μg/mL. Furthermore, this fraction also significantly decreased gentamicin MIC: four-fold and eight-fold reductions for BurA1 and BurE1 strains, respectively (when tested at 250 μg/mL), and two-fold and eight-fold reductions for K279a and BurE1 strains, respectively (when tested at 125 μg/mL). Pure emodin, the main component identified in the DCM fraction of F. japonica, and sennidine A&B only reduced by half the MIC of gentamicin (when tested at 30 μg/mL). Our results suggest that the DCM fraction components of F. japonica underground parts may be potential candidates for new bacterial efflux pump inhibitors (EPIs).
Collapse
|
24
|
Antibacterial activity of metal-phenanthroline complexes against multidrug-resistant Irish clinical isolates: a whole genome sequencing approach. J Biol Inorg Chem 2023; 28:153-171. [PMID: 36484826 PMCID: PMC9734640 DOI: 10.1007/s00775-022-01979-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/08/2022] [Indexed: 12/14/2022]
Abstract
Antimicrobial resistance (AMR) is one of the serious global health challenges of our time. There is now an urgent need to develop novel therapeutic agents that can overcome AMR, preferably through alternative mechanistic pathways from conventional treatments. The antibacterial activity of metal complexes (metal = Cu(II), Mn(II), and Ag(I)) incorporating 1,10-phenanthroline (phen) and various dianionic dicarboxylate ligands, along with their simple metal salt and dicarboxylic acid precursors, against common AMR pathogens were investigated. Overall, the highest level of antibacterial activity was evident in compounds that incorporate the phen ligand compared to the activities of their simple salt and dicarboxylic acid precursors. The chelates incorporating both phen and the dianion of 3,6,9-trioxaundecanedioic acid (tdda) were the most effective, and the activity varied depending on the metal centre. Whole-genome sequencing (WGS) was carried out on the reference Pseudomonas aeruginosa strain, PAO1. This strain was exposed to sub-lethal doses of lead metal-tdda-phen complexes to form mutants with induced resistance properties with the aim of elucidating their mechanism of action. Various mutations were detected in the mutant P. aeruginosa genome, causing amino acid changes to proteins involved in cellular respiration, the polyamine biosynthetic pathway, and virulence mechanisms. This study provides insights into acquired resistance mechanisms of pathogenic organisms exposed to Cu(II), Mn(II), and Ag(I) complexes incorporating phen with tdda and warrants further development of these potential complexes as alternative clinical therapeutic drugs to treat AMR infections.
Collapse
|
25
|
Merenstein D, Pot B, Leyer G, Ouwehand AC, Preidis GA, Elkins CA, Hill C, Lewis ZT, Shane AL, Zmora N, Petrova MI, Collado MC, Morelli L, Montoya GA, Szajewska H, Tancredi DJ, Sanders ME. Emerging issues in probiotic safety: 2023 perspectives. Gut Microbes 2023; 15:2185034. [PMID: 36919522 PMCID: PMC10026873 DOI: 10.1080/19490976.2023.2185034] [Citation(s) in RCA: 82] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/22/2023] [Indexed: 03/16/2023] Open
Abstract
Probiotics are used for both generally healthy consumers and in clinical settings. However, theoretical and proven adverse events from probiotic consumption exist. New probiotic strains and products, as well as expanding use of probiotics into vulnerable populations, warrants concise, and actionable recommendations on how to work toward their safe and effective use. The International Scientific Association for Probiotics and Prebiotics convened a meeting to discuss and produce evidence-based recommendations on potential acute and long-term risks, risks to vulnerable populations, the importance for probiotic product quality to match the needs of vulnerable populations, and the need for adverse event reporting related to probiotic use. The importance of whole genome sequencing, which enables determination of virulence, toxin, and antibiotic resistance genes, as well as clear assignment of species and strain identity, is emphasized. We present recommendations to guide the scientific and medical community on judging probiotic safety.
