1
|
Barrau C, Marie M, Ehrismann C, Gondouin P, Sahel JA, Villette T, Picaud S. Prevention of Sunlight-Induced Cell Damage by Selective Blue-Violet-Light-Filtering Lenses in A2E-Loaded Retinal Pigment Epithelial Cells. Antioxidants (Basel) 2024; 13:1195. [PMID: 39456449 PMCID: PMC11504362 DOI: 10.3390/antiox13101195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Blue light accelerates retinal aging. Previous studies have indicated that wavelengths between 400 and 455 nm are most harmful to aging retinal pigment epithelia (RPE). This study explored whether filtering these wavelengths can protect cells exposed to broad sunlight. Primary porcine RPE cells loaded with 20 µM A2E were exposed to emulated sunlight filtered through eye media at 1.8 mW/cm2 for 18 h. Filters selectively filtering out light over 400-455 nm and a dark-yellow filter were interposed. Cell damage was measured by apoptosis, hydrogen peroxide (H2O2) production, and mitochondrial membrane potential (MMP). Sunlight exposure increased apoptosis by 2.7-fold and H2O2 by 4.8-fold, and halved MMP compared to darkness. Eye Protect SystemTM (EPS) technology, filtering out 25% of wavelengths over 400-455 nm, reduced apoptosis by 44% and H2O2 by 29%. The Multilayer Optical Film (MOF), at 80% of light filtered, reduced apoptosis by 91% and H2O2 by 69%, and increased MMP by 73%, overpassing the dark-yellow filter. Photoprotection increased almost linearly with blue-violet light filtering (400-455 nm) but not with total blue filtering (400-500 nm). Selective filters filtering out 25% (EPS) to 80% (MOF) of blue-violet light offer substantial protection without affecting perception or non-visual functions, making them promising for preventing light-induced retinal damage with aesthetic acceptance for permanent wear.
Collapse
Affiliation(s)
- Coralie Barrau
- R&D Essilor International, 147 Rue de Paris, 94220 Charenton-Le-Pont, France
| | - Mélanie Marie
- Institut de la Vision, French National Institute of Health and Medical Research (INSERM), National Centre for Scientific Research (CNRS), Sorbonne Université, 75012 Paris, France
| | - Camille Ehrismann
- R&D Essilor International, 147 Rue de Paris, 94220 Charenton-Le-Pont, France
| | - Pauline Gondouin
- Institut de la Vision, French National Institute of Health and Medical Research (INSERM), National Centre for Scientific Research (CNRS), Sorbonne Université, 75012 Paris, France
| | - José-Alain Sahel
- Institut de la Vision, French National Institute of Health and Medical Research (INSERM), National Centre for Scientific Research (CNRS), Sorbonne Université, 75012 Paris, France
- Quinze-Vingts National Ophthalmology Hospital, French National Institute of Health and Medical Research (INSERM)-DGOS Clinical Investigation Center 1423, 28 Rue de Charenton, 75012 Paris, France
- Department of Ophthalmology, University of Pittsburgh School of Medicine and Medical Center, Pittsburgh, PA 15213, USA
| | - Thierry Villette
- R&D Essilor International, 147 Rue de Paris, 94220 Charenton-Le-Pont, France
| | - Serge Picaud
- Institut de la Vision, French National Institute of Health and Medical Research (INSERM), National Centre for Scientific Research (CNRS), Sorbonne Université, 75012 Paris, France
| |
Collapse
|
2
|
Bianchetti G, Bottoni P, Tringali G, Maulucci G, Tabolacci E, Clementi ME. The polyphenolic compound punicalagin protects skin fibroblasts from UVA radiation oxidative damage. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2024; 6:100186. [PMID: 38846010 PMCID: PMC11153882 DOI: 10.1016/j.crphar.2024.100186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/03/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
Polyphenols are a class of natural compounds that act as antioxidants, neutralising harmful free radicals that would damage cells and increase the risk of diseases such as cancer, diabetes and heart disease. They also reduce inflammation, which is thought to be at the root of many chronic diseases. We are investigating the photoprotective effects of punicalagin, a type of polyphenolic compound mainly found in pomegranates, against UVA-induced damage in human skin fibroblasts. Punicalagin increases cell viability and reduces the high levels of ROS generated by photooxidative stress through its ability to modulate the Nrf2 transcriptional pathway. Interestingly, activation of the Nrf2 pathway results in an increase in reduced glutathione, NADH, and subsequently protects mitochondrial respiratory capacity. Integrating molecular and imaging approaches, our results demonstrate a potential cytoprotective effect of punicalagin against UVA-induced skin damage through an anti-apoptotic mechanism.
