1
|
Wang N, Li XJ, Wang L, Li B, Tian JL. Design of a liposome casein hydrogel as an efficient front-end homeostatic anthocyanin loading system. Int J Biol Macromol 2024; 278:134928. [PMID: 39179076 DOI: 10.1016/j.ijbiomac.2024.134928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Proteins have been studied and applied to improve the stability of anthocyanins (ACNs), but the changes in the pH microenvironment during the preparation of steady-state systems are often ignored, and more attention is given to the stability of the system after preparation. In this study, we propose the "anthocyanin front-end homeostasis strategy", which involves designing a system can protect anthocyanins under acidic conditions so that more anthocyanin prototypes can be loaded inside the protein. Anthocyanins are encapsulated in liposomes (Lip) at pH 3.0 and combined with casein methacrylate (CSMA) to form Anthocyanin-loaded liposomes/CSMA hydrogel (Lip@ACNs/CSMA), with good physical properties and good blood compatibility. The system increased the hydrogen peroxide scavenging capacity by 1.16 mg Vc equiv./mg ACNs and the cellular antioxidant activity by 17.55 μM quercetin/100 mg ACNs, the photo and thermal storage stability increased by 36.50 % and 30.71 %, the digestive rate increased by 17.50 %, and the biological availability increased by 0.0049 mg/mL. This study designed a liposome casein hydrogel as an efficient front-end homeostatic anthocyanin loading system and provided a new approach for improving the stability of anthocyanins.
Collapse
Affiliation(s)
- Nuo Wang
- College of Food Science, Shenyang Agricultural University, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small Berry, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning 110866, China
| | - Xiu-Jun Li
- College of Food Science, Shenyang Agricultural University, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small Berry, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning 110866, China
| | - Liang Wang
- Zhejiang Lanmei Technology Co., Ltd., Zhuji, Zhejiang 311800, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small Berry, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning 110866, China
| | - Jin-Long Tian
- College of Food Science, Shenyang Agricultural University, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small Berry, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning 110866, China.
| |
Collapse
|
2
|
Zhang L, Xiao G, Yu Y, Xu Y, Wu J, Zou B, Li L. Low-oxygen pulping combined with high hydrostatic pressure improve the stability of blueberry pulp anthocyanins and color during storage. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
3
|
Chen Y, Belwal T, Xu Y, Ma Q, Li D, Li L, Xiao H, Luo Z. Updated insights into anthocyanin stability behavior from bases to cases: Why and why not anthocyanins lose during food processing. Crit Rev Food Sci Nutr 2022; 63:8639-8671. [PMID: 35435782 DOI: 10.1080/10408398.2022.2063250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Anthocyanins have received considerable attention for the development of food products with attractive colors and potential health benefits. However, anthocyanin applications have been hindered by stability issues, especially in the context of complex food matrices and diverse processing methods. From the natural microenvironment of plants to complex processed food matrices and formulations, there may happen comprehensive changes to anthocyanins, leading to unpredictable stability behavior under various processing conditions. In particular, anthocyanin hydration, degradation, and oxidation during thermal operations in the presence of oxygen represent major challenges. First, this review aims to summarize our current understanding of key anthocyanin stability issues focusing on the chemical properties and their consequences in complex food systems. The subsequent efforts to examine plenty of cases attempt to unravel a universal pattern and provide thorough guidance for future food practice regarding anthocyanins. Additionally, we put forward a model with highlights on the role of the balance between anthocyanin release and degradation in stability evaluations. Our goal is to engender updated insights into anthocyanin stability behavior under food processing conditions and provide a robust foundation for the development of anthocyanin stabilization strategies, expecting to promote more and deeper progress in this field.
Collapse
Affiliation(s)
- Yanpei Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, People's Republic of China
- Ningbo Research Institute, Zhejiang University, Ningbo, People's Republic of China
| | - Tarun Belwal
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Yanqun Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, People's Republic of China
- Ningbo Research Institute, Zhejiang University, Ningbo, People's Republic of China
| | - Quan Ma
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Dong Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Li Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Hang Xiao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, People's Republic of China
- Department of Food Science, College of Natural Sciences, University of Massachusetts Amherst, Massachusetts, The United States
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, People's Republic of China
- Ningbo Research Institute, Zhejiang University, Ningbo, People's Republic of China
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, People's Republic of China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
4
|
Wang G, Lu M, Zhang S, Ji J, Li B, Li J, Zhang L, Yang D, Wang W, Guan C. Anthocyanin release and absorption properties of boiling pigmented rice using an in vitro digestion model. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01378-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Plant Antioxidants for Food Safety and Quality: Exploring New Trends of Research. Antioxidants (Basel) 2021; 10:antiox10060972. [PMID: 34204398 PMCID: PMC8233938 DOI: 10.3390/antiox10060972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022] Open
Abstract
Antioxidants are an heterogeneous group of compounds able to counteract cell oxidation by acting as reducing agents, as free radical scavengers, and quenchers of radical species and other pro-oxidants, such as metals [...].
Collapse
|