Collapse
Affiliation(s)
- Daniel Merenstein
- Department of Family Medicine, Georgetown University Medical Center, Washington, DCUSA
| | - Bruno Pot
- Yakult Europe BV, Almere, Netherlands
| | | | - Arthur C. Ouwehand
- Global Health & Nutrition Sciences, International Flavors & Fragrances, Kantvik, Finland
| | - Geoffrey A. Preidis
- Division of Gastroenterology, Hepatology & Nutrition, Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, USA
| | - Christopher A. Elkins
- Clinical and Environmental Microbiology Branch, Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Andi L. Shane
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Emory Children’s Center, Atlanta, Georgia
| | - Niv Zmora
- Scientific consultant, Elinav Lab, Immunology Department, Weizmann Institute of Science, Department of Gastroenterology and Liver Diseases, Tel Aviv, Israel
| | | | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain
| | - Lorenzo Morelli
- Department of Food Science and Technology, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Gina A. Montoya
- Department of Chemical Risk Assessment, Nestlé S.A., Lausanne, Switzerland
| | - Hania Szajewska
- Department of Paediatrics, The Medical University of Warsaw, Warsaw, Poland
| | - Daniel J. Tancredi
- Department of Pediatrics, UC Davis School of Medicine, Sacramento, CA, USA
| | - Mary Ellen Sanders
- International Scientific Association for Probiotics and Prebiotics, Centennial, CO, USA
| |
Collapse
|
26
|
Effects of Sub-Minimum Inhibitory Concentrations of Imipenem and Colistin on Expression of Biofilm-Specific Antibiotic Resistance and Virulence Genes in Acinetobacter baumannii Sequence Type 1894. Int J Mol Sci 2022; 23:ijms232012705. [PMID: 36293559 PMCID: PMC9603859 DOI: 10.3390/ijms232012705] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 12/15/2022] Open
Abstract
Antibiotics at suboptimal doses promote biofilm formation and the development of antibiotic resistance. The underlying molecular mechanisms, however, were not investigated. Here, we report the effects of sub-minimum inhibitory concentrations (sub-MICs) of imipenem and colistin on genes associated with biofilm formation and biofilm-specific antibiotic resistance in a multidrug-tolerant clinical strain of Acinetobacter baumannii Sequence Type (ST) 1894. Comparative transcriptome analysis was performed in untreated biofilm and biofilm treated with sub-MIC doses of imipenem and colistin. RNA sequencing data showed that 78 and 285 genes were differentially expressed in imipenem and colistin-treated biofilm cells, respectively. Among the differentially expressed genes (DEGs), 48 and 197 genes were upregulated exclusively in imipenem and colistin-treated biofilm cells, respectively. The upregulated genes included those encoding matrix synthesis (pgaB), multidrug efflux pump (novel00738), fimbrial proteins, and homoserine lactone synthase (AbaI). Upregulation of biofilm-associated genes might enhance biofilm formation when treated with sub-MICs of antibiotics. The downregulated genes include those encoding DNA gyrase (novel00171), 30S ribosomal protein S20 (novel00584), and ribosome releasing factor (RRF) were downregulated when the biofilm cells were treated with imipenem and colistin. Downregulation of these genes affects protein synthesis, which in turn slows down cell metabolism and makes biofilm cells more tolerant to antibiotics. In this investigation, we also found that 5 of 138 small RNAs (sRNAs) were differentially expressed in biofilm regardless of antibiotic treatment or not. Of these, sRNA00203 showed the highest expression levels in biofilm. sRNAs regulate gene expression and are associated with biofilm formation, which may in turn affect the expression of biofilm-specific antibiotic resistance. In summary, when biofilm cells were exposed to sub-MIC doses of colistin and imipenem, coordinated gene responses result in increased biofilm production, multidrug efflux pump expression, and the slowdown of metabolism, which leads to drug tolerance in biofilm. Targeting antibiotic-induced or repressed biofilm-specific genes represents a new strategy for the development of innovative and effective treatments for biofilm-associated infections caused by A. baumannii.
Collapse
|
27
|
Dias JB, Soncini JGM, Cerdeira L, Lincopan N, Vespero EC. MDR Escherichia coli carrying CTX-M-24 (IncF[F-:A1:B32]) and KPC-2 (IncX3/IncU) plasmids isolated from community-acquired urinary trainfection in Brazil. Braz J Infect Dis 2022; 26:102706. [PMID: 36228665 PMCID: PMC9646818 DOI: 10.1016/j.bjid.2022.102706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/28/2022] [Accepted: 09/17/2022] [Indexed: 11/05/2022] Open
Abstract
Acquired antibiotic resistance in bacteria has become an important worldwide challenge. Currently, several bacteria, including Escherichia coli, have multidrug resistance profiles. Genes such as bla CTX-M-24 and bla KPC-2 (carbapenemase) are widespread. This research letter reports about a genomic surveillance study where multidrug-resistant E. coli containing CTX-M-24(IncF [F-:A1:B32]) and KPC-2(IncX3/IncU) plasmids were obtained from community- acquired urinary tract infection in Brazil.