Collapse
Affiliation(s)
- Giada Bianchetti
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168, Rome, Italy
| | - Patrizia Bottoni
- Dipartimento di Scienze Biotecnologiche di base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy
| | - Giuseppe Tringali
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168, Rome, Italy
- Dipartimento di Sicurezza e Bioetica, Sezione di Farmacologia, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy
| | - Giuseppe Maulucci
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168, Rome, Italy
| | - Elisabetta Tabolacci
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168, Rome, Italy
- Dipartimento di Scienze della Vita e Sanità Pubblica, Sezione di Medicina Genomica, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy
| | - Maria Elisabetta Clementi
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” SCITEC-CNR, Largo Francesco Vito 1, 00168, Rome, Italy
| |
Collapse
|
3
|
Pugliese LA, De Lorenzi V, Bernardi M, Ghignoli S, Tesi M, Marchetti P, Pesce L, Cardarelli F. Unveiling nanoscale optical signatures of cytokine-induced β-cell dysfunction. Sci Rep 2023; 13:13342. [PMID: 37587148 PMCID: PMC10432522 DOI: 10.1038/s41598-023-40272-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/08/2023] [Indexed: 08/18/2023] Open
Abstract
Pro-inflammatory cytokines contribute to β-cell failure in both Type-1 and Type-2 Diabetes. Data collected so far allowed to dissect the genomic, transcriptomic, proteomic and biochemical landscape underlying cytokine-induced β-cell progression through dysfunction. Yet, no report thus far complemented such molecular information with the direct optical nanoscopy of the β-cell subcellular environment. Here we tackle this issue in Insulinoma 1E (INS-1E) β-cells by label-free fluorescence lifetime imaging microscopy (FLIM) and fluorescence-based super resolution imaging by expansion microscopy (ExM). It is found that 24-h exposure to IL-1β and IFN-γ is associated with a neat modification of the FLIM signature of cell autofluorescence due to the increase of either enzyme-bound NAD(P)H molecules and of oxidized lipid species. At the same time, ExM-based direct imaging unveils neat alteration of mitochondrial morphology (i.e. ~ 80% increase of mitochondrial circularity), marked degranulation (i.e. ~ 40% loss of insulin granules, with mis-localization of the surviving pool), appearance of F-actin-positive membrane blebs and an hitherto unknown extensive fragmentation of the microtubules network (e.g. ~ 37% reduction in the number of branches). Reported observations provide an optical-microscopy framework to interpret the amount of molecular information collected so far on β-cell dysfunction and pave the way to future ex-vivo and in-vivo investigations.
