1
|
Adeneye AA, Babatope FE, Adesiji-Adelekan AE, Olorundare OE, Okoye II. Tadalafil pretreatment attenuates doxorubicin-induced hepatorenal toxicity by modulating oxidative stress and inflammation in Wistar rats. Toxicol Rep 2024; 13:101737. [PMID: 39391709 PMCID: PMC11465077 DOI: 10.1016/j.toxrep.2024.101737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/23/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024] Open
Abstract
Doxorubicin (DOX) is a widely used anticancer agent, but its clinical application is limited by significant off-target hepatorenal toxicity. Tadalafil (TAD), a selective phosphodiesterase-5 inhibitor used mainly for erectile dysfunction and pulmonary arterial hypertension, has shown potential in reducing oxidative stress. This study investigated TAD's chemoprotective effects and underlying mechanisms in DOX-induced hepatorenal toxicity in rats over 12 days. Eight groups of six rats each were orally pretreated with sterile water, silymarin (SIL), or TAD one hour before receiving intraperitoneal injections of 2.5 mg/kg DOX. On the 13th day, the rats were humanely sacrificed under inhaled halothane anesthesia, and serum was collected for hepatic and renal function tests, while liver and kidney tissues were analyzed for antioxidant enzyme activity, pro-inflammatory cytokines assay, and histopathological evaluation. DOX successfully induced hepatorenal toxicity, evidenced by significant increases (p<0.001, p<0.0001) in serum K+, urea, and creatinine levels, along with decreases in HCO3 -, TCa2+, and Cl-. Tissue analysis showed reduced SOD, CAT, GST, and GPx activities, with elevated MDA and GSH levels. TAD pretreatment significantly ameliorated these biochemical alterations (p<0.05, p<0.001, p<0.0001), suggesting its potential as an effective chemoprophylactic adjuvant in the development of DOX-induced hepatorenal toxicity.
Collapse
Affiliation(s)
- Adejuwon Adewale Adeneye
- Department of Pharmacology, Therapeutics & Toxicology, Faculty of Basic Clinical Sciences, Lagos State University College of Medicine, 1-5 Oba Akinjobi Way, G.R.A., Ikeja, Lagos State, Nigeria
- Directorate of Research Management and Innovation, 3rd Floor, Babatunde Raji Fashola Senate Building, Lagos State University, Ojo, Lagos State, Nigeria
| | - Fidaraoluwa Esther Babatope
- Department of Pharmacology, Therapeutics & Toxicology, Faculty of Basic Clinical Sciences, Lagos State University College of Medicine, 1-5 Oba Akinjobi Way, G.R.A., Ikeja, Lagos State, Nigeria
| | - Ademilayo Eunice Adesiji-Adelekan
- Department of Pharmacology, Therapeutics & Toxicology, Faculty of Basic Clinical Sciences, Lagos State University College of Medicine, 1-5 Oba Akinjobi Way, G.R.A., Ikeja, Lagos State, Nigeria
| | - Olufunke Esan Olorundare
- Department of Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Kwara State, Nigeria
| | - Ikechukwu Innocent Okoye
- Department of Oral Pathology and Medicine, Faculty of Dentistry, Lagos State University College of Medicine, 1-5 Oba Akinjobi Way, G.R.A., Ikeja, Lagos State, Nigeria
| |
Collapse
|
2
|
Zhang S, Yang Y, Lv X, Zhou X, Zhao W, Meng L, Xu H, Zhu S, Wang Y. Doxorubicin-Induced Cardiotoxicity Through SIRT1 Loss Potentiates Overproduction of Exosomes in Cardiomyocytes. Int J Mol Sci 2024; 25:12376. [PMID: 39596439 PMCID: PMC11594621 DOI: 10.3390/ijms252212376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/05/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Mutual interaction between doxorubicin (DOX) and cardiomyocytes is crucial for cardiotoxicity progression. Cardiomyocyte injury is an important pathological feature of DOX-induced cardiomyopathy, and its molecular pathogenesis is multifaceted. In addition to the direct toxic effects of DOX on cardiomyocytes, DOX-induced exosomes in the extracellular microenvironment also regulate the pathophysiological states of