Collapse
Affiliation(s)
- Juliana Buck Dias
- Universidade Estadual de Londrina, Centro de Ciências da Saúde, Departamento de Patologia, Análises Clínicas e Toxicológicas, Laboratório de Microbiologia Clínica, Londrina, PR, Brazil
| | - João Gabriel Material Soncini
- Universidade Estadual de Londrina, Centro de Ciências da Saúde, Departamento de Patologia, Análises Clínicas e Toxicológicas, Laboratório de Microbiologia Clínica, Londrina, PR, Brazil,Corresponding author.
| | - Louise Cerdeira
- Liverpool School of Tropical Medicine, Department of Vector Biology, Liverpool, United Kingdom,Monash University, Central Clinical School, Department of Infectious Diseases, Melbourne, Australia
| | - Nilton Lincopan
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Eliana Carolina Vespero
- Universidade Estadual de Londrina, Centro de Ciências da Saúde, Departamento de Patologia, Análises Clínicas e Toxicológicas, Laboratório de Microbiologia Clínica, Londrina, PR, Brazil
| |
Collapse
|
28
|
Wyllie JA, McKay MV, Barrow AS, Soares da Costa TP. Biosynthesis of uridine diphosphate N-Acetylglucosamine: An underexploited pathway in the search for novel antibiotics? IUBMB Life 2022; 74:1232-1252. [PMID: 35880704 PMCID: PMC10087520 DOI: 10.1002/iub.2664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/04/2022] [Indexed: 11/06/2022]
Abstract
Although the prevalence of antibiotic resistance is increasing at an alarming rate, there are a dwindling number of effective antibiotics available. Thus, the development of novel antibacterial agents should be of utmost importance. Peptidoglycan biosynthesis has been and is still an attractive source for antibiotic targets; however, there are several components that remain underexploited. In this review, we examine the enzymes involved in the biosynthesis of one such component, UDP-N-acetylglucosamine, an essential building block and precursor of bacterial peptidoglycan. Furthermore, given the presence of a similar biosynthesis pathway in eukaryotes, we discuss the current knowledge on the differences and similarities between the bacterial and eukaryotic enzymes. Finally, this review also summarises the recent advances made in the development of inhibitors targeting the bacterial enzymes.
Collapse
Affiliation(s)
- Jessica A Wyllie
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Mirrin V McKay
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Andrew S Barrow
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Tatiana P Soares da Costa
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
29
|
Mather JC, Wyllie JA, Hamilton A, Soares da Costa TP, Barnard PJ. Antibacterial silver and gold complexes of imidazole and 1,2,4-triazole derived N-heterocyclic carbenes. Dalton Trans 2022; 51:12056-12070. [PMID: 35876319 DOI: 10.1039/d2dt01657e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of gold(I) (4a-4h, 5a-5b) and silver(I) (3a-3h) complexes of 1,2,4-triazolylidene and imidazolylidene based N-heterocyclic carbene ligands were prepared and the antibacterial activities of these complexes have been evaluated. The complexes were characterised using 1H-NMR, 13C-NMR, HRMS and in the cases of 3a, 3c, 4b and 5b by X-ray crystallography. The gold(I) complexes with phenyl substituents (4a-4d) were found to have potent antibacterial activity against Gram-positive bacteria, with the complexes of the 1,2,4-triazolylidene ligands being more active (4c, MIC = 4-8 μg mL-1 against Enterococcus faecium and 2 μg mL-1 against Staphylococcus aureus) than the analogous imidazolylidene complexes 4a and 4b (4a, MIC = 64 μg mL-1 against E. faecium and 2-4 μg mL-1 against S. aureus). Two of the silver(I) complexes have promising antibacterial activity against Acinetobacter baumannii (3f, MIC = 2-4 μg mL-1 and 3g, MIC = 2 μg mL-1). Silver(I) complex 3f and gold(I) complex 4c were tested against multi-drug resistant bacterial strains and high levels of antibacterial activity were observed. The potential for antibacterial resistance to develop against these metal containing complexes was investigated and significantly, no resistance was observed upon continuous treatment, whilst resistance was developed against the widely used broad-spectrum antibiotic ciprofloxacin in the same bacterial strains, under the conditions tested. The solution and gas phase stabilities of the complexes have been investigated using a combination of 1H-NMR, HRMS and detailed computational mechanistic studies were undertaken to gain insights into the possible decomposition reactions for silver complexes in aqueous solution.
Collapse
Affiliation(s)
- Joel C Mather
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Victoria, 3086, Australia.
| | - Jessica A Wyllie
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Victoria, 3086, Australia.
| | - Alex Hamilton
- Biomolecular Sciences Research Centre (BMRC) and Department of Biosciences and Chemistry, Sheffield Hallam University, Sheffield, S1 1WB, UK
| | - Tatiana P Soares da Costa
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Victoria, 3086, Australia.
| | - Peter J Barnard
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Victoria, 3086, Australia.
