1
|
Facchin A, Ratti G, Filipe J, Penati M, Gazzonis AL, Masiero G, Dall'Ara P, Alborali GL, Lauzi S. Fecal Carriage and Risk Factors Associated with Extended-Spectrum β-Lactamase-/AmpC-/Carbapenemase-Producing Escherichia coli in Dogs from Italy. Animals (Basel) 2024; 14:3359. [PMID: 39682325 DOI: 10.3390/ani14233359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
MDR bacteria are an emerging global threat to public health, and the role of dogs in the rise of antimicrobial resistance is under investigation. This study investigated the fecal shedding of extended-spectrum β-lactamase (ESBL)-, AmpC- and carbapenemase (CP)-producing Escherichia coli and associated risk factors in dogs admitted to the Veterinary Teaching Hospital of Lodi, University of Milan, or other veterinary clinics and kennels in Northen Italy. Feces collected in 2020-2022 were microbiologically and molecularly analyzed. ESBL-/AmpC-/CP-producing E. coli was detected in 14/100 (14%) dogs. Eleven (11%), five (5%) and one (1%) dogs carried ESBL-, AmpC- and CP-producing E. coli phenotypes, respectively, supported by the PCR detection of blaCTX-M and/or blaTEM in ESBL-producing E. coli; blaCMY-2 and the presence of putative low-level AmpC production in AmpC-producing E. coli; and blaOXA-48 in CP-producing E. coli. Different combinations of resistance genes and genetic features were observed. Multidrug resistance was observed in 13/14 (92.9%) E. coli isolates. Binary logistic regression analysis showed that ESBL-/AmpC-/CP-producing E. coli fecal shedding tended to be associated with antibiotic treatment (p = 0.058; OR = 3.87). The detection of ESBL-/AmpC-producing E. coli, along with the presence of a carbapenemase-resistant E. coli isolate from domestic dogs, although still limited, emphasizes the need for antimicrobial stewardship and specific surveillance programs, particularly for CP-producing bacteria in companion animals.
Collapse
Affiliation(s)
- Alessia Facchin
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Gabriele Ratti
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Joel Filipe
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Martina Penati
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Alessia L Gazzonis
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Greta Masiero
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Paola Dall'Ara
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Giovanni L Alborali
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna "Bruno Ubertini", Via Bianchi 7/9, 25124 Brescia, Italy
| | - Stefania Lauzi
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| |
Collapse
|
2
|
Moon BY, Ali MS, Kwon DH, Heo YE, Hwang YJ, Kim JI, Lee YJ, Yoon SS, Moon DC, Lim SK. Antimicrobial Resistance in Escherichia coli Isolated from Healthy Dogs and Cats in South Korea, 2020-2022. Antibiotics (Basel) 2023; 13:27. [PMID: 38247586 PMCID: PMC10812631 DOI: 10.3390/antibiotics13010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
The occurrence of antimicrobial-resistant bacteria in companion animals poses public health hazards globally. This study aimed to evaluate the antimicrobial resistance profiles and patterns of commensal E. coli strains obtained from fecal samples of healthy dogs and cats in South Korea between 2020 and 2022. In total, 843 E. coli isolates (dogs, n = 637, and cats, n = 206) were assessed for susceptibility to 20 antimicrobials. The resistance rates of the most tested antimicrobials were significantly higher in dog than in cat isolates. Cefalexin (68.9%) demonstrated the highest resistance rates, followed by ampicillin (38.3%), tetracycline (23.1%), and cefazolin (18.7%). However, no or very low resistance (0-0.6%) to amikacin, imipenem, piperacillin, and colistin was found in both dog and cat isolates. Overall, 42.3% of the isolates exhibited multidrug resistance (MDR). MDR in isolates from dogs (34.9%) was significantly higher than in those from cats (20.9%). The main components of the resistance patterns were cefalexin and ampicillin in both dog and cat isolates. Additionally, MDR patterns in isolates from dogs (29.2%) and cats (16%) were shown to encompass five or more antimicrobials. Multidrug-resistant commensal E. coli could potentially be spread to humans or other animals through clonal or zoonotic transmission. Therefore, the incidence of antimicrobial resistance in companion animals highlights the urgent need to restrict antimicrobial resistance and ensure the prudent use of antimicrobials in Korea.
