1
|
Kang HS, Ali MS, Na SH, Moon BY, Kim JI, Hwang YJ, Yoon SS, Park SC, Lim SK. Nationwide surveillance and characterization of the third-generation cephalosporin-resistant Salmonella enterica serovar infantis isolated from chickens in South Korea between 2010 and 2022. Heliyon 2024; 10:e37124. [PMID: 39319126 PMCID: PMC11419902 DOI: 10.1016/j.heliyon.2024.e37124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/06/2024] [Accepted: 08/28/2024] [Indexed: 09/26/2024] Open
Abstract
The occurrence of extended-spectrum β-lactamase (ESBL)/AmpC β-lactamase-producing Salmonella conferring resistance to third-generation cephalosporin has emerged as a global public health concern. In this study, we aimed to investigate the prevalence and molecular characterization of third-generation cephalosporin-resistant Salmonella enterica serovar Infantis. In total, 409 S. Infatis isolates were collected from the feces and carcasses of healthy and diseased food animals, including chickens (n = 348), pigs (n = 48), cattle (n = 8), and ducks (n = 5) between 2010 and 2022 nationwide in South Korea. Among them, 61.9 % (253/409) of S. Infantis strains displayed resistance to ceftiofur, with the most resistant isolates obtained from chickens (98.4 %, 249/253). Moreover, S. Infantis isolates showed high resistance (47.7-67.2 %) to streptomycin, ampicillin, nalidixic acid, sulfisoxazole, chloramphenicol, tetracycline, and trimethoprim/sulfamethoxazole. Additionally, the multidrug resistance (MDR) was significantly greater in the ceftiofur-resistant isolates compared to the ceftiofur-susceptible isolates (p < 0.05). All the ceftiofur-resistant S. Infantis strains produced CTX-M/CMY-2 β-lactamase enzymes, with bla CTX-M-65 comprising the most (98.4 %, 249/253), followed by bla CTX-M-15 (1.2 %, 3/253), and bla CMY-2 (0.4 %, 1/253). The ceftiofur-resistant S. Infantis belonged to 37 different pulsotypes, with X1A1 (26.1 %, 66/253), X1A2 (20.9 %, 53/253), and X5A3 (9.1 %) being the most prevalent, representing a total of 56.1 % (142/253). Furthermore, the S. Infantis sequence type (ST)32 was the most common, accounting for 91.9 % (34/37) of the three distinct STs (ST32, ST16, and ST11) detected across farms located in various provinces nationwide. Most of the bla CMX-M-65 genes (77.5 %, 193/249), all of the bla CTX-M-15 genes (100 %, 3/3), and the bla CMY-2 gene (100 %, 1/1) were transferred to the recipient E. coli RG488 by conjugation. In addition, the majority of the transconjugants (98.9 %, 191/193) containing bla CTX-M-65 genes belong to the IncFIB replicon type, playing an important role in the quick and widespread dissemination of S. Infantis. Thus, ceftiofur-resistant S. Infantis carrying the β-lactamase genes in chickens has the potential to be transmitted to humans.
Collapse
Affiliation(s)
- Hee-Seung Kang
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Md Sekendar Ali
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Seok-Hyeon Na
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Bo-Youn Moon
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Ji-In Kim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Yu-Jeong Hwang
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Soon Seek Yoon
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Seung-Chun Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, Institute for Veterinary Biomedical Science, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Suk-Kyung Lim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| |
Collapse
|
2
|
Sevilla-Navarro S, Otero J, López-Pérez J, Torres-Boncompte J, Prucha T, De Gussem M, Silva D, Burgan J, Catalá-Gregori P, Cortés P, Llagostera M. Limited Emergence of Salmonella enterica Serovar Infantis Variants with Reduced Phage Susceptibility in PhagoVet-Treated Broilers. Animals (Basel) 2024; 14:2352. [PMID: 39199885 PMCID: PMC11350853 DOI: 10.3390/ani14162352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
Salmonella enterica serovar Infantis (S. Infantis) poses a growing issue in the poultry sector, with phage-based products emerging as a safe and effective control measure. This study investigated the emergence of reduced-phage-susceptibility variants (RPSV) of S. Infantis in PhagoVet-treated broilers, given that RPSV could undermine phage treatment efficacy. The bacteriophages in the PhagoVet product were characterized using transmission electron microscopy (TEM), genome sequencing, and infection profiling. Furthermore, two broiler trials were conducted: a challenge group (T1) and a challenge-and-treated group (T2). The S. Infantis infective dose was set at 104 and 106 colony-forming units (CFUs) per animal, with PhagoVet administration at 106 and 108 plaque-forming units (PFUs) per animal, in Trials 1 and 2, respectively. The results revealed that the four PhagoVet bacteriophages belonged to different genera. PhagoVet evidenced broad-spectrum efficacy against 271 strains representing 18 Salmonella serovars. In Trial 1, PhagoVet reduced bacterial counts in feces to nearly undetectable levels by day 42, with no RPSV detected. However, in Trial 2, three and five RPSVs were detected in feces and ceca, respectively. Consequently, PhagoVet demonstrated efficacy against S. Infantis in broilers, and the potential impact of RPSV is deemed unlikely to compromise its efficacy.