| |
Collapse
|
30
|
Cruz-López F, Martínez-Meléndez A, Morfin-Otero R, Rodriguez-Noriega E, Maldonado-Garza HJ, Garza-González E. Efficacy and In Vitro Activity of Novel Antibiotics for Infections With Carbapenem-Resistant Gram-Negative Pathogens. Front Cell Infect Microbiol 2022; 12:884365. [PMID: 35669117 PMCID: PMC9163340 DOI: 10.3389/fcimb.2022.884365] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/19/2022] [Indexed: 12/15/2022] Open
Abstract
Infections by Gram-negative multi-drug resistant (MDR) bacterial species are difficult to treat using available antibiotics. Overuse of carbapenems has contributed to widespread resistance to these antibiotics; as a result, carbapenem-resistant Enterobacterales (CRE), A. baumannii (CRAB), and P. aeruginosa (CRPA) have become common causes of healthcare-associated infections. Carbapenems, tigecycline, and colistin are the last resource antibiotics currently used; however, multiple reports of resistance to these antimicrobial agents have been documented worldwide. Recently, new antibiotics have been evaluated against Gram-negatives, including plazomicin (a new aminoglycoside) to treat CRE infection, eravacycline (a novel tetracycline) with in vitro activity against CRAB, and cefiderocol (a synthetic conjugate) for the treatment of nosocomial pneumonia by carbapenem-non-susceptible Gram-negative isolates. Furthermore, combinations of known β-lactams with recently developed β-lactam inhibitors, such as ceftazidime-avibactam, ceftolozane-tazobactam, ceftazidime-tazobactam, and meropenem-vaborbactam, has been suggested for the treatment of infections by extended-spectrum β-lactamases, carbapenemases, and AmpC producer bacteria. Nonetheless, they are not active against all carbapenemases, and there are reports of resistance to these combinations in clinical isolates.This review summarizes and discusses the in vitro and clinical evidence of the recently approved antibiotics, β-lactam inhibitors, and those in advanced phases of development for treating MDR infections caused by Gram-negative multi-drug resistant (MDR) bacterial species.
Collapse
Affiliation(s)
- Flora Cruz-López
- Subdirección Académica de Químico Farmacéutico Biólogo, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Adrian Martínez-Meléndez
- Subdirección Académica de Químico Farmacéutico Biólogo, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Rayo Morfin-Otero
- Instituto de Patología Infecciosa y Experimental "Dr. Francisco Ruiz Sánchez", Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Eduardo Rodriguez-Noriega
- Instituto de Patología Infecciosa y Experimental "Dr. Francisco Ruiz Sánchez", Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Héctor J Maldonado-Garza
- Servicio de Gastroenterología, Hospital Universitario 'Dr. José Eleuterio González', Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Elvira Garza-González
- Laboratorio de Microbiología Molecular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| |
Collapse
|
31
|
Iskandar K, Murugaiyan J, Hammoudi Halat D, Hage SE, Chibabhai V, Adukkadukkam S, Roques C, Molinier L, Salameh P, Van Dongen M. Antibiotic Discovery and Resistance: The Chase and the Race. Antibiotics (Basel) 2022; 11:182. [PMID: 35203785 PMCID: PMC8868473 DOI: 10.3390/antibiotics11020182] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 12/14/2022] Open
Abstract
The history of antimicrobial resistance (AMR) evolution and the diversity of the environmental resistome indicate that AMR is an ancient natural phenomenon. Acquired resistance is a public health concern influenced by the anthropogenic use of antibiotics, leading to the selection of resistant genes. Data show that AMR is spreading globally at different rates, outpacing all efforts to mitigate this crisis. The search for new antibiotic classes is one of the key strategies in the fight against AMR. Since the 1980s, newly marketed antibiotics were either modifications or improvements of known molecules. The World Health Organization (WHO) describes the current pipeline as bleak, and warns about the scarcity of new leads. A quantitative and qualitative analysis of the pre-clinical and clinical pipeline indicates that few antibiotics may reach the market in a few years, predominantly not those that fit the innovative requirements to tackle the challenging spread of AMR. Diversity and innovation are the mainstays to cope with the rapid evolution of AMR. The discovery and development of antibiotics must address resistance to old and novel antibiotics. Here, we review the history and challenges of antibiotics discovery and describe different innovative new leads mechanisms expected to replenish the pipeline, while maintaining a promising possibility to shift the chase and the race between the spread of AMR, preserving antibiotic effectiveness, and meeting innovative leads requirements.
Collapse
Affiliation(s)
- Katia Iskandar
- Department of Mathématiques Informatique et Télécommunications, Université Toulouse III, Paul Sabatier, INSERM, UMR 1295, 31000 Toulouse, France
- INSPECT-LB: Institut National de Santé Publique, d’Épidémiologie Clinique et de Toxicologie-Liban, Beirut 6573, Lebanon;
- Faculty of Pharmacy, Lebanese University, Beirut 6573, Lebanon
| | - Jayaseelan Murugaiyan
- Department of Biological Sciences, SRM University–AP, Amaravati 522502, India; (J.M.); (S.A.)