Collapse
Affiliation(s)
- Bo-Youn Moon
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Republic of Korea; (B.-Y.M.); (M.S.A.); (D.-H.K.); (Y.-E.H.); (Y.-J.H.); (J.-I.K.); (Y.J.L.); (S.-S.Y.)
| | - Md. Sekendar Ali
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Republic of Korea; (B.-Y.M.); (M.S.A.); (D.-H.K.); (Y.-E.H.); (Y.-J.H.); (J.-I.K.); (Y.J.L.); (S.-S.Y.)
| | - Dong-Hyeon Kwon
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Republic of Korea; (B.-Y.M.); (M.S.A.); (D.-H.K.); (Y.-E.H.); (Y.-J.H.); (J.-I.K.); (Y.J.L.); (S.-S.Y.)
| | - Ye-Eun Heo
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Republic of Korea; (B.-Y.M.); (M.S.A.); (D.-H.K.); (Y.-E.H.); (Y.-J.H.); (J.-I.K.); (Y.J.L.); (S.-S.Y.)
| | - Yu-Jeong Hwang
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Republic of Korea; (B.-Y.M.); (M.S.A.); (D.-H.K.); (Y.-E.H.); (Y.-J.H.); (J.-I.K.); (Y.J.L.); (S.-S.Y.)
| | - Ji-In Kim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Republic of Korea; (B.-Y.M.); (M.S.A.); (D.-H.K.); (Y.-E.H.); (Y.-J.H.); (J.-I.K.); (Y.J.L.); (S.-S.Y.)
| | - Yun Jin Lee
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Republic of Korea; (B.-Y.M.); (M.S.A.); (D.-H.K.); (Y.-E.H.); (Y.-J.H.); (J.-I.K.); (Y.J.L.); (S.-S.Y.)
| | - Soon-Seek Yoon
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Republic of Korea; (B.-Y.M.); (M.S.A.); (D.-H.K.); (Y.-E.H.); (Y.-J.H.); (J.-I.K.); (Y.J.L.); (S.-S.Y.)
| | - Dong-Chan Moon
- Division of Antimicrobial Resistance Research, Centre for Infectious Diseases Research, Korea Disease Control and Prevention Agency, Cheongju 28159, Republic of Korea
| | - Suk-Kyung Lim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Republic of Korea; (B.-Y.M.); (M.S.A.); (D.-H.K.); (Y.-E.H.); (Y.-J.H.); (J.-I.K.); (Y.J.L.); (S.-S.Y.)
| |
Collapse
|
3
|
Tarabai H, Krejci S, Karyakin I, Bitar I, Literak I, Dolejska M. Clinically relevant antibiotic resistance in Escherichia coli from black kites in southwestern Siberia: a genetic and phenotypic investigation. mSphere 2023; 8:e0009923. [PMID: 37310717 PMCID: PMC10449506 DOI: 10.1128/msphere.00099-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/27/2023] [Indexed: 06/14/2023] Open
Abstract
Wild birds including raptors can act as vectors of clinically relevant bacteria with antibiotic resistance. The aim of this study was to investigate the occurrence of antibiotic-resistant Escherichia coli in black kites (Milvus migrans) inhabiting localities in proximity to human-influenced environments in southwestern Siberia and investigate their virulence and plasmid contents. A total of 51 E. coli isolates mostly with multidrug resistance (MDR) profiles were obtained from cloacal swabs of 35 (64%, n = 55) kites. Genomic analyses of 36 whole genome sequenced E. coli isolates showed: (i) high prevalence and diversity of their antibiotic resistance genes (ARGs) and common association with ESBL/AmpC production (27/36, 75%), (ii) carriage of mcr-1 for colistin resistance on IncI2 plasmids in kites residing in proximity of two large cities, (iii) frequent association with class one integrase (IntI1, 22/36, 61%), and (iv) presence of sequence types (STs) linked to avian-pathogenic (APEC) and extra-intestinal pathogenic E. coli (ExPEC). Notably, numerous isolates had significant virulence content. One E. coli with APEC-associated ST354 carried qnrE1 encoding fluoroquinolone resistance on IncHI2-ST3 plasmid, the first detection of such a gene in E. coli from wildlife. Our results implicate black kites in southwestern Siberia as reservoirs for antibiotic-resistant E. coli. It also highlights the existing link between proximity of wildlife to human activities and their carriage of MDR bacteria including pathogenic STs with significant and clinically relevant antibiotic resistance determinants. IMPORTANCE Migratory birds have the potential to acquire and disperse clinically relevant antibiotic-resistant bacteria (ARB) and their associated antibiotic