cardiomyocytes. However, the mechanisms by which DOX regulates exosome secretion and subsequent pathogenesis remain incompletely understood. Here, we found that DOX significantly increased exosome secretion from cardiomyocytes, and inhibiting this release could alleviate cardiomyocyte injury. DOX promoted exosome secretion by reducing cardiomyocyte silencing information regulator 1 (SIRT1) expression, exacerbating cardiotoxicity. DOX impaired lysosomal acidification in cardiomyocytes, reducing the degradation of intracellular multivesicular bodies (MVBs), resulting in an increase in MVB volume before fusing with the plasma membrane to release their contents. Mechanistically, SIRT1 loss inhibited lysosomal acidification by reducing the expression of the ATP6V1A subunit of the lysosomal vacuolar-type H+ ATPase (V-ATPase) proton pump. Overexpressing SIRT1 increased ATP6V1A expression, improved lysosomal acidification, inhibited exosome secretion, and thereby alleviated DOX-induced cardiotoxicity. Interestingly, DOX also induced mitochondrial-derived vesicle formation in cardiomyocytes, which may further increase the abundance of MVBs and promote exosome release. Collectively, this study identified SIRT1-mediated impairment of lysosomal acidification as a key mechanism underlying the increased exosome secretion from cardiomyocytes induced by DOX, providing new insights into DOX-induced cardiotoxicity pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ying Wang
- Department of Forensic Medicine, School of Basic Medicine, Soochow University, Suzhou 215123, China; (S.Z.)
| |
Collapse
|
3
|
Nguyen BL, Baumfalk DR, Lapierre-Nguyen SS, Zhong R, Doerr V, Montalvo RN, Wei-LaPierre L, Smuder AJ. Effects of exercise and doxorubicin on acute diaphragm neuromuscular transmission failure. Exp Neurol 2024; 378:114818. [PMID: 38782352 PMCID: PMC11616575 DOI: 10.1016/j.expneurol.2024.114818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/09/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Doxorubicin (DOX) is a highly effective anthracycline antibiotic used to treat a wide variety of cancers including breast cancer, leukemia and lymphoma. Unfortunately, clinical use of DOX is limited due to adverse off-target effects resulting in fatigue, respiratory muscle weakness and dyspnea. The diaphragm is the primary muscle of inspiration and respiratory insufficiency is likely the result of both muscle weakness and neural impairment. However, the contribution of neuropathology to DOX-induced respiratory muscle dysfunction is unclear. We hypothesized that diaphragm weakness following acute DOX exposure is associated with neurotoxicity and that exercise preconditioning is sufficient to improve diaphragm muscle contractility by maintaining neuromuscular integrity. Adult female Sprague-Dawley rats were randomized into four experimental groups: 1) sedentary-saline, 2) sedentary-DOX, 3) exercise-saline or 4) exercise-DOX. Endurance exercise preconditioning consisted of treadmill running for 1 h/day at 30 m/min for 10 days. Twenty-four hours after the last bout of exercise, animals were treated with DOX (20 mg/kg, I.P.) or saline (equal volume). Our results demonstrate that 48-h following DOX administration diaphragm muscle specific force is reduced in sedentary-DOX rats in response to both phrenic nerve and direct diaphragm stimulation. Importantly, endurance exercise preconditioning in DOX-treated rats attenuated the decrease in diaphragm contractile function, reduced neuromuscular transmission failure and altered phrenic nerve morphology. These changes were associated with an exercise-induced reduction in circulating biomarkers of inflammation, nerve injury and reformation. Therefore, the results are consistent with exercise preconditioning as an effective way of reducing respiratory impairment via preservation of phrenic-diaphragm neuromuscular conduction.