Collapse
Affiliation(s)
- Sandra Sevilla-Navarro
- Centro de Calidad Avícola y Alimentación Animal de la Comunidad Valenciana (CECAV), 12539 Alquerias NP, Castellón, Spain; (S.S.-N.); (J.T.-B.); (P.C.-G.)
| | - Jennifer Otero
- Molecular Microbiology Group, Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain; (J.O.); (J.L.-P.); (M.L.)
| | - Júlia López-Pérez
- Molecular Microbiology Group, Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain; (J.O.); (J.L.-P.); (M.L.)
| | - Jan Torres-Boncompte
- Centro de Calidad Avícola y Alimentación Animal de la Comunidad Valenciana (CECAV), 12539 Alquerias NP, Castellón, Spain; (S.S.-N.); (J.T.-B.); (P.C.-G.)
| | - Tiago Prucha
- VETWORKS BVBA, Knokstraat 38, 9880 Poeke, Belgium; (T.P.); (M.D.G.)
| | | | - Daniela Silva
- ALS Life Sciences Portugal, Zona Industrial de Tondela ZIM II lote 6, 3460-070 Tondela, Portugal; (D.S.); (J.B.)
| | - Julia Burgan
- ALS Life Sciences Portugal, Zona Industrial de Tondela ZIM II lote 6, 3460-070 Tondela, Portugal; (D.S.); (J.B.)
| | - Pablo Catalá-Gregori
- Centro de Calidad Avícola y Alimentación Animal de la Comunidad Valenciana (CECAV), 12539 Alquerias NP, Castellón, Spain; (S.S.-N.); (J.T.-B.); (P.C.-G.)
| | - Pilar Cortés
- Molecular Microbiology Group, Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain; (J.O.); (J.L.-P.); (M.L.)
| | - Montserrat Llagostera
- Molecular Microbiology Group, Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain; (J.O.); (J.L.-P.); (M.L.)
| |
Collapse
|
3
|
Musa L, Toppi V, Stefanetti V, Spata N, Rapi MC, Grilli G, Addis MF, Di Giacinto G, Franciosini MP, Casagrande Proietti P. High Biofilm-Forming Multidrug-Resistant Salmonella Infantis Strains from the Poultry Production Chain. Antibiotics (Basel) 2024; 13:595. [PMID: 39061277 PMCID: PMC11273867 DOI: 10.3390/antibiotics13070595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
The ability of Salmonella species to adhere to surfaces and form biofilms, leading to persistent environmental reservoirs, might represent a direct link between environmental contamination and food processing contamination. The purpose of this study was to investigate the biofilm-forming ability of 80 multidrug-resistant (MDR) and extended-spectrum beta-lactamase (ESBL) producing Salmonella enterica serovar Infantis strains isolated from the broiler food chain production through whole genome sequencing (WGS), PCR, and morphotype association assays. Biofilm formation was quantified by testing the strains at two different temperatures, using 96-well polystyrene plates. The rough and dry colony (rdar) morphotype was assessed visually on Congo red agar (CRA) plates. Based on our results, all tested S. Infantis strains produced biofilm at 22 °C with an rdar morphotype, while at 37 °C, all the isolates tested negative, except one positive. Most isolates (58.75%) exhibited strong biofilm production, while 36.25% showed moderate production. Only 5 out of 80 (6.25%) were weak biofilm producers. WGS analysis showed the presence of the fim cluster (fimADF) and the csg cluster (csgBAC and csgDEFG), also described in S. Typhimurium, which are responsible for fimbriae production. PCR demonstrated the presence of csgD, csgB, and fimA in all 80 S. Infantis strains. To our knowledge, this is the first study comparing the effects of two different temperatures on the biofilm formation capacity of ESBL producing S. Infantis from the broiler production chain. This study highlights that the initial biofilm components, such as curli and cellulose, are specifically expressed at lower temperatures. It is important to emphasize that within the broiler farm, the environmental temperature ranges between 18-22 °C, which is the optimum temperature for in vitro biofilm formation by Salmonella spp. This temperature range facilitates the expression of biofilm-associated genes, contributing to the persistence of S. Infantis in the environment. This complicates biosecurity measures and makes disinfection protocols on the farm and in the production chain more difficult, posing serious public health concerns.
Collapse
Affiliation(s)
- Laura Musa
- Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900 Lodi, Italy; (L.M.); (M.C.R.); (G.G.); (M.F.A.)
| | - Valeria Toppi
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (V.T.); (V.S.); (N.S.); (M.P.F.)
| | - Valentina Stefanetti
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (V.T.); (V.S.); (N.S.); (M.P.F.)
- Department of Human Science and Promotion of Quality Life, San Raffaele Telematic University, 00166 Rome, Italy
| | - Noah Spata
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (V.T.); (V.S.); (N.S.); (M.P.F.)
| | - Maria Cristina Rapi
- Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900 Lodi, Italy; (L.M.); (M.C.R.); (G.G.); (M.F.A.)
| | - Guido Grilli
- Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900 Lodi, Italy; (L.M.); (M.C.R.); (G.G.); (M.F.A.)
- Laboratorio di Malattie Infettive degli Animali (MiLab), University of Milan, 26900 Lodi, Italy
| | - Maria Filippa Addis
- Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900 Lodi, Italy; (L.M.); (M.C.R.); (G.G.); (M.F.A.)
