1
|
Zhang XJ, Pu YK, Yang PY, Wang MR, Zhang RH, Li XL, Xiao WL. Isolicoflavonol ameliorates acute liver injury via inhibiting NLRP3 inflammasome activation through boosting Nrf2 signaling in vitro and in vivo. Int Immunopharmacol 2024; 143:113233. [PMID: 39366075 DOI: 10.1016/j.intimp.2024.113233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/06/2024]
Abstract
BACKGROUND NOD like receptor pyrin domain containing 3 (NLRP3) inflammasome is involved in innate immunity, and related to liver injury. However, no inflammasome inhibitors are clinically available until now. Our previous research suggests that isolicoflavonol (ILF), isolated from Macaranga indica, is a potent NLRP3 inflammasome inhibitor, but its mechanism is unclear. METHODS Fluorescent imaging and Western blot assay were used to ascertain the effects of ILF on pyroptosis and NLRP3 inflammasome activation in macrophages. Next, Nrf2 signal pathway, its downstream gene transcription and expression were further investigated. ML385, a Nrf2 inhibitor, was used to verify whether ILF targets Nrf2 signaling. A carbon tetrachloride induced liver injury model was introduced to evaluate the liver protection activity of ILF in mice. RESULTS This work revealed that ILF inhibited macrophage LDH release and IL-1β secretion in a dose-dependent manner. ILF had no significant cytotoxic effect on macrophage, it reduced pyroptosis and Gasdermin D N-terminal fragment formation. Moreover, ILF inhibited IL-1β maturation and Caspase-1 cleavage, but did not affect NLRP3, pro-Caspase-1, pro-IL-1β and ASC expression. ILF decreased ASC speck rate and reduced ASC oligomer formation. ILF decreased aggregated JC-1 formation restoring mitochondria membrane potential. In addition, ILF increased Nrf2 expression, extended Nrf2 lifespan and upregulated Nrf2 signaling pathway in macrophages whether the NLRP3 inflammasome was activated or not. Besides, ILF increased Nrf2 nuclear translocation, maintained a high proportion of Nrf2 in the nucleus, and upregulated ARE-related gene transcription and expression. Furthermore, Nrf2 signal inhibition attenuated compound ILF-mediated inhibition of pyroptosis, inflammasome activation and upregulation of Nrf2 signaling. ILF in a liver injury mouse model inhibited NLRP3 inflammasome activation and enhanced Nrf2 signaling. CONCLUSION Our study verified that ILF ameliorates liver injury via inhibiting NLRP3 inflammasome activation through boosting Nrf2 signaling, and highlighted that ILF is a potent anti-inflammatory drug for inflammasome-related liver diseases.
Collapse
Affiliation(s)
- Xing-Jie Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Key Laboratory of Research and Development for Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming 650500, Yunnan, China
| | - Yu-Kun Pu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Key Laboratory of Research and Development for Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming 650500, Yunnan, China
| | - Peng-Yun Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Key Laboratory of Research and Development for Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming 650500, Yunnan, China
| | - Meng-Ru Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Key Laboratory of Research and Development for Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming 650500, Yunnan, China
| | - Rui-Han Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Key Laboratory of Research and Development for Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming 650500, Yunnan, China
| | - Xiao-Li Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Key Laboratory of Research and Development for Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming 650500, Yunnan, China.
| | - Wei-Lie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Key Laboratory of Research and Development for Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming 650500, Yunnan, China; Southwest United Graduate School, Kunming 650500, Yunnan, China.