Collapse
Affiliation(s)
- Licia Anna Pugliese
- NEST Laboratory - Scuola Normale Superiore, Piazza San Silvestro 12, Pisa, Italy.
| | - Valentina De Lorenzi
- NEST Laboratory - Scuola Normale Superiore, Piazza San Silvestro 12, Pisa, Italy
| | - Mario Bernardi
- NEST Laboratory - Scuola Normale Superiore, Piazza San Silvestro 12, Pisa, Italy
| | - Samuele Ghignoli
- NEST Laboratory - Scuola Normale Superiore, Piazza San Silvestro 12, Pisa, Italy
| | - Marta Tesi
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - Luca Pesce
- NEST Laboratory - Scuola Normale Superiore, Piazza San Silvestro 12, Pisa, Italy.
| | - Francesco Cardarelli
- NEST Laboratory - Scuola Normale Superiore, Piazza San Silvestro 12, Pisa, Italy.
| |
Collapse
|
4
|
Toragall V, Muzaffar JC, Baskaran V. Lutein loaded double-layered polymer nanocarrier modulate H 2O 2 and CoCl 2 induced oxidative and hypoxia damage and angiogenic markers in ARPE-19 cells. Int J Biol Macromol 2023; 240:124378. [PMID: 37030468 DOI: 10.1016/j.ijbiomac.2023.124378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/10/2023]
Abstract
Lutein plays a crucial role in the protection of retina by diminishing oxidative stress in diabetic retinopathy (DR). However, its poor aqueous solubility, chemical instability and low bioavailability edge its application. Also, beneficial effects of lutein supplementation and lower lutein levels in the serum and retina of DR patients created an interest in nanopreparation. Hence, lutein-loaded chitosan‑sodium alginate nanocarrier comprising oleic acid core (LNCs) was developed and examined its protective effect on hyperglycemia-mediated changes in oxidative stress and angiogenesis in ARPE-19 cells. Results showed that the LNCs have smaller size and a smooth spherical morphology and did not affect the ARPE-19 cell viability (up to 20 μM) and showed higher cellular uptake in both normal and H2O2-induced stress conditions. LNCs pre-treatment suppressed the H2O2-induced oxidative stress and CoCl2-induced hypoxia-mediated elevation of intracellular reactive oxygen species, protein carbonyl and malondialdehyde levels by restoring antioxidant enzymes in ARPE-19 cells. Further, LNCs protected H2O2-mediated down-regulation of Nrf2 and its downstream antioxidant enzymes. LNCs also restored the H2O2-altered angiogenic (Vascular endothelial growth factor (VEGF), X-box binding protein 1 (XBP-1) and Hypoxia-inducible factor 1-alpha (HIF-1α)), endoplasmic reticulum stress (activating transcription factor-4 (ATF4)) and tight junction (Zona occludens 1 (ZO-1)) markers. To conclude, we could successfully develop biodegradable LNCs to improve the cellular uptake of lutein to treat DR by curtailing oxidative stress in retina.
Collapse
Affiliation(s)
- Veeresh Toragall
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore 570020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - J C Muzaffar
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore 570020, Karnataka, India
| | - Vallikanan Baskaran
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore 570020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
5
|
Bianchetti G, Clementi ME, Sampaolese B, Serantoni C, Abeltino A, De Spirito M, Sasson S, Maulucci G. Metabolic Imaging and Molecular Biology Reveal the Interplay between Lipid Metabolism and DHA-Induced Modulation of Redox Homeostasis in RPE Cells. Antioxidants (Basel) 2023; 12:339. [PMID: 36829896 PMCID: PMC9952658 DOI: 10.3390/antiox12020339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Diabetes-induced oxidative stress induces the development of vascular complications, which are significant causes of morbidity and mortality in diabetic patients. Among these, diabetic retinopathy (DR) is often caused by functional changes in the blood-retinal barrier (BRB) due to harmful oxidative stress events in lipids, proteins, and DNA. Docosahexaenoic acid (DHA) has a potential therapeutic effect against hyperglycemia-induced oxidative damage and apoptotic pathways in the main constituents of BRB, retinal pigment epithelium cells (ARPE-19). Effective antioxidant response elicited by DHA is driven by the activation of the Nrf2/Nqo1 signaling cascade, which leads to the formation of NADH, a reductive agent found in the cytoplasm. Nrf2 also induces the expression of genes encoding enzymes involved in lipid metabolism. This study, therefore, aims at investigating the modulation of lipid metabolism induced by high-glucose (HG) on ARPE-19 cells through the integration of metabolic imaging and molecular biology to provide a comprehensive functional and molecular characterization of the mechanisms activated in the disease, as well the therapeutic role of DHA. This study shows that HG augments RPE metabolic processes by enhancing lipid metabolism, from fatty acid uptake and turnover to lipid biosynthesis and β-oxidation. DHA exerts its beneficial effect by ameliorating lipid metabolism and reducing the increased ROS production under HG conditions. This investigation may provide novel insight for formulating novel treatments for DR by targeting lipid metabolism pathways.