- Laboratorio di Malattie Infettive degli Animali (MiLab), University of Milan, 26900 Lodi, Italy
| | | | - Maria Pia Franciosini
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (V.T.); (V.S.); (N.S.); (M.P.F.)
| | - Patrizia Casagrande Proietti
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (V.T.); (V.S.); (N.S.); (M.P.F.)
| |
Collapse
|
4
|
Li C, Tate H, Huang X, Hsu CH, Harrison LB, Zhao S, Fortenberry GZ, Dessai U, McDermott PF, Strain EA. The spread of pESI-mediated extended-spectrum cephalosporin resistance in Salmonella serovars-Infantis, Senftenberg, and Alachua isolated from food animal sources in the United States. PLoS One 2024; 19:e0299354. [PMID: 38483966 PMCID: PMC10939224 DOI: 10.1371/journal.pone.0299354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/08/2024] [Indexed: 03/17/2024] Open
Abstract
The goal of this study is to investigate the origin, prevalence, and evolution of the pESI megaplasmid in Salmonella isolated from animals, foods, and humans. We queried 510,097 Salmonella genomes under the National Center for Biotechnology Information (NCBI) Pathogen Detection (PD) database for the presence of potential sequences containing the pESI plasmid in animal, food, and environmental sources. The presence of the pESI megaplasmid was confirmed by using seven plasmid-specific markers (rdA, pilL, SogS, TrbA, ipf, ipr2 and IncFIB(pN55391)). The plasmid and chromosome phylogeny of these isolates was inferred from single nucleotide polymorphisms (SNPs). Our search resolved six Salmonella clusters carrying the pESI plasmid. Four were emergent Salmonella Infantis clusters, and one each belonged to serovar Senftenberg and Alachua. The Infantis cluster with a pESI plasmid carrying blaCTX-M-65 gene was the biggest of the four emergent Infantis clusters, with over 10,000 isolates. This cluster was first detected in South America and has since spread widely in United States. Over time the composition of pESI in United States has changed with the average number of resistance genes showing a decrease from 9 in 2014 to 5 in 2022, resulting from changes in gene content in two integrons present in the plasmid. A recent and emerging cluster of Senftenberg, which carries the blaCTX-M-65 gene and is primarily associated with turkey sources, was the second largest in the United States. SNP analysis showed that this cluster likely originated in North Carolina with the recent acquisition of the pESI plasmid. A single Alachua isolate from turkey was also found to carry the pESI plasmid containing blaCTX-M-65 gene. The study of the pESI plasmid, its evolution and mechanism of spread can help us in developing appropriate strategies for the prevention and further spread of this multi-drug resistant plasmid in Salmonella in poultry and humans.
Collapse
Affiliation(s)
- Cong Li
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland, United States of America
| | - Heather Tate
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland, United States of America
| | - Xinyang Huang
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, United States of America
- Joint Institute for Food Safety and Applied Nutrition, Center for Food Safety Security Systems, University of Maryland,College Park, Maryland, United States of America
| | - Chih-Hao Hsu
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland, United States of America
| | - Lucas B. Harrison
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland, United States of America
| | - Shaohua Zhao
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland, United States of America
| | - Gamola Z. Fortenberry
- Food Safety and Inspection Service, U.S. Department of Agriculture, Athens, Georgia, United States of America
| | - Uday Dessai
- Food Safety and Inspection Service, U.S. Department of Agriculture, Athens, Georgia, United States of America
| | - Patrick F. McDermott
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland, United States of America
| | - Errol A. Strain
- Center for Food Safety and Applied Nutrition, College Park, Maryland, United States of America
| |
Collapse
|
5
|
Guzinski J, Potter J, Tang Y, Davies R, Teale C, Petrovska L. Geographical and temporal distribution of multidrug-resistant Salmonella Infantis in Europe and the Americas. Front Microbiol 2024; 14:1244533. [PMID: 38414709 PMCID: PMC10896835 DOI: 10.3389/fmicb.2023.1244533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/04/2023] [Indexed: 02/29/2024] Open
Abstract
Recently emerged S. Infantis strains carrying resistance to several commonly used antimicrobials have been reported from different parts of the globe, causing human cases of salmonellosis and with occurrence reported predominantly in broiler chickens. Here, we performed phylogenetic and genetic clustering analyses to describe the population structure of 417 S. Infantis originating from multiple European countries and the Americas collected between 1985 and 2019. Of these, 171 were collected from 56 distinct premises located in England and Wales (E/W) between 2009 and 2019, including isolates linked to incursions of multidrug-resistant (MDR) strains from Europe associated with imported poultry meat. The analysis facilitated the comparison of isolates from different E/W sources with isolates originating from other countries. There was a high degree of congruency between the outputs of different types of population structure analyses revealing that the E/W and central European (Germany, Hungary, and Poland) isolates formed several disparate groups, which were distinct from the cluster relating to the United States (USA) and Ecuador/Peru, but that isolates from Brazil were closely related to the E/W and the central European isolates. Nearly half of the analysed strains/genomes (194/417) harboured the IncFIB(pN55391) replicon typical of the "parasitic" pESI-like megaplasmid found in diverse strains of S. Infantis. The isolates that contained the IncFIB(pN55391) replicon clustered together, despite originating from different parts of the globe. This outcome was corroborated by the time-measured phylogeny, which indicated that the initial acquisition of IncFIB(pN55391) likely occurred in Europe in the late 1980s, with a single introduction of IncFIB(pN55391)-carrying S. Infantis to the Americas several years later. Most of the antimicrobial resistance (AMR) genes were identified in isolates that harboured one or more different plasmids, but based on the short-read assemblies, only a minority of the resistance genes found in these isolates were identified as being associated with the detected plasmids, whereas the hybrid assemblies comprising the short and long reads demonstrated that the majority of the identified AMR genes were associated with IncFIB(pN55391) and other detected plasmid replicon types. This finding underlies the importance of applying appropriate methodologies to investigate associations of AMR genes with bacterial plasmids.