| |
Collapse
|
2
|
Elokil A, Li S, Chen W, Farid O, Abouelezz K, Zohair K, Nassar F, El-Komy E, Farag S, Elattrouny M. Ethoxyquin attenuates enteric oxidative stress and inflammation by promoting cytokine expressions and symbiotic microbiota in heat-stressed broilers. Poult Sci 2024; 103:103761. [PMID: 38692088 PMCID: PMC11070915 DOI: 10.1016/j.psj.2024.103761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 05/03/2024] Open
Abstract
Intestinal oxidative stress in broilers is produced by chronic heat stress (HS) and has a negative impact on poultry performance as it induces intestinal inflammation and promotes the invasion of gram-negative bacteria, such as bacterial lipopolysaccharide (LPS). Therefore, dietary inclusion of the antioxidant compound, ethoxyquin (EQ), could improve enteric antioxidant capacity, immune responses, and the epithelial barrier, and maintain the symbiotic gut microbiota community. To investigate the effects of EQ supplementation on alleviating enteric oxidative stress in heat-stressed broilers, 200 one-day-old male Ross 308 broilers were randomly assigned to 4 groups (n = 50 chicks/group; n = 10 chicks/replicate) and fed a basal diet supplemented with 0 (CT), 50 (EQ-50), 100 (EQ-100), and 200 (EQ-200) mg EQ/ kg-1 for 5 wk. The chicks were raised in floor pens inside the broiler farm at a temperature and humidity index (THI) of 29 from d 21 to d 35. Growth performance traits, relative organ index, hepatic antioxidant enzymes, serum immunity, total adenylate, and cytokine activities were improved in the EQ-50 group (linear or quadratic P < 0.05), promoting the relative mRNA expression of cytokine gene-related anti-inflammatory and growth factors. A distinct microbial community colonised the gut microbiota in the EQ-50 group, with a high relative abundance of Lactobacillus, Ligilactobacillus, Limosilactobacillus, Pediococcus, Blautia, and Faecalibacterium compared to the other groups. Dietary supplementation with 50 mg EQ/ kg-1 for 5 wk attenuates enteric oxidative stress and intestinal inflammation by enhancing serum immune and cytokine content (IgG, IL-6, and TGF-β,) and symbiotic microbiota in heat-stressed broilers. EQ promotes the expression of Hsp70, SOD2, GPx 4, IL-6, and IGF-1 cytokine gene-related anti-inflammatory and growth factors in heat-stressed hepatic broilers. Collectively, EQ-50 could be a suitable feed supplement for attenuating enteric oxidative stress and intestinal inflammation, thereby promoting the productivity of heat-stressed broilers.
Collapse
Affiliation(s)
- Abdelmotaleb Elokil
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; Department of Animal Production, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| | - Shijun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Wei Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China.
| | - Omar Farid
- Department of Physiology, National Organization for Drug Control and Research, Giza 12553, Egypt
| | - Khaled Abouelezz
- Department of Poultry Production, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt
| | - Khairy Zohair
- Cell Biology Department, Biotechnology Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Farid Nassar
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Esteftah El-Komy
- Animal Production Department, Agricultural and Biological Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Soha Farag
- Department of animal production, Faculty of Agriculture, Tanta University, Egypt
| | - Mahmoud Elattrouny
- Department of Animal Production, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| |
Collapse
|
3
|
Kryl'skii ED, Razuvaev GA, Popova TN, Oleinik SA, Medvedeva SM, Shikhaliev KS. 6-Hydroxy-2,2,4-trimethyl-1,2,3,4-tetrahydroquinoline Demonstrates Neuroprotective Properties in Experimental Parkinson's Disease by Enhancing the Antioxidant System, Normalising Chaperone Activity and Suppressing Apoptosis. Neurochem Res 2024; 49:1387-1405. [PMID: 38502411 DOI: 10.1007/s11064-024-04125-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 03/21/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease, whereby disturbances within the antioxidant defence system, increased aggregation of proteins, and activation of neuronal apoptosis all have a crucial role in the pathogenesis. In this context, exploring the neuroprotective capabilities of compounds that sustain the effectiveness of cellular defence systems in neurodegenerative disorders is worthwhile. During this study, we assessed how 6-hydroxy-2,2,4-trimethyl-1,2,3,4-tetrahydroquinoline (HTHQ), which has antioxidant properties, affects the functioning of the antioxidant system, the activity of NADPH-generating enzymes and chaperones, and the level of apoptotic processes in rats with rotenone-induced PD. Six groups of animals were formed for our experiment, each with 12 animals. These were: a control group, animals with rotenone-induced PD, rats with PD given HTHQ at a dose of 50 mg/kg, rats with PD given HTHQ at a dose of 25 mg/kg, animals with pathology who were administered a comparison drug rasagiline, and control animals who were administered HTHQ at a dose of 50 mg/kg. The study results indicate that administering HTHQ led to a significant decrease in oxidative stress in PD rats. The enhanced redox status in animal tissues was linked with the recovery of antioxidant enzyme activities and NADPH-generating enzyme function, as well as an upsurge in the mRNA expression levels of antioxidant genes and factors Nrf2 and Foxo1. Administering HTHQ to rats with PD normalized the chaperone-like activity and mRNA levels of heat shock protein 70. Rats treated with the compound displayed lower apoptosis intensity when compared to animals with pathology. Therefore, owing to its antioxidant properties, HTHQ demonstrated a beneficial impact on the antioxidant system, resulting in decreased requirements for chaperone activation and the inhibition of apoptosis processes triggered in PD. HTHQ at a dose of 50 mg/kg had a greater impact on the majority of the examined variables compared to rasagiline.