resistance genes (ARGs) through vast geographical regions. The opportunistic feeding behavior associated with some raptors including black kites and the growing anthropogenic influence on their natural habitats increase the transmission risk of multidrug resistance (MDR) and pathogenic bacteria from human and agricultural sources into the environment and wildlife. Thus, monitoring studies investigating antibiotic resistance in raptors may provide essential data that facilitate understanding the fate and evolution of ARB and ARGs in the environment and possible health risks for humans and animals associated with the acquisition of these resistance determinants by wildlife.
Collapse
Affiliation(s)
- Hassan Tarabai
- Central European Institute of Technology (CEITEC), University of Veterinary Sciences, Brno, Czech Republic
- Department of Parasitology, Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Simon Krejci
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Brno, Czech Republic
| | | | - Ibrahim Bitar
- Biomedical Center, Charles University, Prague, Czech Republic
| | - Ivan Literak
- Central European Institute of Technology (CEITEC), University of Veterinary Sciences, Brno, Czech Republic
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Brno, Czech Republic
| | - Monika Dolejska
- Central European Institute of Technology (CEITEC), University of Veterinary Sciences, Brno, Czech Republic
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Brno, Czech Republic
- Biomedical Center, Charles University, Prague, Czech Republic
- Department of Clinical Microbiology and Immunology, Institute of Laboratory Medicine, The University Hospital, Brno, Czech Republic
| |
Collapse
|
4
|
Lu X, Zhang P, Du P, Zhang X, Wang J, Yang Y, Sun H, Wang Z, Cui S, Li R, Bai L. Prevalence and Genomic Characteristics of mcr-Positive Escherichia coli Strains Isolated from Humans, Pigs, and Foods in China. Microbiol Spectr 2023; 11:e0456922. [PMID: 37042751 PMCID: PMC10269804 DOI: 10.1128/spectrum.04569-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/16/2023] [Indexed: 04/13/2023] Open
Abstract
Colistin is one of the last-resort antibiotics for treating infections caused by multidrug-resistant (MDR) Gram-negative bacteria. However, mcr genes conferring resistance to colistin have been widely identified, which is considered a global threat to public health. Here, we investigated the prevalence and characteristics of mcr-harboring Escherichia coli strains isolated from humans, animals, and foods in China by PCR, antimicrobial susceptibility testing, conjugation experiments, molecular typing, genome sequencing, and bioinformatics analysis. In total, 135 mcr-1-harboring E. coli isolates were acquired from 847 samples, and 6 isolates carried mcr-3. Among them, 131 isolates were MDR bacteria. Sixty-five resistance genes conferring resistance to multiple antimicrobials were identified in 135 isolates. The diverse pulsed-field gel electrophoresis (PFGE) patterns and sequence types (STs) of mcr-1-carrying isolates demonstrated that clonal dissemination was not the dominant mode of mcr-1 transmission. Seven types of plasmids were able to carry mcr-1 in this study, including IncI2, IncX4, IncHI2, p0111, IncY, and two hybrid plasmids. The genetic structures carrying mcr-1 of 60 isolates were successfully transferred into the recipient, including 25 IncI2 plasmids, 23 IncX4 plasmids, and an IncHI2 plasmid. mcr-1-pap2 was the dominant mcr-1-bearing structure, followed by ISApl1-mcr-1-pap2-ISApl1 (Tn6330) and ISApl1-mcr-1-pap2, among 7 mcr-1-bearing structures of 135 isolates. In conclusion, IncI2, IncX4, and IncHI2 plasmids were the major vectors spreading mcr-1 from different geographical locations and sources. The prevalence of Tn6330 may accelerate the transmission of mcr-1. Continuous surveillance of mcr-1 and variants in bacteria is vital for evaluating the public health risk posed by mcr genes. IMPORTANCE The spread of