Collapse
Affiliation(s)
- Jaromir Guzinski
- Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
| | - Joshua Potter
- Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
| | - Yue Tang
- Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
| | - Rob Davies
- Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
| | | | | |
Collapse
|
6
|
Russo I, Fischer J, Uelze L, Napoleoni M, Schiavano GF, Andreoni F, Brandi G, Amagliani G. From farm to fork: Spread of a multidrug resistant Salmonella Infantis clone encoding bla CTX-M-1 on pESI-like plasmids in Central Italy. Int J Food Microbiol 2024; 410:110490. [PMID: 37992554 DOI: 10.1016/j.ijfoodmicro.2023.110490] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/24/2023] [Accepted: 11/11/2023] [Indexed: 11/24/2023]
Abstract
Salmonella enterica subsp. enterica serovar Infantis (S. Infantis) is one of the "top five Salmonella serovars" of clinical significance in the European Union (EU). Antimicrobial resistant and extended spectrum β-lactamase (ESBL) AmpC-producing S. Infantis have been described in food production systems and human clinical samples in Italy. Recently, an increase of MDR S. Infantis carrying blaCTX-M genes involved in 3rd generation cephalosporin resistance was noticed in the EU, including Italy, mainly due to the spread of S. Infantis harboring a pESI-like plasmid. The aim of this study was to investigate the occurrence of the S. Infantis pESI-like plasmid among antibiotic resistant S. Infantis strains isolated at different points of the food chain, and to provide a phylogenetic analysis to gain further insight on their transmission pathways from 'farm to fork'. MDR S. Infantis strains (n. 35) isolated from 2016 to 2021 at different stages of the food chain (animals, food, food-related environments, and humans) were investigated with in depth molecular characterization using real-time PCR, S1 nuclease pulsed-field gel electrophoresis (S1-PFGE) and whole genome sequencing (WGS). Our study reported the occurrence of S. Infantis strains harboring pESI-like plasmids, carrying blaCTX-M-1 genes, in Central Italy, at different sampling points along the food chain. Results confirmed the presence of a plasmid with a molecular size around 224-310 kb, thus consistent with the pESI-like, in 97 % of the 35 samples investigated. Two variants of S. Infantis pESI-like IncFIB(K)_1_Kpn3 were detected, one associated with the European clone carrying blaCTX-M-1 (21 isolates) and the other associated with U.S. isolates carrying blaCTX-M-65 (2 isolates, pESI-like U.S. variant). The majority was resistant to 3rd generation cephalosporins but none of the strains tested positive for the carbapenemase encoding genes. A total of 118 virulence genes were identified in isolates harboring the pESI-like plasmid. cgMLST and SNP-based analysis revealed the presence of one main cluster, composed by strains isolated from the environment, animals, food and humans. The results of this investigation underline the importance of phylogenetic studies to monitor and understand pathogen and AMR spread in a One Health approach.
Collapse
Affiliation(s)
- Ilaria Russo
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Jennie Fischer
- BfR, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Laura Uelze
- BfR, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Maira Napoleoni
- Regional Reference Center for Enteric Pathogens Marche, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Perugia, Italy
| | | | - Francesca Andreoni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy; Clinical Pathology, Urbino Hospital, AST Pesaro-Urbino, Marche, Urbino, Italy
| | - Giorgio Brandi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Giulia Amagliani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy.
| |
Collapse
|
7
|
Montoro-Dasi L, Lorenzo-Rebenaque L, Marco-Fuertes A, Vega S, Marin C. Holistic Strategies to Control Salmonella Infantis: An Emerging Challenge in the European Broiler Sector. Microorganisms 2023; 11:1765. [PMID: 37512937 PMCID: PMC10386103 DOI: 10.3390/microorganisms11071765] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Salmonella spp. has been globally recognized as one of the leading causes of acute human bacterial gastroenteritis resulting from the consumption of animal-derived products. Salmonella Enteritidis, S. Typhimurium, and its monophasic variant are the main serovars responsible for human disease. However, a serovar known as S. Infantis has emerged as the fourth most prevalent serovar associated with human disease. A total of 95% of isolated S. Infantis serovars originate from broilers and their derived products. This serovar is strongly associated with an elevated antimicrobial (AMR) and multidrug resistance, a resistance to disinfectants, an increased tolerance to environmental mercury, a heightened virulence, and an enhanced ability to form biofilms and attach to host cells. Furthermore, this serovar harbors genes that confer resistance to colistin, a last-resort antibiotic in human medicine, and it has the potential to acquire additional transferable AMR against other critically important antimicrobials, posing a new and significant challenge to global public health. This review provides an overview of the current status of the S. Infantis serovar in the poultry sector, focusing on its key virulence factors, including its virulence genes, antimicrobial resistance, and biofilm formation. Additionally, novel holistic strategies for controlling S. Infantis along the entire food chain are presented in this review.