Collapse
Affiliation(s)
- Evgenii D Kryl'skii
- Department of Medical Biochemistry, Molecular and Cell Biology, Voronezh State University, Universitetskaya Sq. 1, Voronezh, Russia, 394018.
| | - Grigorii A Razuvaev
- Department of Medical Biochemistry, Molecular and Cell Biology, Voronezh State University, Universitetskaya Sq. 1, Voronezh, Russia, 394018
| | - Tatyana N Popova
- Department of Medical Biochemistry, Molecular and Cell Biology, Voronezh State University, Universitetskaya Sq. 1, Voronezh, Russia, 394018
| | - Sergei A Oleinik
- Department of Medical Biochemistry, Molecular and Cell Biology, Voronezh State University, Universitetskaya Sq. 1, Voronezh, Russia, 394018
| | - Svetlana M Medvedeva
- Department of Organic Chemistry, Voronezh State University, Universitetskaya Sq. 1, Voronezh, Russia, 394018
| | - Khidmet S Shikhaliev
- Department of Organic Chemistry, Voronezh State University, Universitetskaya Sq. 1, Voronezh, Russia, 394018
| |
Collapse
|
4
|
Kryl’skii ED, Kravtsova SE, Popova TN, Matasova LV, Shikhaliev KS, Medvedeva SM. 6-Hydroxy-2,2,4-trimethyl-1,2-dihydroquinoline Demonstrates Anti-Inflammatory Properties and Reduces Oxidative Stress in Acetaminophen-Induced Liver Injury in Rats. Curr Issues Mol Biol 2023; 45:8321-8336. [PMID: 37886968 PMCID: PMC10605539 DOI: 10.3390/cimb45100525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
We examined the effects of 6-hydroxy-2,2,4-trimethyl-1,2-dihydroquinoline on markers of liver injury, oxidative status, and the extent of inflammatory and apoptotic processes in rats with acetaminophen-induced liver damage. The administration of acetaminophen caused the accumulation of 8-hydroxy-2-deoxyguanosine and 8-isoprostane in the liver and serum, as well as an increase in biochemiluminescence indicators. Oxidative stress resulted in the activation of pro-inflammatory cytokine and NF-κB factor mRNA synthesis and increased levels of immunoglobulin G, along with higher activities of caspase-3, caspase-8, and caspase-9. The administration of acetaminophen also resulted in the development of oxidative stress, leading to a decrease in the level of reduced glutathione and an imbalance in the function of antioxidant enzymes. This study discovered that 6-hydroxy-2,2,4-trimethyl-1,2-dihydroquinoline reduced oxidative stress by its antioxidant activity, hence reducing the level of pro-inflammatory cytokine and NF-κB mRNA, as well as decreasing the concentration of immunoglobulin G. These changes resulted in a reduction in the activity of caspase-8 and caspase-9, which are involved in the activation of ligand-induced and mitochondrial pathways of apoptosis and inhibited the effector caspase-3. In addition, 6-hydroxy-2,2,4-trimethyl-1,2-dihydroquinoline promoted the normalization of antioxidant system function in animals treated with acetaminophen. As a result, the compound being tested alleviated inflammation and apoptosis by decreasing oxidative stress, which led to improved liver marker indices and ameliorated histopathological alterations.