Collapse
Affiliation(s)
- Branden L Nguyen
- Department Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd., Gainesville, FL 32611, United States of America.
| | - Dryden R Baumfalk
- Department Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd., Gainesville, FL 32611, United States of America
| | - Stephanie S Lapierre-Nguyen
- Department Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd., Gainesville, FL 32611, United States of America
| | - Renjia Zhong
- Department Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd., Gainesville, FL 32611, United States of America
| | - Vivian Doerr
- Department Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd., Gainesville, FL 32611, United States of America
| | - Ryan N Montalvo
- Department Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd., Gainesville, FL 32611, United States of America
| | - Lan Wei-LaPierre
- Department Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd., Gainesville, FL 32611, United States of America
| | - Ashley J Smuder
- Department Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd., Gainesville, FL 32611, United States of America
| |
Collapse
|
4
|
Legault EP, Ribeiro PAB, Petrenyov DR, Drumeva GO, Leduc C, Khullar S, DaSilva JN, Comtois AS, Tournoux FB. Effect of acute high-intensity interval exercise on a mouse model of doxorubicin-induced cardiotoxicity: a pilot study. BMC Sports Sci Med Rehabil 2024; 16:95. [PMID: 38671464 PMCID: PMC11046902 DOI: 10.1186/s13102-024-00881-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND It is unknown whether high-intensity interval exercise (HIIE) may potentiate or attenuate the cardiotoxic effect of chemotherapy agents such as doxorubicin (DOX) when performed shortly after treatment. The study aimed to investigate the effect of acute HIIE on cardiac function and structure performed either 1, 2 or 3 days after DOX injection in an animal model. METHODS Female C57bl/6 mice (n = 28), 70 days old, received a bolus 20 mg/kg intravenous tail vein DOX injection. Three exercise groups performed 1 HIIE session (16 sets of 1 min at 85-90% of peak running speed) at 1 (n = 7), 2 (n = 7), and 3 days (n = 8) following the DOX injection. A sedentary (SED) group of mice (n = 6) did not exercise. Animals underwent echocardiography under light anesthesia (isoflurane 0.5-1%) before and 7 days after the DOX injection. Animals were sacrificed on day 9 and hearts were collected for morphometric and histological analysis. RESULTS Animals exercising on day 3 had the smallest pre-post reduction in left ventricular fractional shortening (LVFS) (MΔ= -1.7 ± 3.3; p = 0.406) and the SED group had the largest reduction (MΔ=-6.8 ± 7.5; p = 0.009). After reclassification of animals according to their exercise compliance (performing > 8/16 of high-intensity bouts), LVFS in compliant mice was unchanged over time (LVFS MΔ= -1.3 ± 5.6; p = 0.396) while non-compliant animals had a LVFS reduction similar to sedentary animals. There were no significant differences in myocardial histology between groups. CONCLUSIONS In this pilot murine study, one single HIIE session did not exacerbate acute doxorubicin-induced cardiotoxicity. The timing of the HIIE session following DOX injection and the level of compliance to exercise could influence the negative impact of DOX on cardiac function.
Collapse
Affiliation(s)
- Elise P Legault
- @coeurlab research unit, Centre de recherche du Centre Hospitalier de l'Université de Montréal, 900 St Denis Street, Montréal, Québec, Canada.
- Département des sciences de l'activité physique, Université du Québec à Montréal, Montréal, Québec, Canada.