Collapse
Affiliation(s)
- Laura Montoro-Dasi
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, 45115 Alfara del Patriarca, Valencia, Spain
| | - Laura Lorenzo-Rebenaque
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, 45115 Alfara del Patriarca, Valencia, Spain
| | - Ana Marco-Fuertes
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, 45115 Alfara del Patriarca, Valencia, Spain
| | - Santiago Vega
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, 45115 Alfara del Patriarca, Valencia, Spain
| | - Clara Marin
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, 45115 Alfara del Patriarca, Valencia, Spain
| |
Collapse
|
8
|
Castello A, Piraino C, Butera G, Alio V, Cardamone C, Oliveri G, Cascone G, Ciravolo C, Costa A. Prevalence and antimicrobial resistance profiles of Salmonella spp. in poultry meat. Ital J Food Saf 2023; 12:11135. [PMID: 37405148 PMCID: PMC10316271 DOI: 10.4081/ijfs.2023.11135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/07/2023] [Indexed: 07/06/2023] Open
Abstract
The spread of multidrug resistant (MDR) Salmonella strains, along the poultry supply chain, can represent a relevant threat to human health. This study aimed to evaluate the prevalence and antimicrobial resistance of Salmonella spp. isolated from poultry meat for human consumption. Between 2019 and 2021, 145 samples were analyzed according to ISO 6579-1:2017. The strains isolated were identified by using biochemical-enzymatic assays and serotyping, according to the Kauffmann-White-Le Minor scheme. The antibiotic susceptibility tests were determined using the Kirby-Bauer method. Forty Salmonella spp. strains were isolated and serotyping showed Salmonella Infantis to be predominant. 80% of the isolated strains were MDR and identified as S. Infantis. This study confirms the circulation of MDR Salmonella isolated from poultry meat and highlights the predominance of the S. Infantis serovar, which represents an emerging risk factor under the One Health holistic approach.
Collapse
Affiliation(s)
| | | | - Gaspare Butera
- Experimental Zooprophylactic Institute of Sicily A. Mirri, Via Gino Marinuzzi n. 3, 90129, Palermo, Italy. 320 844 1802.
| | | | | | | | | | | | | |
Collapse
|
9
|
Toppi V, Scattini G, Musa L, Stefanetti V, Pascucci L, Chiaradia E, Tognoloni A, Giovagnoli S, Franciosini MP, Branciari R, Proietti PC. Evaluation of β-Lactamase Enzyme Activity in Outer Membrane Vesicles (OMVs) Isolated from Extended Spectrum β-Lactamase (ESBL) Salmonella Infantis Strains. Antibiotics (Basel) 2023; 12:antibiotics12040744. [PMID: 37107107 PMCID: PMC10135247 DOI: 10.3390/antibiotics12040744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Outer membrane vesicles (OMVs) are nanoparticles released by Gram-negative bacteria, which contain different cargo molecules and mediate several biological processes. Recent studies have shown that OMVs are involved in antibiotic-resistance (AR) mechanisms by including β-lactamase enzymes in their lumen. Since no studies have as yet been conducted on Salmonella enterica subs. enterica serovar Infantis' OMVs, the aim of the work was to collect OMVs from five S. Infantis β-lactam resistant strains isolated from a broiler meat production chain and to investigate whether β-lactamase enzymes are included in OMVs during their biogenesis. OMVs were isolated by means of ultrafiltration and a Nitrocefin assay quantified the presence of β-lactamase enzymes in the OMVs. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) were used to identify the OMVs. The results showed that all strains release spherical OMVs, ranging from 60 to 230 nm. The Nitrocefin assay highlighted the presence of β-lactamase enzymes within the OMVs. This suggests that β-lactamase enzymes also get packaged into OMVs from bacterial periplasm during OMV biogenesis. An investigation into the possible role played by OMVs in AR mechanisms would open the door for an opportunity to develop new, therapeutic strategies.
Collapse
Affiliation(s)
- Valeria Toppi
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy
| | - Gabriele Scattini
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy
| | - Laura Musa
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy
| | - Valentina Stefanetti
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy
| | - Luisa Pascucci
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy
| | - Elisabetta Chiaradia
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy
| | - Alessia Tognoloni
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy
| | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Maria Pia Franciosini
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy
| | - Raffaella Branciari
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy
| | | |
Collapse
|
10
|
Casagrande Proietti P, Musa L, Stefanetti V, Orsini M, Toppi V, Branciari R, Blasi F, Magistrali CF, Capomaccio S, Kika TS, Franciosini MP. mcr-1-Mediated Colistin Resistance and Genomic Characterization of Antimicrobial Resistance in ESBL-Producing Salmonella Infantis Strains from a Broiler Meat Production Chain in Italy. Antibiotics (Basel) 2022; 11:antibiotics11060728. [PMID: 35740135 PMCID: PMC9220226 DOI: 10.3390/antibiotics11060728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022] Open
Abstract
This work aimed to evaluate phenotypically and genotypically the colistin susceptibility of 85 Salmonella Infantis strains isolated in Italy from the broiler production chain, and to apply a whole-genome approach for the determination of genes conferring antimicrobial resistance (AMR). All isolates were tested by the broth microdilution method to evaluate the colistin minimum inhibitory concentrations (MICs). A multiplex PCR was performed in all isolates for the screening of mcr-1, mcr-2, mcr-3 mcr-4, mcr-5 genes and whole-genome sequencing (WGS) of six S. Infantis was applied. Three out of 85 (3.5%) S. Infantis strains were colistin resistant (MIC values ranged from 4 to 8 mg/L) and mcr-1 positive. The mcr-1.1 and mcr-1.2 variants located on the IncX4 plasmid were detected in three different colistin-resistant isolates. The two allelic variants showed identical sequences. All six isolates harbored blaCTXM-1, aac(6′)-Iaa and gyrA/parC genes, mediating, respectively, beta-lactam, aminoglycoside and quinolone resistance. The pESI-megaplasmid carrying tet(A) (tetracycline resistance), dfrA1, (trimethoprim resistance) sul1, (sulfonamide resistance) and qacE (quaternary ammonium resistance) genes was found in all isolates. To our knowledge, this is the first report of the mcr-1.2 variant described in S. Infantis isolated from broilers chickens. Our results also showed a low prevalence of colistin- resistance, probably due to a reduction in colistin use in poultry. This might suggest an optimization of biosecurity control both on farms and in slaughterhouses.