Collapse
Affiliation(s)
- Evgenii D. Kryl’skii
- Department of Medical Biochemistry, Molecular and Cell Biology, Voronezh State University, Universitetskaya sq. 1, 394018 Voronezh, Russia; (E.D.K.)
| | - Svetlana E. Kravtsova
- Department of Medical Biochemistry, Molecular and Cell Biology, Voronezh State University, Universitetskaya sq. 1, 394018 Voronezh, Russia; (E.D.K.)
| | - Tatyana N. Popova
- Department of Medical Biochemistry, Molecular and Cell Biology, Voronezh State University, Universitetskaya sq. 1, 394018 Voronezh, Russia; (E.D.K.)
| | - Larisa V. Matasova
- Department of Medical Biochemistry, Molecular and Cell Biology, Voronezh State University, Universitetskaya sq. 1, 394018 Voronezh, Russia; (E.D.K.)
| | - Khidmet S. Shikhaliev
- Department of Organic Chemistry, Voronezh State University, Universitetskaya sq. 1, 394018 Voronezh, Russia
| | - Svetlana M. Medvedeva
- Department of Organic Chemistry, Voronezh State University, Universitetskaya sq. 1, 394018 Voronezh, Russia
| |
Collapse
|
5
|
Kryl’skii ED, Razuvaev GA, Popova TN, Medvedeva SM, Shikhaliev KS. 6-Hydroxy-2,2,4-trimethyl-1,2,3,4-tetrahydroquinoline Alleviates Oxidative Stress and NF-κB-Mediated Inflammation in Rats with Experimental Parkinson's Disease. Curr Issues Mol Biol 2023; 45:7653-7667. [PMID: 37754267 PMCID: PMC10528003 DOI: 10.3390/cimb45090483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 09/28/2023] Open
Abstract
A study was conducted to investigate the effects of different doses of 6-hydroxy-2,2,4-trimethyl-1,2,3,4-tetrahydroquinoline (HTHQ) on motor coordination scores, brain tissue morphology, the expression of tyrosine hydroxylase, the severity of oxidative stress parameters, the levels of the p65 subunit of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) factor, and the inflammatory response in rats during the development of rotenone-induced Parkinsonism. The findings indicate that HTHQ, with its antioxidant attributes, reduced the levels of 8-isoprostane, lipid oxidation products, and protein oxidation products. The decrease in oxidative stress due to HTHQ led to a reduction in the mRNA content of proinflammatory cytokines and myeloperoxidase activity, accompanying the drop in the expression of the factor NF-κB. These alterations promoted an improvement in motor coordination scores and increased tyrosine hydroxylase levels, whereas histopathological changes in the brain tissue of the experimental animals were attenuated. HTHQ exhibited greater effectiveness than the comparative drug rasagiline based on the majority of variables.
Collapse
Affiliation(s)
- Evgenii D. Kryl’skii
- Department of Medical Biochemistry, Molecular and Cell Biology, Voronezh State University, Universitetskaya Sq. 1, Voronezh 394018, Russia; (E.D.K.)
| | - Grigorii A. Razuvaev
- Department of Medical Biochemistry, Molecular and Cell Biology, Voronezh State University, Universitetskaya Sq. 1, Voronezh 394018, Russia; (E.D.K.)
| | - Tatyana N. Popova
- Department of Medical Biochemistry, Molecular and Cell Biology, Voronezh State University, Universitetskaya Sq. 1, Voronezh 394018, Russia; (E.D.K.)