| | - Paula A B Ribeiro
- @coeurlab research unit, Centre de recherche du Centre Hospitalier de l'Université de Montréal, 900 St Denis Street, Montréal, Québec, Canada
| | - Daniil R Petrenyov
- @coeurlab research unit, Centre de recherche du Centre Hospitalier de l'Université de Montréal, 900 St Denis Street, Montréal, Québec, Canada
| | - Gergana O Drumeva
- @coeurlab research unit, Centre de recherche du Centre Hospitalier de l'Université de Montréal, 900 St Denis Street, Montréal, Québec, Canada
- Département de pharmacologie et physiologie, Université de Montréal, Montréal, Québec, Canada
| | - Charles Leduc
- @coeurlab research unit, Centre de recherche du Centre Hospitalier de l'Université de Montréal, 900 St Denis Street, Montréal, Québec, Canada
- Département de pathologie et biologie cellulaire de l'Université de Montréal, Montréal, Québec, Canada
| | - Sharmila Khullar
- @coeurlab research unit, Centre de recherche du Centre Hospitalier de l'Université de Montréal, 900 St Denis Street, Montréal, Québec, Canada
- Département de pathologie et biologie cellulaire de l'Université de Montréal, Montréal, Québec, Canada
| | - Jean N DaSilva
- @coeurlab research unit, Centre de recherche du Centre Hospitalier de l'Université de Montréal, 900 St Denis Street, Montréal, Québec, Canada
- Département de pharmacologie et physiologie, Université de Montréal, Montréal, Québec, Canada
- Département de radiologie, radio-oncologie et médecine nucléaire, Université de Montréal, Montréal, Québec, Canada
| | - Alain Steve Comtois
- Département des sciences de l'activité physique, Université du Québec à Montréal, Montréal, Québec, Canada
| | - François B Tournoux
- @coeurlab research unit, Centre de recherche du Centre Hospitalier de l'Université de Montréal, 900 St Denis Street, Montréal, Québec, Canada
- Service de Cardiologie du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
5
|
Nunes JHC, Cella PS, Guimarães TAS, Buçu IP, Deminice R. Chemotherapy periodization to maximize resistance training adaptations in oncology. Cancer Chemother Pharmacol 2023; 92:357-367. [PMID: 37582913 DOI: 10.1007/s00280-023-04576-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/06/2023] [Indexed: 08/17/2023]
Abstract
INTRODUCTION Engaging in exercise programs during cancer treatment is challenging due to the several chemotherapy-induced side effects. Using a pre-clinical model that mimics chemotherapy treatment, we investigated if a periodized-within-chemotherapy training strategy can maximize resistance training (RT) adaptations such as increasing muscle mass and strength. METHODS Swiss mice were randomly allocated into one of the following five groups (n = 14): control (C), resistance training (RT), chemotherapy-treated non-exercised group (Ch), resistance training chemotherapy treated (RTCh), and resistance training periodized-within-chemotherapy (RTPCh). Doxorubicin (i.p.) was weekly injected for a total of 3 weeks (total dose of 12 mg/kg). Resistance training consisted of ladder climbing with progressive intensity, three times a week for 3 weeks, during chemotherapy treatment. RTPCh prescriptions considered "bad day" adjustments while RTCh did not. "Bad day" adjustments considered the presence or absence of clinical signs (e.g., severe weight loss, diarrhea, mice refusing to train) to replace RT sessions. At the end of the third week, animals were euthanized. RESULTS Weekly doxorubicin injection promoted progressive body weight loss, muscle atrophy, strength loss, local oxidative stress, and elevated inflammatory mediators, such as TNF-α and IL-6. Non-periodized-within-chemotherapy RT promoted mild protection against doxorubicin-induced skeletal muscle disturbances; moreover, when periodized-within-chemotherapy was applied, RT prevented elevated skeletal muscle inflammatory mediators and oxidative damage markers and promoted muscle mass and strength gains. CONCLUSION Considering chemotherapy-induced side effects is a crucial aspect when prescribing resistance exercise during cancer, it will maximize the effectiveness of exercise in enhancing muscle mass and strength.
Collapse
Affiliation(s)
- Jonathan H C Nunes
- Department of Physical Education, Faculty of Physical Education and Sport, State University of Londrina, Rodovia Celso Garcia Cid, Pr 445 Km 380, Campus Universitário, Londrina, Paraná, Brazil
| | - Paola S Cella
- Department of Physical Education, Faculty of Physical Education and Sport, State University of Londrina, Rodovia Celso Garcia Cid, Pr 445 Km 380, Campus Universitário, Londrina, Paraná, Brazil
| | - Tatiana A S Guimarães
- Department of Physical Education, Faculty of Physical Education and Sport, State University of Londrina, Rodovia Celso Garcia Cid, Pr 445 Km 380, Campus Universitário, Londrina, Paraná, Brazil
| | - Icaro P Buçu
- Department of Physical Education, Faculty of Physical Education and Sport, State University of Londrina, Rodovia Celso Garcia Cid, Pr 445 Km 380, Campus Universitário, Londrina, Paraná, Brazil
| | - Rafael Deminice
- Department of Physical Education, Faculty of Physical Education and Sport, State University of Londrina, Rodovia Celso Garcia Cid, Pr 445 Km 380, Campus Universitário, Londrina, Paraná, Brazil.