Collapse
Affiliation(s)
- Patrizia Casagrande Proietti
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy; (L.M.); (V.S.); (V.T.); (R.B.); (S.C.); (M.P.F.)
- Correspondence:
| | - Laura Musa
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy; (L.M.); (V.S.); (V.T.); (R.B.); (S.C.); (M.P.F.)
| | - Valentina Stefanetti
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy; (L.M.); (V.S.); (V.T.); (R.B.); (S.C.); (M.P.F.)
| | | | - Valeria Toppi
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy; (L.M.); (V.S.); (V.T.); (R.B.); (S.C.); (M.P.F.)
| | - Raffaella Branciari
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy; (L.M.); (V.S.); (V.T.); (R.B.); (S.C.); (M.P.F.)
| | - Francesca Blasi
- Istituto Zooprofilattico Sperimentale dell’Umbria e Delle Marche ‘Togo Rosati’, 06124 Perugia, Italy; (F.B.); (C.F.M.)
| | - Chiara Francesca Magistrali
- Istituto Zooprofilattico Sperimentale dell’Umbria e Delle Marche ‘Togo Rosati’, 06124 Perugia, Italy; (F.B.); (C.F.M.)
| | - Stefano Capomaccio
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy; (L.M.); (V.S.); (V.T.); (R.B.); (S.C.); (M.P.F.)
| | - Tana Shtylla Kika
- Faculty of Veterinary Medicine, Agricultural University of Tirana, 1029 Tirana, Albania;
| | - Maria Pia Franciosini
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy; (L.M.); (V.S.); (V.T.); (R.B.); (S.C.); (M.P.F.)
| |
Collapse
|
11
|
Gurnani M, Chauhan A, Ranjan A, Tuli HS, Alkhanani MF, Haque S, Dhama K, Lal R, Jindal T. Filamentous Thermosensitive Mutant Z: An Appealing Target for Emerging Pathogens and a Trek on Its Natural Inhibitors. BIOLOGY 2022; 11:624. [PMID: 35625352 PMCID: PMC9138142 DOI: 10.3390/biology11050624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/18/2022] [Accepted: 04/01/2022] [Indexed: 12/14/2022]
Abstract
Antibiotic resistance is a major emerging issue in the health care sector, as highlighted by the WHO. Filamentous Thermosensitive mutant Z (Fts-Z) is gaining significant attention in the scientific community as a potential anti-bacterial target for fighting antibiotic resistance among several pathogenic bacteria. The Fts-Z plays a key role in bacterial cell division by allowing Z ring formation. Several in vitro and in silico experiments have demonstrated that inhibition of Fts-Z can lead to filamentous growth of the cells, and finally, cell death occurs. Many natural compounds that have successfully inhibited Fts-Z are also studied. This review article intended to highlight the structural-functional aspect of Fts-Z that leads to Z-ring formation and its contribution to the biochemistry and physiology of cells. The current trend of natural inhibitors of Fts-Z protein is also covered.