| | - Svetlana M. Medvedeva
- Department of Organic Chemistry, Voronezh State University, Universitetskaya Sq. 1, Voronezh 394018, Russia
| | - Khidmet S. Shikhaliev
- Department of Organic Chemistry, Voronezh State University, Universitetskaya Sq. 1, Voronezh 394018, Russia
| |
Collapse
|
6
|
Ou H, Fan Y, Guo X, Lao Z, Zhu M, Li G, Zhao L. Identifying key genes related to inflammasome in severe COVID-19 patients based on a joint model with random forest and artificial neural network. Front Cell Infect Microbiol 2023; 13:1139998. [PMID: 37113134 PMCID: PMC10126306 DOI: 10.3389/fcimb.2023.1139998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/17/2023] [Indexed: 04/29/2023] Open
Abstract
Background The coronavirus disease 2019 (COVID-19) has been spreading astonishingly and caused catastrophic losses worldwide. The high mortality of severe COVID-19 patients is an serious problem that needs to be solved urgently. However, the biomarkers and fundamental pathological mechanisms of severe COVID-19 are poorly understood. The aims of this study was to explore key genes related to inflammasome in severe COVID-19 and their potential molecular mechanisms using random forest and artificial neural network modeling. Methods Differentially expressed genes (DEGs) in severe COVID-19 were screened from GSE151764 and GSE183533 via comprehensive transcriptome Meta-analysis. Protein-protein interaction (PPI) networks and functional analyses were conducted to identify molecular mechanisms related to DEGs or DEGs associated with inflammasome (IADEGs), respectively. Five the most important IADEGs in severe COVID-19 were explored using random forest. Then, we put these five IADEGs into an artificial neural network to construct a novel diagnostic model for severe COVID-19 and verified its diagnostic efficacy in GSE205099. Results Using combining P value < 0.05, we obtained 192 DEGs, 40 of which are IADEGs. The GO enrichment analysis results indicated that 192 DEGs were mainly involved in T cell activation, MHC protein complex and immune receptor activity. The KEGG enrichment analysis results indicated that 192 GEGs were mainly involved in Th17 cell differentiation, IL-17 signaling pathway, mTOR signaling pathway and NOD-like receptor signaling pathway. In addition, the top GO terms of 40 IADEGs were involved in T cell activation, immune response-activating signal transduction, external side of plasma membrane and phosphatase binding. The KEGG enrichment analysis results indicated that IADEGs were mainly involved in FoxO signaling pathway, Toll-like receptor, JAK-STAT signaling pathway and Apoptosis. Then, five important IADEGs (AXL, MKI67, CDKN3, BCL2 and PTGS2) for severe COVID-19 were screened by random forest analysis. By building an artificial neural network model, we found that the AUC values of 5 important IADEGs were 0.972 and 0.844 in the train group (GSE151764 and GSE183533) and test group (GSE205099), respectively. Conclusion The five genes related to inflammasome, including AXL, MKI67, CDKN3, BCL2 and PTGS2, are important for severe COVID-19 patients, and these molecules are related to the activation of NLRP3 inflammasome. Furthermore, AXL, MKI67, CDKN3, BCL2 and PTGS2 as a marker combination could be used as potential markers to identify severe COVID-19 patients.
Collapse
Affiliation(s)
- Haiya Ou
- Department of Gastroenterology, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yaohua Fan
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoxuan Guo
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zizhao Lao
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Meiling Zhu
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
- *Correspondence: Meiling Zhu, ; Geng Li, ; Lijun Zhao,
| | - Geng Li
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Meiling Zhu, ; Geng Li, ; Lijun Zhao,
| | - Lijun Zhao
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
- *Correspondence: Meiling Zhu, ; Geng Li, ; Lijun Zhao,
| |
Collapse
|
7
|
Kryl'skii ED, Sinitsyna DA, Popova TN, Shikhaliev KS, Medvedeva SM, Matasova LV, Mittova VO. The new antioxidant 1-benzoyl-6-hydroxy-2,2,4-trimethyl-1,2-dihydroquinoline has a protective effect against carbon tetrachloride-induced hepatic injury in rats. J Biomed Res 2022; 36:423-434. [PMID: 36320149 PMCID: PMC9724163 DOI: 10.7555/jbr.36.20220098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Liver diseases with the central pathogenetic mechanism of oxidative stress are one of the main causes of mortality worldwide. Therefore, dihydroquinoline derivatives, which are precursors of hepatoprotectors and have antioxidant activity, are of interest. We have previously found that some compounds in this class have the ability to normalize redox homeostasis under experimental conditions. Here, we initially analyzed the hepatoprotective potential of the dihydroquinoline derivative 1-benzoyl-6-hydroxy-2,2,4-trimethyl-1,2-dihydroquinoline (BHDQ) for carbon tetrachloride (CCl 4)-induced liver injury in rats. Results suggested that BHDQ normalized the alanine aminotransferase, aspartate aminotransferase, and gamma-glutamyl transpeptidase in serum. We also observed an improvement in liver tissue morphology related to BHDQ. Animals with CCl 4-induced liver injuries treated with BHDQ had less oxidative stress compared to animals with CCl 4-induced liver injury. BHDQ promoted activation changes in superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glutathione transferase on control values in animals with CCl 4-induced liver injury. BHDQ also activated gene transcription in Sod1 and Gpx1 via nuclear factor erythroid 2-related factor 2 and forkhead box protein O1 factors. Therefore, the compound of concern has a hepatoprotective effect by inhibiting the development of necrotic processes in the liver tissue, through antioxidation.