| |
Collapse
|
6
|
Boeno FP, Patel J, Montalvo RN, Lapierre-Nguyen SS, Schreiber CM, Smuder AJ. Effects of Exercise Preconditioning on Doxorubicin-Induced Liver and Kidney Toxicity in Male and Female Rats. Int J Mol Sci 2023; 24:10222. [PMID: 37373368 DOI: 10.3390/ijms241210222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/31/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Doxorubicin (DOX) is a highly effective chemotherapy agent prescribed for cancer treatment. However, the clinical use of DOX is limited due to off-target toxicity in healthy tissues. In this regard, hepatic and renal metabolic clearance results in DOX accumulation within these organ systems. Within the liver and kidneys, DOX causes inflammation and oxidative stress, which promotes cytotoxic cellular signaling. While there is currently no standard of care to treat DOX hepatic- and nephrotoxicity, endurance exercise preconditioning may be an effective intervention to prevent elevations in liver alanine transaminase (ALT) and aspartate aminotransferase (AST) and to improve kidney creatinine clearance. To determine whether exercise preconditioning is sufficient to reduce liver and kidney toxicity resulting from acute exposure to DOX chemotherapy treatment, male and female Sprague-Dawley rats remained sedentary or were exercise trained prior to saline or DOX exposure. Our findings demonstrate that DOX treatment elevated AST and AST/ALT in male rats, with no effects of exercise preconditioning to prevent these increases. We also showed increased plasma markers of renin-angiotensin-aldosterone system (RAAS) activation and urine markers of proteinuria and proximal tubule damage, with male rats revealing greater differences compared to females. Exercise preconditioning showed improved urine creatinine clearance and reduced cystatin c in males, while females had reduced plasma angiotensin II (AngII) levels. Our results demonstrate both tissue- and sex-specific responses related to the effects of exercise preconditioning and DOX treatment on markers of liver and kidney toxicity.
Collapse
Affiliation(s)
- Franccesco P Boeno
- Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL 32608, USA
| | - Jay Patel
- Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL 32608, USA
| | - Ryan N Montalvo
- Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL 32608, USA
| | | | - Claire M Schreiber
- Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL 32608, USA
| | - Ashley J Smuder
- Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL 32608, USA
| |
Collapse
|
7
|
Montalvo RN, Boeno FP, Dowllah IM, Moritz CEJ, Nguyen BL, Doerr V, Bomkamp MP, Smuder AJ. Exercise and Doxorubicin Modify Markers of Iron Overload and Cardiolipin Deficiency in Cardiac Mitochondria. Int J Mol Sci 2023; 24:ijms24097689. [PMID: 37175395 PMCID: PMC10177936 DOI: 10.3390/ijms24097689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/10/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Doxorubicin (DOX) is a chemotherapeutic agent highly effective at limiting cancer progression. Despite the efficacy of this anticancer drug, the clinical use of DOX is limited due to cardiotoxicity. The cardiac mitochondria are implicated as the primary target of DOX, resulting in inactivation of electron transport system complexes, oxidative stress, and iron overload. However, it is established that the cardiac mitochondrial subpopulations reveal differential responses to DOX exposure, with subsarcolemmal (SS) mitochondria demonstrating redox imbalance and the intermyofibrillar (IMF) mitochondria showing reduced respiration. In this regard, exercise training is an effective intervention to prevent DOX-induced cardiac dysfunction. Although it is clear that exercise confers mitochondrial protection, it is currently unknown if exercise training mitigates DOX cardiac mitochondrial toxicity by promoting beneficial adaptations to both the SS and IMF mitochondria. To test this, SS and IMF mitochondria were isolated from sedentary and exercise-preconditioned female Sprague Dawley rats exposed to acute DOX treatment. Our findings reveal a greater effect of exercise preconditioning on redox balance and iron handling in the SS mitochondria of DOX-treated rats compared to IMF, with rescue of cardiolipin synthase 1 expression in both subpopulations. These results demonstrate that exercise preconditioning improves mitochondrial homeostasis when combined with DOX treatment, and that the SS mitochondria display greater protection compared to the IMF mitochondria. These data provide important insights into the molecular mechanisms that are in part responsible for exercise-induced protection against DOX toxicity.