Collapse
Affiliation(s)
- Manisha Gurnani
- Amity Institute of Environmental Science, Amity University, Noida 201301, India;
| | - Abhishek Chauhan
- Amity Institute of Environmental Toxicology, Safety and Management, Amity University, Noida 201303, India;
| | - Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Ambala 133207, India;
| | - Mustfa F. Alkhanani
- Emergency Service Department, College of Applied Sciences, AlMaarefa University, Riyadh 11597, Saudi Arabia;
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia;
- Faculty of Medicine, Görükle Campus, Bursa Uludağ University, Nilüfer, Bursa 16059, Turkey
| | - Kuldeep Dhama
- Division of Pathology, ICAR—Indian Veterinary Research Institute, Bareilly 243122, India;
| | - Rup Lal
- Department of Zoology, University of Delhi, Delhi 110021, India;
| | - Tanu Jindal
- Amity Institute of Environmental Toxicology, Safety and Management, Amity University, Noida 201303, India;
| |
Collapse
|
12
|
Di Marcantonio L, Romantini R, Marotta F, Chiaverini A, Zilli K, Abass A, Di Giannatale E, Garofolo G, Janowicz A. The Current Landscape of Antibiotic Resistance of Salmonella Infantis in Italy: The Expansion of Extended-Spectrum Beta-Lactamase Producers on a Local Scale. Front Microbiol 2022; 13:812481. [PMID: 35418960 PMCID: PMC8996230 DOI: 10.3389/fmicb.2022.812481] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Salmonella enterica serovar Infantis is one of the five main causes of human salmonellosis in the European Union (EU) and in recent years, has been increasingly reported to carry multiple antimicrobial resistance determinants, including extended-spectrum beta-lactamase (ESBL) genes. In our study, we used WGS-based tools to characterize S. Infantis strains circulating in the Abruzzo and Molise regions of Italy between 2017 and 2020 and compared this local dataset to the S. Infantis population present in Italy over the last two decades. Phylogenetic analyses demonstrated that the majority of strains isolated from poultry and turkeys from Abruzzo and Molise were closely related and belonged to one of the two main genetic clusters present in Italy, which were grouped predominantly as ESBL-producing strains that harbored pESI-like plasmid. We showed that 60% of the local strains carried multiple antibiotic resistance genes, including ESBL gene blaCTX–M–1 as well as aadA1, dfrA1, dfrA14, sul1, and tet(A) genes present on the pESI-like megaplasmid. The analysis of strains from Abruzzo and Molise and the publicly available Italian S. Infantis sequences revealed a dramatic increase in the number of identified AMR genes in the strains isolated after 2011. Moreover, the number of strains resistant to five or more antibiotic classes increased from 20–80% in the last decade likely due to the acquisition of the megaplasmid. The persistence of the ESBL-producing and the multidrug-resistant (MDR) clone of S. Infantis in poultry populations in Italy and in Europe requires rapid and efficient intervention strategies to prevent further expansion of the clone.
Collapse
Affiliation(s)
- Lisa Di Marcantonio
- Bacteriology and Diary Production Hygiene Department, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale," Teramo, Italy
| | - Romina Romantini
- Bacteriology and Diary Production Hygiene Department, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale," Teramo, Italy
| | - Francesca Marotta
- Bacteriology and Diary Production Hygiene Department, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale," Teramo, Italy
| | - Alexandra Chiaverini
- Hygiene in Food Technology and Animal Feeds, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale," Teramo, Italy
| | - Katiuscia Zilli
- Bacteriology and Diary Production Hygiene Department, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale," Teramo, Italy
| | - Anna Abass
- Bacteriology and Diary Production Hygiene Department, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale," Teramo, Italy
| | - Elisabetta Di Giannatale
- Bacteriology and Diary Production Hygiene Department, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale," Teramo, Italy
| | - Giuliano Garofolo
- Bacteriology and Diary Production Hygiene Department, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale," Teramo, Italy
| | - Anna Janowicz
- Bacteriology and Diary Production Hygiene Department, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale," Teramo, Italy
| |
Collapse
|
13
|
Gambino D, Gargano V, Butera G, Sciortino S, Pizzo M, Oliveri G, Cardamone C, Piraino C, Cassata G, Vicari D, Costa A. Food Is Reservoir of MDR Salmonella: Prevalence of ESBLs Profiles and Resistance Genes in Strains Isolated from Food. Microorganisms 2022; 10:780. [PMID: 35456830 PMCID: PMC9026803 DOI: 10.3390/microorganisms10040780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 02/01/2023] Open
Abstract
Salmonella spp. are among the most frequent causes of foodborne diseases, and the increasing occurrence of MDR strains is an additional cause for concern. In the three-year period 2019-2021, we collected Salmonella spp. strains isolated from different food categories analysed in the context of Regulation (EC) No 2073/2005 in order to assess their antibiotic susceptibility profiles and ESBL production. To determine the susceptibility profiles and identify MDR strains, we used the Kirby-Bauer method to test 17 antibiotics. Double-disc and PCR testing then allowed us to assess the production of ESBLs and the presence of beta-lactamase resistance genes. Phenotypic tests showed that 36 out of 67 strains were MDR and 52.7% of these were ESBL producers. Finally, molecular investigations conducted on ESBL-producing strains revealed the presence of blaSHV, blaCTX-M and blaTEM genes. Our results confirmed the prevalence of S. Infantis, an MDR strain and ESBL producer, in chicken meat. This suggests that further research on the prevalence of antibiotic resistance genes (ARGs) in foodborne strains is needed, especially from a One Health perspective.