Collapse
Affiliation(s)
- Evgenii Dmitrievich Kryl'skii
- Department of Medical Biochemistry and Microbiology, Voronezh State University, Voronezh, Voronezh region 394018, Russia,Evgenii Dmitrievich Kryl'skii, Department of Medical Biochemistry and Microbiology, Voronezh State University, Universitetskaya sq. 1, Voronezh, Voronezh region 394018, Russia. Tel: +7-473-2281160 ext. 1111, E-mail:
| | - Darya Andreevna Sinitsyna
- Department of Medical Biochemistry and Microbiology, Voronezh State University, Voronezh, Voronezh region 394018, Russia
| | - Tatyana Nikolaevna Popova
- Department of Medical Biochemistry and Microbiology, Voronezh State University, Voronezh, Voronezh region 394018, Russia
| | | | | | - Larisa Vladimirovna Matasova
- Department of Medical Biochemistry and Microbiology, Voronezh State University, Voronezh, Voronezh region 394018, Russia
| | - Valentina Olegovna Mittova
- Department of Clinical Laboratory Diagnostics, Voronezh State Medical University named after N.N. Burdenko, Voronezh, Voronezh region 394036, Russia
| |
Collapse
|
8
|
Tan S, Bai J, Xu M, Zhang L, Wang Y. Thioredoxin-1 Activation by Pterostilbene Protects Against Doxorubicin-Induced Hepatotoxicity via Inhibiting the NLRP3 Inflammasome. Front Pharmacol 2022; 13:841330. [PMID: 35496300 PMCID: PMC9043100 DOI: 10.3389/fphar.2022.841330] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/28/2022] [Indexed: 11/21/2022] Open
Abstract
Background: Doxorubicin (DOX) has been widely used in cancer treatment. However, DOX can cause a range of significant side effects, of which hepatotoxicity is a common one, and therefore limits its clinical use. Pterostilbene (PTS) has been shown to exhibit anti-oxidant and anti-inflammatory effects in the treatment of liver diseases but whether PTS could protect against hepatotoxicity in DOX-treated mice is unknown. Methods: In our study, we use C57/BL6J mice and the HepG2 cell line. We divided the mice in 4 groups: the control, the PTS treatment, the DOX treatment, and the DOX + PTS treatment group. Liver histopathology was judged by performing hematoxylin–eosin and Masson staining. Immunohistochemistry was used to perform the expression of NLRP3. The levels of serum alanine transaminase (ALT) and aspartate transaminase (AST) were evaluated. Levels of malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), and DCFH-DA staining were used to evaluate the oxidative injury. Western blot and real-time PCR were applied to evaluate the expressions of proteins and mRNA. MTT was used to evaluate DOX-induced cell injury and the protective effects of PTS. Recombinant Trx-1 was used to analyze the mechanism of PTS. A TUNEL assay was used to detect apoptosis in DOX-induced HepG2 cells and the protective effects of PTS. Results: PTS ameliorated DOX-induced liver pathological changes and the levels of AST and ALT. PTS also decreased the level of MDA, increased the level of SOD, GSH, and the expression of Trx-1 in DOX-treated mice. PTS decreased the levels of NLRP3 and IL-1β mRNA and the expressions of their proteins in DOX-treated mice. In addition, PTS also decreased the expression of Cleaved Caspase-3 and BAX and increased the expression of BCL-2. In vitro, after treatment with recombinant Trx-1, ROS and NLRP3 inflammasome were both decreased. Treatment with PTS could rescue the downregulation of Trx-1, decreased the ROS level and the NLRP3 inflammasome, and protected HepG2 cells against DOX-induced apoptosis. Conclusion: The results show that PTS exhibits protective effects against DOX-induced liver injuries via suppression of oxidative stress, fibrosis, NLRP3 inflammasome stimulation, and cell apoptosis which might lead to a new approach of preventing DOX-induced hepatotoxicity.