polymyxin-resistant Enterobacteriaceae poses a significant threat to public health and challenges the therapeutic options for treating infections on a global level. In this study, mcr-1-bearing ST10 E. coli was isolated from pigs, pork, and humans simultaneously, which demonstrated that ST10 E. coli was an important vehicle for the spread of mcr-1 among animals, foods, and humans. The high prevalence of mcr-1-positive E. coli strains in pigs and pork and the horizontal transmission of mcr-1-bearing plasmids in diverse E. coli strains suggest that pigs and pork are important sources of mcr-1-positive strains in humans and pose a potential threat to public health. Additional research on the prevalence and characteristics of mcr-1-positive E. coli is still required to facilitate early warning to improve polymyxin management in hospitals.
Collapse
Affiliation(s)
- Xiaoyu Lu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Pei Zhang
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People’s Republic of China, China National Center for Food Safety Risk Assessment, Beijing, China
- Center for Disease Control and Prevention of Henan Province, Zhengzhou, China
| | - Pengcheng Du
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Xiuli Zhang
- Center for Disease Control and Prevention of Henan Province, Zhengzhou, China
| | - Juan Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yingying Yang
- Department of Neurology, Gaotang County People's Hospital, Gaotang, Shandong, China
| | - Honghu Sun
- Chengdu Institute for Food and Drug Control, Chengdu, China
| | - Zhiqiang Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shenghui Cui
- Department of Food Science, National Institutes for Food and Drug Control, Beijing, China
| | - Ruichao Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Li Bai
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People’s Republic of China, China National Center for Food Safety Risk Assessment, Beijing, China
| |
Collapse
|
5
|
Treilles M, Châtre P, Drapeau A, Madec JY, Haenni M. Spread of the mcr-1 colistin-resistance gene in Escherichia coli through plasmid transmission and chromosomal transposition in French goats. Front Microbiol 2023; 13:1023403. [PMID: 36687643 PMCID: PMC9846274 DOI: 10.3389/fmicb.2022.1023403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction Colistin-resistance widely disseminated in food-producing animals due to decades of colistin use to treat diarrhea. The plasmid-borne mcr-1 gene has been extensively reported from bovine, swine and chicken worldwide, but smaller productions such as the goat farming sector were much less surveyed. Methods We looked for colistin-resistant isolates presenting plasmid-borne genes of the mcr family in both breeding (n=80) and fattening farms (n=5). Localization of the mcr-1 gene was performed using Southern blot analysis coupled to short-read and long-read sequencing. Results Only the mcr-1 gene was identified in 10% (8/80) of the breeding farms and four over the five fattening farms. In total, 4.2% (65/1561) of the animals tested in breeding farms and 60.0% (84/140) of those tested in fattening farms presented a mcr-1-positive E. coli. The mcr-1 gene was located either on the chromosome (32.2%) or on IncX4 (38.9%) and IncHI2 (26.8%) plasmids. As expected, both clonal expansion and plasmidic transfers were observed in farms where the mcr-1 gene was carried by plasmids. Tn6330 transposition was observed in the chromosome of diverse E. coli sequence types within the same farm. Discussion Our results show that the mcr-1 gene is circulating in goat production and is located either on plasmids or on the chromosome. Evidence of Tn6330 transposition highlighted the fact that chromosomal insertion does not impair the transmission capability of the mcr-1 gene. Only strict hygiene and biosecurity procedures in breeding farms, as well as a prudent use of antibiotics in fattening farms, can avoid such complex contamination pathways.