Collapse
Affiliation(s)
- Giada Bianchetti
- Department of Neuroscience, Biophysics Sections, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| | - Maria Elisabetta Clementi
- Institute of Chemical Sciences and Technologies "Giulio Natta" (SCITEC)-CNR, Largo Francesco Vito, 1, 00168 Rome, Italy
| | - Beatrice Sampaolese
- Institute of Chemical Sciences and Technologies "Giulio Natta" (SCITEC)-CNR, Largo Francesco Vito, 1, 00168 Rome, Italy
| | - Cassandra Serantoni
- Department of Neuroscience, Biophysics Sections, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| | - Alessio Abeltino
- Department of Neuroscience, Biophysics Sections, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| | - Marco De Spirito
- Department of Neuroscience, Biophysics Sections, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| | - Shlomo Sasson
- Faculty of Medicine, Institute for Drug Research, The Hebrew University, Jerusalem 911210, Israel
| | - Giuseppe Maulucci
- Department of Neuroscience, Biophysics Sections, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| |
Collapse
|
6
|
Tabibzadeh S. Resolving Geroplasticity to the Balance of Rejuvenins and Geriatrins. Aging Dis 2022; 13:1664-1714. [PMID: 36465174 PMCID: PMC9662275 DOI: 10.14336/ad.2022.0414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/14/2022] [Indexed: 09/29/2024] Open
Abstract
According to the cell centric hypotheses, the deficits that drive aging occur within cells by age dependent progressive damage to organelles, telomeres, biologic signaling pathways, bioinformational molecules, and by exhaustion of stem cells. Here, we amend these hypotheses and propose an eco-centric model for geroplasticity (aging plasticity including aging reversal). According to this model, youth and aging are plastic and require constant maintenance, and, respectively, engage a host of endogenous rejuvenating (rejuvenins) and gero-inducing [geriatrin] factors. Aging in this model is akin to atrophy that occurs as a result of damage or withdrawal of trophic factors. Rejuvenins maintain and geriatrins adversely impact cellular homeostasis, cell fitness, and proliferation, stem cell pools, damage response and repair. Rejuvenins reduce and geriatrins increase the age-related disorders, inflammatory signaling, and senescence and adjust the epigenetic clock. When viewed through this perspective, aging can be successfully reversed by supplementation with rejuvenins and by reducing the levels of geriatrins.