Collapse
Affiliation(s)
- Delia Gambino
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", 90129 Palermo, Italy
| | - Valeria Gargano
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", 90129 Palermo, Italy
| | - Gaspare Butera
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", 90129 Palermo, Italy
| | - Sonia Sciortino
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", 90129 Palermo, Italy
| | - Mariangela Pizzo
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", 90129 Palermo, Italy
| | - Giuseppa Oliveri
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", 90129 Palermo, Italy
| | - Cinzia Cardamone
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", 90129 Palermo, Italy
| | - Chiara Piraino
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", 90129 Palermo, Italy
| | - Giovanni Cassata
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", 90129 Palermo, Italy
| | - Domenico Vicari
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", 90129 Palermo, Italy
| | - Antonella Costa
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", 90129 Palermo, Italy
| |
Collapse
|
14
|
Distribution of Salmonella spp. Serotypes Isolated from Poultry in Abruzzo and Molise Regions (Italy) during a 6-Year Period. Microorganisms 2022; 10:microorganisms10020199. [PMID: 35208655 PMCID: PMC8877327 DOI: 10.3390/microorganisms10020199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/04/2022] Open
Abstract
Human salmonellosis incidence is increasing in the European Union (EU). Salmonellaenterica subsp. enterica serovar Enteriditis, Salmonellaenterica subsp. enterica serovar Typhimurium (including its monophasic variant) and Salmonellaenterica subsp. enterica serovar Infantis represent targets in control programs due to their frequent association with human cases. This study aimed to detect the most prevalent serotypes circulating in Abruzzo and Molise Regions between 2015 and 2020 in the framework of the Italian National Control Program for Salmonellosis in Poultry (PNCS)]. A total of 332 flocks of Abruzzo and Molise Regions were sampled by veterinary services in the period considered, and 2791 samples were taken. Samples were represented by faeces and dust from different categories of poultry flocks: laying hens (n = 284), broilers (n = 998), breeding chickens (n = 1353) and breeding or fattening turkeys (n = 156). Breeding and fattening turkeys had the highest rate of samples positive for Salmonella spp. (52.6%; C.I. 44.8%–60.3%). Faeces recovered through boot socks represented the greatest number of positive samples (18.2%). Salmonellaenterica subsp. enterica serovar Infantis was the prevalent serotype in breeding and fattening turkeys (32.7%; C.I. 25.8%–40.4%) and in broiler flocks (16.5%; C.I. 14.4%–19.0%). Salmonellaenterica subsp. enterica serovar Typhimurium was detected at low levels in laying hens (0.7%; C.I. 0.2%–2.5%) followed by breeding and fattening turkeys (0.6%; C.I. 0.2%–2.5%). Salmonellaenterica subsp. enterica serovar Enteriditis was also detected at low levels in laying hens (2.5%; C.I. 1.2%–5.0%). These findings highlight the role of broilers and breeding/fattening turkeys as reservoirs of Salmonella spp. and, as a consequence, in the diffusion of dangerous serotypes as Salmonellaenterica subsp. enterica serovar Infantis. This information could help veterinary services to analyze local trends and to take decisions not only based on indications from national control programs, but also based on real situations at farms in their own competence areas.
Collapse
|
15
|
Adel WA, Ahmed AM, Hegazy Y, Torky HA, Shimamoto T. High Prevalence of ESBL and Plasmid-Mediated Quinolone Resistance Genes in Salmonella enterica Isolated from Retail Meats and Slaughterhouses in Egypt. Antibiotics (Basel) 2021; 10:antibiotics10070881. [PMID: 34356803 PMCID: PMC8300843 DOI: 10.3390/antibiotics10070881] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 11/30/2022] Open
Abstract
The emergence and spread of multidrug-resistant Salmonella enterica (S. enterica) to humans through food of animal origin are considered a major global public health concern. Currently, little is known about the prevalence of important antimicrobial resistance genes in S. enterica from retail food in Africa. Therefore, the screening and characterization of the extended-spectrum β-lactamase (ESBL) and plasmid-mediated quinolone resistance (PMQR) genes in S. enterica isolated from retail meats and slaughterhouses in Egypt were done by using PCR and DNA sequencing techniques. Twenty-eight out of thirty-four (82.4%) non-duplicate S. enterica isolates showed multidrug-resistance phenotypes to at least three classes of antimicrobials, and fourteen (41.2%) exhibited an ESBL-resistance phenotype and harbored at least one ESBL-encoding gene. The identified β-lactamase-encoding genes included blaCTX-M-1, blaCTX-M-3, blaCTX-M-13, blaCTX-M-14, blaCTX-M-15, and blaSHV-12 (ESBL types); blaCMY-2 (AmpC type); and blaTEM-1 and blaOXA-1 (narrow-spectrum types). PMQR genes (included qnrA, qnrB, qnrS, and aac(6′)-Ib-cr) were identified in 23 (67.6%) isolates. The presence of ESBL- and PMQR-producing S. enterica with a high prevalence rate in retail meats and slaughterhouses is considered a major threat to public health as these strains with resistance genes could be transmitted to humans through the food chain.
Collapse
Affiliation(s)
- Wesam A. Adel
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt;
| | - Ashraf M. Ahmed
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt;
- Correspondence: (A.M.A.); (T.S.); Tel.: +20-111-811-1488 (A.M.A.); +81-(82)-424-7897 (T.S.)
| | - Yamen Hegazy
- Department of Animal Medicine, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt;
| | - Helmy A. Torky
- Department of Microbiology, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt;
| | - Tadashi Shimamoto
- Laboratory of Food Microbiology and Hygiene, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima 739-8528, Japan
- Correspondence: (A.M.A.); (T.S.); Tel.: +20-111-811-1488 (A.M.A.); +81-(82)-424-7897 (T.S.)
| |
Collapse
|
16
|
Di Ciccio PA. Antimicrobial-Resistance of Food-Borne Pathogens. Antibiotics (Basel) 2021; 10:antibiotics10040372. [PMID: 33915769 PMCID: PMC8067115 DOI: 10.3390/antibiotics10040372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 11/16/2022] Open
Affiliation(s)
- Pierluigi Aldo Di Ciccio
- Department of Veterinary Science, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095 Torino, Italy
| |
Collapse
|