Collapse
Affiliation(s)
- Michaël Treilles
- Laboratoire d’Analyse Qualyse, Champdeniers Saint-Denis, France,Association Régionale de Prévention contre la résistance aux Antimicrobiens, Champdeniers Saint Denis, France
| | - Pierre Châtre
- Unité Antibiorésistance et Virulence Bactériennes, Agence Nationale de Sécurité Sanitaire (ANSES) – Université de Lyon, Lyon, France
| | - Antoine Drapeau
- Unité Antibiorésistance et Virulence Bactériennes, Agence Nationale de Sécurité Sanitaire (ANSES) – Université de Lyon, Lyon, France
| | - Jean-Yves Madec
- Unité Antibiorésistance et Virulence Bactériennes, Agence Nationale de Sécurité Sanitaire (ANSES) – Université de Lyon, Lyon, France
| | - Marisa Haenni
- Unité Antibiorésistance et Virulence Bactériennes, Agence Nationale de Sécurité Sanitaire (ANSES) – Université de Lyon, Lyon, France,*Correspondence: Marisa Haenni, ✉
| |
Collapse
|
6
|
Hamame A, Davoust B, Cherak Z, Rolain JM, Diene SM. Mobile Colistin Resistance ( mcr) Genes in Cats and Dogs and Their Zoonotic Transmission Risks. Pathogens 2022; 11:698. [PMID: 35745552 PMCID: PMC9230929 DOI: 10.3390/pathogens11060698] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Pets, especially cats and dogs, represent a great potential for zoonotic transmission, leading to major health problems. The purpose of this systematic review was to present the latest developments concerning colistin resistance through mcr genes in pets. The current study also highlights the health risks of the transmission of colistin resistance between pets and humans. Methods: We conducted a systematic review on mcr-positive bacteria in pets and studies reporting their zoonotic transmission to humans. Bibliographic research queries were performed on the following databases: Google Scholar, PubMed, Scopus, Microsoft Academic, and Web of Science. Articles of interest were selected using the PRISMA guideline principles. Results: The analyzed articles from the investigated databases described the presence of mcr gene variants in pets including mcr-1, mcr-2, mcr-3, mcr-4, mcr-5, mcr-8, mcr-9, and mcr-10. Among these articles, four studies reported potential zoonotic transmission of mcr genes between pets and humans. The epidemiological analysis revealed that dogs and cats can be colonized by mcr genes that are beginning to spread in different countries worldwide. Overall, reported articles on this subject highlight the high risk of zoonotic transmission of colistin resistance genes between pets and their owners. Conclusions: This review demonstrated the spread of mcr genes in pets and their transmission to humans, indicating the need for further measures to control this significant threat to public health. Therefore, we suggest here some strategies against this threat such as avoiding zoonotic transmission.