Collapse
Affiliation(s)
- Siamak Tabibzadeh
- Frontiers in Bioscience Research Institute in Aging and Cancer, Irvine, CA 92618, USA
| |
Collapse
|
7
|
Grossini E, Venkatesan S, Alkabes M, Toma C, de Cillà S. Membrane Blue Dual Protects Retinal Pigment Epithelium Cells/Ganglion Cells-Like through Modulation of Mitochondria Function. Biomedicines 2022; 10:2854. [PMID: 36359372 PMCID: PMC9687626 DOI: 10.3390/biomedicines10112854] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 10/29/2023] Open
Abstract
Although recent data highlight the greater protective effects exerted by Membrane Blue Dual (MBD), a precise analysis of the mechanisms of action is missing. We examined the effects of MBD with/without polyethylene glycol (PEG) on both human retinal pigment epithelial cells (ARPE-19) and retinal ganglion cells-like (RGC-5) cultured in the presence/absence of ultraviolet B (UVB) treatment on mitochondria function, oxidants, and apoptosis. In ARPE-19/RGC-5 cells either treated or not with UVB, the effects of MBD with/without PEG were evaluated by specific assays for viability, mitochondrial membrane potential and mitochondrial reactive oxygen species (mitoROS) release. Annexin V was used to detect apoptosis, whereas trypan blue and the scratch assay were used for proliferation/migration. In both physiologic conditions and in the presence of UVB, MBD with/without PEG increased cell viability, mitochondrial membrane potential, proliferation and migration in both ARPE-19 and RGC-5 cells. In general, the effects of MBD with PEG were greater than those caused by MBD without PEG. Our results suggest that, in particular, MBD with PEG is a safe and effective dye for vitreoretinal surgery through the modulation of mitochondrial function.
Collapse
Affiliation(s)
- Elena Grossini
- Laboratory of Physiology, Department of Translational Medicine, University Eastern Piedmont, 28100 Novara, Italy
- AGING Project Unit, Department of Translational Medicine, University Eastern Piedmont, 28100 Novara, Italy
| | - Sakthipriyan Venkatesan
- Laboratory of Physiology, Department of Translational Medicine, University Eastern Piedmont, 28100 Novara, Italy
- AGING Project Unit, Department of Translational Medicine, University Eastern Piedmont, 28100 Novara, Italy
| | - Micol Alkabes
- Eye Clinic, University Hospital Maggiore della Carità, 28100 Novara, Italy
| | - Caterina Toma
- Eye Clinic, University Hospital Maggiore della Carità, 28100 Novara, Italy
- Department of Health Sciences, University East Piedmont “A. Avogadro”, 28100 Novara, Italy
| | - Stefano de Cillà
- Eye Clinic, University Hospital Maggiore della Carità, 28100 Novara, Italy
- Department of Health Sciences, University East Piedmont “A. Avogadro”, 28100 Novara, Italy
| |
Collapse
|
8
|
Diabetic Macular Edema: Current Understanding, Molecular Mechanisms and Therapeutic Implications. Cells 2022; 11:cells11213362. [PMID: 36359761 PMCID: PMC9655436 DOI: 10.3390/cells11213362] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/24/2022] Open
Abstract
Diabetic retinopathy (DR), with increasing incidence, is the major cause of vision loss and blindness worldwide in working-age adults. Diabetic macular edema (DME) remains the main cause of vision impairment in diabetic patients, with its pathogenesis still not completely elucidated. Vascular endothelial growth factor (VEGF) plays a pivotal role in the pathogenesis of DR and DME. Currently, intravitreal injection of anti-VEGF agents remains as the first-line therapy in DME treatment due to the superior anatomic and functional outcomes. However, some patients do not respond satisfactorily to anti-VEGF injections. More than 30% patients still exist with persistent DME even after regular intravitreal injection for at least 4 injections within 24 weeks, suggesting other pathogenic factors, beyond VEGF, might contribute to the pathogenesis of DME. Recent advances showed nearly all the retinal cells are involved in DR and DME, including breakdown of blood-retinal barrier (BRB), drainage dysfunction of Müller glia and retinal pigment epithelium (RPE), involvement of inflammation, oxidative stress, and neurodegeneration, all complicating the pathogenesis of DME. The profound understanding of the changes in proteomics and metabolomics helps improve the elucidation of the pathogenesis of DR and DME and leads to the identification of novel targets, biomarkers and potential therapeutic strategies for DME treatment. The present review aimed to summarize the current understanding of DME, the involved molecular mechanisms, and the changes in proteomics and metabolomics, thus to propose the potential therapeutic recommendations for personalized treatment of DME.