| | - Dalal Hammoudi Halat
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese International University, Bekaa Campus, Beirut 1103, Lebanon
| | - Said El Hage
- Faculty of Medicine, Lebanese University, Beirut 6573, Lebanon;
| | - Vindana Chibabhai
- Division of Clinical Microbiology and Infectious Diseases, School of Pathology, University of the Witwatersrand, Johannesburg 2193, South Africa;
- Microbiology Laboratory, National Health Laboratory Service, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg 2193, South Africa
| | - Saranya Adukkadukkam
- Department of Biological Sciences, SRM University–AP, Amaravati 522502, India; (J.M.); (S.A.)
| | - Christine Roques
- Laboratoire de Génie Chimique, Department of Bioprocédés et Systèmes Microbiens, Université Paul Sabtier, Toulouse III, UMR 5503, 31330 Toulouse, France;
| | - Laurent Molinier
- Department of Medical Information, Centre Hospitalier Universitaire, INSERM, UMR 1295, Université Paul Sabatier Toulouse III, 31000 Toulouse, France;
| | - Pascale Salameh
- INSPECT-LB: Institut National de Santé Publique, d’Épidémiologie Clinique et de Toxicologie-Liban, Beirut 6573, Lebanon;
- Faculty of Medicine, Lebanese University, Beirut 6573, Lebanon;
- Department of Primary Care and Population Health, University of Nicosia Medical School, Nicosia 2408, Cyprus
| | | |
Collapse
|
32
|
Gamma irradiation effectuality on the antibacterial and bioactivity behavior of multicomponent borate glasses against methicillin-resistant Staphylococcus aureus (MRSA). J Biol Inorg Chem 2022; 27:155-173. [DOI: 10.1007/s00775-021-01918-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/14/2021] [Indexed: 12/12/2022]
|
33
|
Khadraoui N, Essid R, Jallouli S, Damergi B, Ben Takfa I, Abid G, Jedidi I, Bachali A, Ayed A, Limam F, Tabbene O. Antibacterial and antibiofilm activity of Peganum harmala seed extract against multidrug-resistant Pseudomonas aeruginosa pathogenic isolates and molecular mechanism of action. Arch Microbiol 2022; 204:133. [PMID: 34999965 DOI: 10.1007/s00203-021-02747-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 12/21/2022]
Abstract
Biofilm formation of the opportunistic pathogen Pseudomonas (P). aeruginosa is one of the major global challenges to control nosocomial infections due to their high resistance to antimicrobials and host defense mechanisms. The present study aimed to assess the antibacterial and the antibiofilm activities of Peganum (P). harmala seed extract against multidrug-resistant P. aeruginosa isolates. Chemical identification of the active compound and determination of its molecular mechanism of action were also investigated. Results showed that P. harmala n-butanol "n-BuOH" extract exhibited antibacterial activity against multidrug-resistant P. aeruginosa isolates. This extract was even more active than conventional antibiotics cefazolin and vaamox when tested against three P. aeruginosa multidrug-resistant isolates. In addition, P. harmala n-BuOH extract exhibited potent bactericidal activity against PAO1 strain at MIC value corresponding to 500 µg/mL and attained 100% killing effect at 24 h of incubation. Furthermore, P. harmala n-BuOH extract showed an antibiofilm activity against P. aeruginosa PAO1 and exhibited 80.43% inhibition at sub-inhibitory concentration. The extract also eradicated 83.99% of the biofilm-forming bacteria. The active compound was identified by gas chromatography-mass spectrometry as an indole alkaloid harmaline. Transcriptomic analysis showed complete inhibition of the biofilm-related gene pilA when PAO1 cells were treated with harmaline. Our results revealed that P. harmala seed extract and its active compound harmaline could be considered as a candidate for a new treatment of multidrug-resistant P. aeruginosa pathogens-associated biofilm infections.
Collapse
Affiliation(s)
- Nadine Khadraoui
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP-901, 2050, Hammam-Lif, Tunisia
- Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Rym Essid
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP-901, 2050, Hammam-Lif, Tunisia
| | - Selim Jallouli
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP-901, 2050, Hammam-Lif, Tunisia
| | - Bilel Damergi
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP-901, 2050, Hammam-Lif, Tunisia
- Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Iheb Ben Takfa
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP-901, 2050, Hammam-Lif, Tunisia
| | - Ghassen Abid
- Laboratory of Legumes and Sustainable Agrosystems, Biotechnology Center of Borj Cedria, BP-901, 2050, Hammam-Lif, Tunisia
| | - Ines Jedidi
- Water and Food Control Laboratory, National Center of Salmonella, Shigella, Vibrio-Enteropathogens-Pasteur Institute of Tunis-Belvédère, Tunis, Tunisia
| | - Asma Bachali
- Laboratory of Clinical Biochemistry, Mohamed Taher Maamouri Hospital, Nabeul, Tunisia
| | - Ameni Ayed
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP-901, 2050, Hammam-Lif, Tunisia
| | - Ferid Limam
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP-901, 2050, Hammam-Lif, Tunisia
| | - Olfa Tabbene
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP-901, 2050, Hammam-Lif, Tunisia.