Collapse
Affiliation(s)
- Afaf Hamame
- Faculté de Pharmacie, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille University, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France;
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France;
| | - Bernard Davoust
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France;
| | - Zineb Cherak
- Faculté des Sciences de la Nature et de la Vie, Université Batna-2, Route de Constantine, Fésdis, Batna 05078, Algeria;
| | - Jean-Marc Rolain
- Faculté de Pharmacie, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille University, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France;
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France;
| | - Seydina M. Diene
- Faculté de Pharmacie, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille University, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France;
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France;
| |
Collapse
|
7
|
Screening of Colistin-Resistant Bacteria in Domestic Pets from France. Animals (Basel) 2022; 12:ani12050633. [PMID: 35268202 PMCID: PMC8909117 DOI: 10.3390/ani12050633] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Zoonotic transmission from pets to their owners is a major health problem, especially when dealing with human pathogens. It is important to determine the reservoir of colistin-resistant bacteria in pets to avoid the risk factors for human transmission. This study investigated the screening of colistin-resistant bacteria in pets in Marseille, France. Overall, cats and dogs have various reservoirs of colistin-resistant bacteria, including naturally colistin-resistant bacteria and mcr gene carriers (n = 14). Pets are the best human companions; therefore, vigilance would be required to avoid zoonotic transmission of colistin-resistant bacteria. Although colistin use is restricted in France, we report here for the first time that cats and dogs have various colistin-resistant bacteria including mcr-1 gene carriers. Abstract Background: Pets are the closest animals to humans with a considerable risk of zoonotic transmission. This study aimed to screen colistin-resistant bacteria from stools of dogs and cats from Marseille, France. Screening of mcr genes in pets has never been reported in France. Methods: Fecal samples (n = 157) were cultivated on the selective Lucie-Bardet Jean-Marc-Rolain medium (LBJMR). Bacteria were identified using Microflex LS MALDI-TOF. The antibiotic resistance phenotype was investigated for several antibiotics (β-lactams, aminoside, cephalosporine, tetracycline, and sulfonamide). PCR techniques were performed to detect mcr genes. Results: A total of 218 bacteria were identified. For cats, intrinsically colistin-resistant bacteria were significantly higher than mcr-1 gene carriers (n = 4). Dogs had more bacteria with the mcr-1 gene (n = 10). Furthermore, cats had a high prevalence of Gram-positive bacteria (GPB), whereas dogs had GNB equal to GPB. The diversity of identified bacteria was due to the constitution of the pets’ microorganisms. Even though colistin use is monitored in France, pets harbor various colistin-resistant bacteria. Additionally, in this geographical area, bacteria bearing mcr-1 gene from dogs and cats were detected for the first time. Conclusions: The current study opens a new perspective: the spread of colistin resistance is independent of colistin use. What are the most factors related to the emergence of colistin resistance? The surveillance of pets must be considered a priority to avoid the spread of mcr genes. It is important to know the contribution that pets make to the pool of multidrug-resistant mcr-1-containing bacteria.
Collapse
|
8
|
Moon DC, Kim SJ, Mechesso AF, Kang HY, Song HJ, Choi JH, Yoon SS, Lim SK. Mobile Colistin Resistance Gene mcr- 1 Detected on an IncI2 Plasmid in Salmonella Typhimurium Sequence Type 19 from a Healthy Pig in South Korea. Microorganisms 2021; 9:398. [PMID: 33671955 PMCID: PMC7919004 DOI: 10.3390/microorganisms9020398] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 01/21/2023] Open
Abstract
Colistin is considered the last resort for the treatment of multi-drug resistant Gram-negative bacterial infections. We studied colistin resistance and the mcr-1 gene carriage in Salmonella isolates recovered from food animals in South Korea between 2010 and 2018. Colistin resistance was found in 277 isolates, predominantly in Salmonella Enteritidis (57.1%) and Salmonella Gallinarum (41.9%). However, the mcr-1 gene was identified in only one colistin-resistant Salmonella Typhimurium (MIC = 16 µg/mL) isolated from a healthy pig. The mcr-1 carrying isolate presented additional resistance to multiple antimicrobials. The strain belonged to sequence type (ST)19 and carried various virulence factor genes that are associated with adhesion and invasion of Salmonella into intestinal epithelial cells, as well as its survival in macrophages. The mcr-1 gene was identified on an IncI2 plasmid and it was also transferred to the E. coli J53 recipient strain. The mcr-1-carrying plasmid (pK18JST013) in this study was closely related to that previously reported in S. Indiana (pCFSA664-3) from chicken in China. This is the first report of mcr-1 carrying S. Typhimurium in South Korea. The finding indicates the importance of regular screening for the presence of the mcr-1 gene in S. Typhimurium in food animals to prevent the spread to humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Suk-Kyung Lim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Korea; (D.C.M.); (S.-J.K.); (A.F.M.); (H.Y.K.); (H.-J.S.); (J.-H.C.); (S.-S.Y.)
| |
Collapse
|