Collapse
|
9
|
Donato L, Scimone C, Alibrandi S, Scalinci SZ, Rinaldi C, D’Angelo R, Sidoti A. Epitranscriptome Analysis of Oxidative Stressed Retinal Epithelial Cells Depicted a Possible RNA Editing Landscape of Retinal Degeneration. Antioxidants (Basel) 2022; 11:antiox11101967. [PMID: 36290689 PMCID: PMC9598096 DOI: 10.3390/antiox11101967] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Oxidative stress represents one of the principal causes of inherited retinal dystrophies, with many related molecular mechanisms still unknown. We investigated the posttranscriptional RNA editing landscape of human retinal pigment epithelium cells (RPE) exposed to the oxidant agent N-retinylidene-N-retinyl ethanolamine (A2E) for 1 h, 2 h, 3 h and 6 h. Using a transcriptomic approach, refined with a specific multialgorithm pipeline, 62,880 already annotated and de novo RNA editing sites within about 3000 genes were identified among all samples. Approximately 19% of these RNA editing sites were found within 3' UTR, including sites common to all time points that were predicted to change the binding capacity of 359 miRNAs towards 9654 target genes. A2E exposure also determined significant gene expression differences in deaminase family ADAR, APOBEC and ADAT members, involved in canonical and tRNA editing events. On GO and KEGG enrichment analyses, genes that showed different RNA editing levels are mainly involved in pathways strongly linked to a possible neovascularization of retinal tissue, with induced apoptosis mediated by the ECM and surface protein altered signaling. Collectively, this work demonstrated dynamic RNA editome profiles in RPE cells for the first time and shed more light on new mechanisms at the basis of retinal degeneration.
Collapse
Affiliation(s)
- Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-Edge Therapies, I.E.ME.S.T., 90139 Palermo, Italy
| | - Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-Edge Therapies, I.E.ME.S.T., 90139 Palermo, Italy
| | - Simona Alibrandi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-Edge Therapies, I.E.ME.S.T., 90139 Palermo, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98125 Messina, Italy
- Correspondence: ; Tel.: +39-090-221-3136
| | - Sergio Zaccaria Scalinci
- DIMEC (Department of Medical and Surgical Sciences), University of Bologna, 40121 Bologna, Italy
| | - Carmela Rinaldi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy
| | - Rosalia D’Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy
| |
Collapse
|
10
|
Shipi Shugan Decoction Protected against Sequela of Pelvic Inflammatory Disease via Inhibiting SIRT1/NLRP3 Signaling Pathway in Pelvic Inflammatory Disease Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6382205. [PMID: 36106027 PMCID: PMC9467799 DOI: 10.1155/2022/6382205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 06/16/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022]
Abstract
Sequela of pelvic inflammatory disease (SPID) is a common and frequently occurring disease clinically. Traditional Chinese medicine (TCM) provided unique advantages in the treatment of SPID. In this study, we aimed to investigate the protective mechanism of Shipi Shugan Decoction (SSD), a Chinese herbal formula, on SPID using a SPID rat model. Mixed bacterial infection and mechanical injury were used for modeling. The chemical composition of SSD was analyzed by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). The inflammatory factors were detected by enzyme-linked immunosorbent assay (ELISA) and western blot techniques. We found that SSD dose-dependently inhibited the content of IL-18, IL-1β, TNF-α, and IL-6 in serum samples of SPID rats. The results from the hematoxylin and eosin (H&E) stain showed that SSD improved pathological injury of the uterus and fallopian tubes induced by a pathogen. In addition, SSD dose-dependently inhibited mitochondrial dysfunction and oxidative stress of SPID rats. The expression of SIRT1 was promoted, and NLRP3 inflammasome was deactivated by SSD gavage compared with the SPID group. Specifically, SIRT1 inhibitor EX-527 cotreatment significantly reversed the improvement effect of SSD on pelvic inflammatory disease in rats. Taken together, the results of this study suggest that Shipi Shugan Decoction may be an effective TCM for the treatment of SPID.