| |
Collapse
|
34
|
Sanchez-Carbonel A, Mondragón B, López-Chegne N, Peña-Tuesta I, Huayan-Dávila G, Blitchtein D, Carrillo-Ng H, Silva-Caso W, Aguilar-Luis MA, del Valle-Mendoza J. The effect of the efflux pump inhibitor Carbonyl Cyanide m-Chlorophenylhydrazone (CCCP) on the susceptibility to imipenem and cefepime in clinical strains of Acinetobacter baumannii. PLoS One 2021; 16:e0259915. [PMID: 34919563 PMCID: PMC8682880 DOI: 10.1371/journal.pone.0259915] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/28/2021] [Indexed: 11/18/2022] Open
Abstract
Introduction In the last years the rapid expansion of multidrug-resistant A. baumannii strains have become a major health problem. Efflux pumps are a group of transport proteins that contribute to the development of antibiotic resistance. The aim of this study was to evaluate the effect of the efflux pump inhibitor carbonyl cyanide 3-chlorophenylhydrazone (CCCP) on the antimicrobial action of imipenem and cefepime on clinical strains of A. baumannii. Materials and methods A total of 49 non-duplicate clinical samples were collected during January through December of 2018 from patients hospitalized in the Hospital Regional Docente de Cajamarca. Of the 49 samples obtained, the confirmatory identification of A. baumannii was performed on 47 samples by molecular methods. The amplification of the blaOXA-51-like gene was carried out by polymerase chain reaction (PCR). The determination of the minimum inhibitory concentration (MIC) was calculated using the microdilution method in culture broth. The susceptibility to both antibiotics (cefepime and imipenem) was evaluated in the presence and absence of the inhibitor carbonyl cyanide 3-chlorophenylhydrazone (CCCP). Results A total of 47 strains of A. baumannii were isolated: 97.87% (46/47) were resistant to Imipenem, 2.13% (1/47) of them were classified as intermediate and none of these strains were susceptible. On the other hand, 51.06% (24/47) of isolates were resistant to cefepime; 19.15% (9/47) intermediate and 29.79% (14/47) susceptible. We considered a significant difference in antibiotic susceptibility if the MIC changed at least 4 dilutions, after the addition of the inhibitor. In the case of CCCP in addition to imipenem, 2.1% (1/47) had a significant change of 4 or more reductions in MIC, 59.6% (28/47) achieved a change equal or less than 3 dilutions and 17.0% (8/47) did not have any change. In the case of CCCP with cefepime the percentage of strains with the significant change of MIC was 8.5% (4/47). On the other hand, 53.2% (24/47) presented a reduction equal or less than 3 dilutions and 12.8% (6/47) did not show changes. Conclusion In conclusion, our results demonstrate that the use of CCCP may improve the antibiotic effect of imipenem and cefepime on clinical strains of A. baumannii. The relevance of this study is that it provides evidence that this efflux pump inhibitor may be an alternative treatment against multidrug-resistant A. baumannii.
Collapse
Affiliation(s)
- Alejandra Sanchez-Carbonel
- School of Medicine, Research and Innovation Center of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Belén Mondragón
- School of Medicine, Research and Innovation Center of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | | | - Isaac Peña-Tuesta
- School of Medicine, Research and Innovation Center of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
- Laboratorio de Biologia Molecular, Instituto de Investigación Nutricional, Lima, Peru
| | | | - Dora Blitchtein
- School of Medicine, Research and Innovation Center of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Hugo Carrillo-Ng
- School of Medicine, Research and Innovation Center of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
- Laboratorio de Biologia Molecular, Instituto de Investigación Nutricional, Lima, Peru
| | - Wilmer Silva-Caso
- School of Medicine, Research and Innovation Center of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
- Laboratorio de Biologia Molecular, Instituto de Investigación Nutricional, Lima, Peru
| | - Miguel Angel Aguilar-Luis
- School of Medicine, Research and Innovation Center of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
- Laboratorio de Biologia Molecular, Instituto de Investigación Nutricional, Lima, Peru
- * E-mail: (JVM); (MAAL)
| | - Juana del Valle-Mendoza
- School of Medicine, Research and Innovation Center of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
- Laboratorio de Biologia Molecular, Instituto de Investigación Nutricional, Lima, Peru
- * E-mail: (JVM); (MAAL)
| |
Collapse
|
35
|
Christoff RM, Soares da Costa TP, Bayat S, Holien JK, Perugini MA, Abbott BM. Synthesis and structure-activity relationship studies of 2,4-thiazolidinediones and analogous heterocycles as inhibitors of dihydrodipicolinate synthase. Bioorg Med Chem 2021; 52:116518. [PMID: 34826680 DOI: 10.1016/j.bmc.2021.116518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022]
Abstract
Dihydrodipicolinate synthase (DHDPS), responsible for the first committed step of the diaminopimelate pathway for lysine biosynthesis, has become an attractive target for the development of new antibacterial and herbicidal agents. Herein, we report the discovery and exploration of the first inhibitors of E. coli DHDPS which have been identified from screening lead and are not based on substrates from the lysine biosynthesis pathway. Over 50 thiazolidinediones and related analogues have been prepared in order to thoroughly evaluate the structure-activity relationships against this enzyme of significant interest.