Collapse
Affiliation(s)
- Shiqing Tan
- The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jie Bai
- Nutrition and Food Hygiene, Dalian Medical University, Dalian, China
| | - Mingxi Xu
- The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Longying Zhang
- The Second Affiliated Hospital, Dalian Medical University, Dalian, China
- *Correspondence: Longying Zhang, ; Ying Wang,
| | - Ying Wang
- The Second Affiliated Hospital, Dalian Medical University, Dalian, China
- *Correspondence: Longying Zhang, ; Ying Wang,
| |
Collapse
|
9
|
Kryl'skii ED, Chupandina EE, Popova TN, Shikhaliev KS, Medvedeva SM, Verevkin AN, Popov SS, Mittova VO. 1-benzoyl-6-hydroxy-2,2,4-trimethyl-1,2-dihydroquinoline exerts a neuroprotective effect and normalises redox homeostasis in a rat model of cerebral ischemia/reperfusion. Metab Brain Dis 2022; 37:1271-1282. [PMID: 35201554 DOI: 10.1007/s11011-022-00928-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/07/2022] [Indexed: 10/19/2022]
Abstract
Ischemia is one of the main etiological factors of stroke and is associated with the development of energy deficiency, oxidative stress, and inflammation. An abrupt restoration of blood flow, called reperfusion, can worsen the effects of ischemia. In our study, we assessed the neuroprotective potential of 1-benzoyl-6-hydroxy-2,2,4-trimethyl-1,2-dihydroquinoline (BHDQ) in cerebral ischemia/reperfusion (CIR) in rats. Wistar rats, divided into 4 groups were used in the study: sham-operated animals; animals with CIR caused by occlusion of the common carotid arteries and subsequent removal of the occlusions; rats treated with BHDQ at a dose of 50 mg/kg in the presence of pathology; sham-operated animals treated with BHDQ. The analysis of the state of energy metabolism in the brain, the level of the S100B protein and the histological assessment of the brain tissue were carried out. The antioxidant potential of BHDQ was assessed by measuring biochemiluminescence parameters, analysing the level of 8-isoprostane, products of lipid and protein oxidation, concentration of α-tocopherol and citrate, and aconitate hydratase activity during CIR in rats. A study of the effect of BHDQ on the regulation of the enzymatic antioxidant system and the inflammatory processes was performed. We demonstrated that BHDQ has a neuroprotective effect in CIR, reducing histopathological changes in the brain, normalizing pyruvate and lactate concentrations, and the transcripts level of Hif-1α gene. The positive effect of BHDQ was probably due to its antioxidant and anti-inflammatory activity, manifested in a decrease in the parameters of the oxidative stress, decreased mRNA of proinflammatory cytokines and NF-κB factor genes. In addition, BHDQ reduced the load on antioxidant protection enzymes, contributing to a change in their activities, decreased the level of antioxidant gene transcripts and expression of Nrf2 and Foxo1 factors toward control. Thus, BHDQ exhibited a neuroprotective effect due to a decrease in the level of oxidative stress and inflammation and the normalization of redox homeostasis on CIR in rats.
Collapse
Affiliation(s)
- E D Kryl'skii
- Department of Medical Biochemistry and Microbiology, Voronezh State University, Universitetskaya sq. 1, 394018, Voronezh, Russia.
| | - E E Chupandina
- Department of Pathological Anatomy, Voronezh State Medical University named after N.N. Burdenko, Voronezh, Russia
- Research Institute of Experimental Biology and Medicine, Voronezh State Medical University named after N.N. Burdenko, Voronezh, Russia
| | - T N Popova
- Department of Medical Biochemistry and Microbiology, Voronezh State University, Universitetskaya sq. 1, 394018, Voronezh, Russia
| | - Kh S Shikhaliev
- Department of Organic Chemistry, Voronezh State University, Voronezh, Russia
| | - S M Medvedeva
- Department of Organic Chemistry, Voronezh State University, Voronezh, Russia
| | - A N Verevkin
- Department of Medical Biochemistry and Microbiology, Voronezh State University, Universitetskaya sq. 1, 394018, Voronezh, Russia
| | - S S Popov
- Department of Organization of Pharmaceutical Business, Clinical Pharmacy and Pharmacognosy, Voronezh State Medical University named after N.N. Burdenko, Voronezh, Russia
| | - V O Mittova
- Department of Clinical laboratory Diagnostics, Voronezh State Medical University named after N.N. Burdenko, Voronezh, Russia
| |
Collapse
|