Collapse
|
11
|
He X, Pei S, Meng X, Hua Q, Zhang T, Wang Y, Zhang Z, Zhu X, Liu R, Guo Y, Chen L, Li D. Punicalagin Attenuates Neuronal Apoptosis by Upregulating 5-Hydroxymethylcytosine in the Diabetic Mouse Brain. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4995-5004. [PMID: 35412829 DOI: 10.1021/acs.jafc.2c00863] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Punicalagin exerts neuroprotective activity by improving AMP-activated kinase (AMPK) and mitochondrial Krebs cycle. AMPK and Krebs cycle metabolites regulate 5-hydroxymethylcytosine (5hmC) via acting on ten-eleven translocation (TET) enzymes. Therefore, we hypothesized that punicalagin inhibits diabetes-related neuronal apoptosis by upregulating 5hmC in the diabetic mouse brain. C57BL/6J mice aged 8 weeks were randomly separated into five groups (n = 10), normal control (NC), diabetes mellitus (DM), resveratrol (RES), low-dose punicalagin (LPU), and high-dose punicalagin (HPU). Compared with other groups, the neuronal apoptosis rate was significantly higher and the 5hmC level of the cerebral cortex was significantly lower in the DM group. The levels of TET2 and P-AMPKα/AMPKα were significantly lower in the DM group than in both LPU and HPU groups. The ratio of (succinic acid + fumaric acid)/α-ketoglutarate was significantly higher in the DM group than in other groups. The present results suggest that punicalagin upregulates 5hmC via activating AMPK and maintaining Krebs cycle homeostasis, thus inhibiting neuronal apoptosis in the diabetic mouse brain.
Collapse
Affiliation(s)
- Xin He
- School of Public Health, Qingdao University, Qingdao 266000, China
- Institute of Nutrition & Health, Qingdao University, Qingdao 266000, China
| | - Shengjie Pei
- School of Public Health, Qingdao University, Qingdao 266000, China
- Institute of Nutrition & Health, Qingdao University, Qingdao 266000, China
| | - Xiangyuan Meng
- School of Public Health, Qingdao University, Qingdao 266000, China
- Institute of Nutrition & Health, Qingdao University, Qingdao 266000, China
| | - Qinglian Hua
- School of Public Health, Qingdao University, Qingdao 266000, China
- Institute of Nutrition & Health, Qingdao University, Qingdao 266000, China
| | - Tianyu Zhang
- School of Public Health, Qingdao University, Qingdao 266000, China
- Institute of Nutrition & Health, Qingdao University, Qingdao 266000, China
| | - Yan Wang
- School of Public Health, Qingdao University, Qingdao 266000, China
- Institute of Nutrition & Health, Qingdao University, Qingdao 266000, China
| | - Zhizhao Zhang
- School of Public Health, Qingdao University, Qingdao 266000, China
- Institute of Nutrition & Health, Qingdao University, Qingdao 266000, China
| | - Xinyu Zhu
- School of Public Health, Qingdao University, Qingdao 266000, China
- Institute of Nutrition & Health, Qingdao University, Qingdao 266000, China
| | - Run Liu
- School of Public Health, Qingdao University, Qingdao 266000, China
- Institute of Nutrition & Health, Qingdao University, Qingdao 266000, China
| | - Yurong Guo
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Lei Chen
- School of Public Health, Qingdao University, Qingdao 266000, China
- Institute of Nutrition & Health, Qingdao University, Qingdao 266000, China
| | - Duo Li
- School of Public Health, Qingdao University, Qingdao 266000, China
- Institute of Nutrition & Health, Qingdao University, Qingdao 266000, China
| |
Collapse
|
12
|
Clementi ME, Pizzoferrato M, Bianchetti G, Brancato A, Sampaolese B, Maulucci G, Tringali G. Cytoprotective Effect of Idebenone through Modulation of the Intrinsic Mitochondrial Pathway of Apoptosis in Human Retinal Pigment Epithelial Cells Exposed to Oxidative Stress Induced by Hydrogen Peroxide. Biomedicines 2022; 10:biomedicines10020503. [PMID: 35203712 PMCID: PMC8962354 DOI: 10.3390/biomedicines10020503] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 02/04/2023] Open