Collapse
Affiliation(s)
- Rebecca M Christoff
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Tatiana P Soares da Costa
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Saadi Bayat
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Jessica K Holien
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| | - Matthew A Perugini
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Belinda M Abbott
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.
| |
Collapse
|
36
|
Sette-de-Souza PH, Silva Bezerra WMD, Gomes Dantas MK, Santos Moura LM, Donato Duarte Filho ES, Lopes DS. Identification of docosahexaenoic and eicosapentaenoic acids multiple targets facing periodontopathogens. Microb Pathog 2021; 161:105266. [PMID: 34699926 DOI: 10.1016/j.micpath.2021.105266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/01/2022]
Abstract
The eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) play a substantial role in Periodontal Disease (PD) due to their antimicrobial and immunomodulatory actions. However, their antimicrobial mechanism of action against bacteria involved in PD remains unclear. We aimed to estimate the probable targets of EPA and DHA against the seven periodontopathogens. Through in silico analyses, the protein-acids interactions, protein characterization, and molecular docking were performed. We identified 165 proteins from periodontopathogens that may interact with EPA and DHA. Fusobacterium nucleatum has the highest number of predicted proteins among analyzed bacteria (n = 43, 26.06%). The EPA shows more interactions than DHA. The EPA and DHA interact mainly with proteins involved in the metabolism (n = 69, 41.81%). Also, the EPA and DHA interact with proteins located in any subcellular location. The affinities between acids and pathogenic proteins were moderate (binding energy was lower than -4.0 kcal/mol). The interactions between EPA and DHA and periodontopathogens occur in multiples proteins. There is not a predilection about the functional class of pathogenic proteins targeting EPA and DHA. However, there are moderate binding affinities between EPA or DHA and essential pathogenic proteins (TolC, CRISPR, FusA).
Collapse
Affiliation(s)
- Pedro Henrique Sette-de-Souza
- School of Dentistry, Universidade de Pernambuco, Campus Arcoverde, Arcoverde, Pernambuco, Brazil; Graduate Program in Health and Socioambiental Development, Universidade de Pernambuco, Campus Garanhuns, Garanhuns, Pernambuco, Brazil.
| | | | | | | | | | - Daniela Siqueira Lopes
- School of Dentistry, Universidade de Pernambuco, Campus Arcoverde, Arcoverde, Pernambuco, Brazil
| |
Collapse
|
37
|
Nainu F, Permana AD, Djide NJN, Anjani QK, Utami RN, Rumata NR, Zhang J, Emran TB, Simal-Gandara J. Pharmaceutical Approaches on Antimicrobial Resistance: Prospects and Challenges. Antibiotics (Basel) 2021; 10:981. [PMID: 34439031 PMCID: PMC8388863 DOI: 10.3390/antibiotics10080981] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/07/2021] [Accepted: 08/12/2021] [Indexed: 02/06/2023] Open
Abstract
The rapid increase in pathogenic microorganisms with antimicrobial resistant profiles has become a significant public health problem globally. The management of this issue using conventional antimicrobial preparations frequently results in an increase in pathogen resistance and a shortage of effective antimicrobials for future use against the same pathogens. In this review, we discuss the emergence of AMR and argue for the importance of addressing this issue by discovering novel synthetic or naturally occurring antibacterial compounds and providing insights into the application of various drug delivery approaches, delivered through numerous routes, in comparison with conventional delivery systems. In addition, we discuss the effectiveness of these delivery systems in different types of infectious diseases associated with antimicrobial resistance. Finally, future considerations in the development of highly effective antimicrobial delivery systems to combat antimicrobial resistance are presented.
Collapse
Affiliation(s)
- Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia; (A.D.P.); (N.J.N.D.); (Q.K.A.); (R.N.U.); (N.R.R.)
| | - Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia; (A.D.P.); (N.J.N.D.); (Q.K.A.); (R.N.U.); (N.R.R.)
| | - Nana Juniarti Natsir Djide
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia; (A.D.P.); (N.J.N.D.); (Q.K.A.); (R.N.U.); (N.R.R.)
| | - Qonita Kurnia Anjani
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia; (A.D.P.); (N.J.N.D.); (Q.K.A.); (R.N.U.); (N.R.R.)
- Medical Biology Centre, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Rifka Nurul Utami
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia; (A.D.P.); (N.J.N.D.); (Q.K.A.); (R.N.U.); (N.R.R.)