Abstract
Idebenone is a ubiquinone short-chain synthetic analog with antioxidant properties, which is believed to restore mitochondrial ATP synthesis. As such, idebenone is investigated in numerous clinical trials for diseases of mitochondrial aetiology and it is authorized as a drug for the treatment of Leber’s hereditary optic neuropathy. Mitochondria of retinal pigment epithelium (RPE) are particularly vulnerable to oxidative damage associated with cellular senescence. Therefore, the aim of this study was to explore idebenone’s cytoprotective effect and its underlying mechanism. We used a human-RPE cell line (ARPE-19) exposed to idebenone pre-treatment for 24 h followed by conditions inducing H2O2 oxidative damage for a further 24 h. We found that idebenone: (a) ameliorated H2O2-lowered cell viability in the RPE culture; (b) activated Nrf2 signaling pathway by promoting Nrf2 nuclear translocation; (c) increased Bcl-2 protein levels, leaving unmodified those of Bax, thereby reducing the Bax/Bcl-2 ratio; (d) maintained the mitochondrial membrane potential (ΔΨm) at physiological levels, preserving the functionality of mitochondrial respiratory complexes and counteracting the excessive production of ROS; and (e) reduced mitochondrial cytochrome C-mediated caspase-3 activity. Taken together, our findings show that idebenone protects RPE from oxidative damage by modulating the intrinsic mitochondrial pathway of apoptosis, suggesting its possible role in retinal epitheliopathies associated with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Maria Elisabetta Clementi
- Institute of Chemical Sciences and Technologies “Giulio Natta” (SCITEC)-CNR, Largo F. Vito 1, 00168 Rome, Italy; (M.E.C.); (B.S.)
| | - Michela Pizzoferrato
- Pharmacology Section, Department of Health Care Surveillance and Bioethics, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy;
- Fondazione Policlinico Universitario Agostino Gemelli IRCSS, 00168 Rome, Italy; (G.B.); (G.M.)
| | - Giada Bianchetti
- Fondazione Policlinico Universitario Agostino Gemelli IRCSS, 00168 Rome, Italy; (G.B.); (G.M.)
- Biophysics Section, Neuroscience Department, Università Cattolica Del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
| | - Anna Brancato
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties of Excellence “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy;
| | - Beatrice Sampaolese
- Institute of Chemical Sciences and Technologies “Giulio Natta” (SCITEC)-CNR, Largo F. Vito 1, 00168 Rome, Italy; (M.E.C.); (B.S.)
| | - Giuseppe Maulucci
- Fondazione Policlinico Universitario Agostino Gemelli IRCSS, 00168 Rome, Italy; (G.B.); (G.M.)
- Biophysics Section, Neuroscience Department, Università Cattolica Del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
| | - Giuseppe Tringali
- Pharmacology Section, Department of Health Care Surveillance and Bioethics, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy;
- Biophysics Section, Neuroscience Department, Università Cattolica Del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
- Correspondence: ; Tel.: +39-063-015-4367
| |
Collapse
|
13
|
Jadeja RN, Martin PM. Oxidative Stress and Inflammation in Retinal Degeneration. Antioxidants (Basel) 2021; 10:antiox10050790. [PMID: 34067655 PMCID: PMC8156590 DOI: 10.3390/antiox10050790] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 12/15/2022] Open
Affiliation(s)
- Ravirajsinh N. Jadeja
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Pamela M. Martin
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Correspondence: ; Tel.: +70-6721-4220; Fax: +70-6721-6608
| |
Collapse
|