- Institute of Pharmaceutical Science, King’s College of London, London SE1 9NH, UK
| | - Nur Rahma Rumata
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia; (A.D.P.); (N.J.N.D.); (Q.K.A.); (R.N.U.); (N.R.R.)
- Sekolah Tinggi Ilmu Farmasi Makassar, Makassar 90242, Sulawesi Selatan, Indonesia
| | - Jianye Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China;
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo–Ourense Campus, E32004 Ourense, Spain
| |
Collapse
|
38
|
Sakr MM, Elkhatib WF, Aboshanab KM, Mantawy EM, Yassien MA, Hassouna NA. In vivo evaluation of a recombinant N-acylhomoserine lactonase formulated in a hydrogel using a murine model infected with MDR Pseudomonas aeruginosa clinical isolate, CCASUP2. AMB Express 2021; 11:109. [PMID: 34313869 PMCID: PMC8316526 DOI: 10.1186/s13568-021-01269-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/19/2021] [Indexed: 11/10/2022] Open
Abstract
Failure in the treatment of P. aeruginosa, due to its broad spectrum of resistance, has been associated with increased patient mortality. One alternative approach for infection control is quorum quenching which was found to decrease virulence of such pathogen. In this study, the efficiency of a recombinant Ahl-1 lactonase formulated as a hydrogel was investigated to control the infection of multidrug resistant (MDR) P. aeruginosa infected burn using a murine model. The recombinant N-acylhomoserine lactonase (Ahl-1) was formulated as a hydrogel. To test its ability to control the infection of MDR P. aeruginosa, a thermal injury model was used. Survival rate, and systemic spread of the infection were evaluated. Histopathological examination of the animal dorsal skin was also done for monitoring the healing and cellular changes at the site of infection. Survival rate in the treated group was 100% relative to 40% in the control group. A decrease of up to 3 logs of bacterial count in the blood samples of the treated animals relative to the control group and a decrease of up to 4 logs and 2.3 logs of bacteria in lung and liver samples, respectively were observed. Histopathological examination revealed more enhanced healing process in the treated group. Accordingly, by promoting healing of infected MDR P. aeruginosa burn and by reducing systemic spread of the infection as well as decreasing mortality rate, Ahl-1 hydrogel application is a promising strategy that can be used to combat and control P. aeruginosa burn infections.
Collapse
|
39
|
Tondi D. Novel Targets and Mechanisms in Antimicrobial Drug Discovery. Antibiotics (Basel) 2021; 10:antibiotics10020141. [PMID: 33535514 PMCID: PMC7912713 DOI: 10.3390/antibiotics10020141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 01/29/2021] [Indexed: 01/03/2023] Open
Affiliation(s)
- Donatella Tondi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
| |
Collapse
|
40
|
Puvača N, de Llanos Frutos R. Antimicrobial Resistance in Escherichia coli Strains Isolated from Humans and Pet Animals. Antibiotics (Basel) 2021; 10:69. [PMID: 33450827 PMCID: PMC7828219 DOI: 10.3390/antibiotics10010069] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Throughout scientific literature, we can find evidence that antimicrobial resistance has become a big problem in the recent years on a global scale. Public healthcare systems all over the world are faced with a great challenge in this respect. Obviously, there are many bacteria that can cause infections in humans and animals alike, but somehow it seems that the greatest threat nowadays comes from the Enterobacteriaceae members, especially Escherichia coli. Namely, we are witnesses to the fact that the systems that these bacteria developed to fight off antibiotics are the strongest and most diverse in Enterobacteriaceae. Our great advantage is in understanding the systems that bacteria developed to fight off antibiotics, so these can help us understand the connection between these microorganisms and the occurrence of antibiotic-resistance both in humans and their pets. Furthermore, unfavorable conditions related to the ease of E. coli transmission via the fecal-oral route among humans, environmental sources, and animals only add to the problem. For all the above stated reasons, it is evident that the epidemiology of E. coli strains and resistance mechanisms they have developed over time are extremely significant topics and all scientific findings in this area will be of vital importance in the fight against infections caused by these bacteria.
Collapse
Affiliation(s)
- Nikola Puvača
- Faculty of Biomedical and Health Sciences, Jaume I University, Avinguda de Vicent Sos Baynat, s/n, 12071 Castelló de la Plana, Spain;
- Department of Engineering Management in Biotechnology, Faculty of Economics and Engineering Management in Novi Sad, University Business Academy in Novi Sad, Cvećarska 2, 21000 Novi Sad, Serbia
| | - Rosa de Llanos Frutos
- Faculty of Biomedical and Health Sciences, Jaume I University, Avinguda de Vicent Sos Baynat, s/n, 12071 Castelló de la Plana, Spain;
| |
Collapse
|