Collapse
Affiliation(s)
- Ryan N Montalvo
- Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL 32611, USA
| | - Franccesco P Boeno
- Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL 32611, USA
| | - Imtiaz M Dowllah
- Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL 32611, USA
| | - Cesar E Jacintho Moritz
- Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL 32611, USA
| | - Branden L Nguyen
- Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL 32611, USA
| | - Vivian Doerr
- Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL 32611, USA
| | - Matthew P Bomkamp
- Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL 32611, USA
| | - Ashley J Smuder
- Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
8
|
Doerr V, Montalvo RN, Nguyen BL, Boeno FP, Sunshine MD, Bindi VE, Fuller DD, Smuder AJ. Effects of Hyperbaric Oxygen Preconditioning on Doxorubicin Cardiorespiratory Toxicity. Antioxidants (Basel) 2022; 11:antiox11102073. [PMID: 36290796 PMCID: PMC9598583 DOI: 10.3390/antiox11102073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/29/2022] Open
Abstract
Cardiorespiratory dysfunction resulting from doxorubicin (DOX) chemotherapy treatment is a debilitating condition affecting cancer patient outcomes and quality of life. DOX treatment promotes cardiac and respiratory muscle pathology due to enhanced reactive oxygen species (ROS) production, mitochondrial dysfunction and impaired muscle contractility. In contrast, hyperbaric oxygen (HBO) therapy is considered a controlled oxidative stress that can evoke a substantial and sustained increase in muscle antioxidant expression. This HBO-induced increase in antioxidant capacity has the potential to improve cardiac and respiratory (i.e., diaphragm) muscle redox balance, preserving mitochondrial function and preventing muscle dysfunction. Therefore, we determined whether HBO therapy prior to DOX treatment is sufficient to enhance muscle antioxidant expression and preserve muscle redox balance and cardiorespiratory muscle function. To test this, adult female Sprague Dawley rats received HBO therapy (2 or 3 atmospheres absolute (ATA), 100% O2, 1 h/day) for 5 consecutive days prior to acute DOX treatment (20 mg/kg i.p.). Our data demonstrate that 3 ATA HBO elicits a greater antioxidant response compared to 2 ATA HBO. However, these effects did not correspond with beneficial adaptations to cardiac systolic and diastolic function or diaphragm muscle force production in DOX treated rats. These findings suggest that modulating muscle antioxidant expression with HBO therapy is not sufficient to prevent DOX-induced cardiorespiratory dysfunction.
Collapse
Affiliation(s)
- Vivian Doerr
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA
| | - Ryan N. Montalvo
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA
| | - Branden L. Nguyen
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL 32610, USA
| | - Franccesco P. Boeno
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA
| | - Michael D. Sunshine
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL 32610, USA
- Department of Physical Therapy, University of Florida, Gainesville, FL 32611, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Victoria E. Bindi
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL 32610, USA
- Department of Physical Therapy, University of Florida, Gainesville, FL 32611, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - David D. Fuller
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL 32610, USA
- Department of Physical Therapy, University of Florida, Gainesville, FL 32611, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Ashley J. Smuder
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL 32610, USA
- Correspondence:
| |
Collapse
|
9
|
Xu X, Liu Q, Li J, Xiao M, Gao T, Zhang X, Lu G, Wang J, Guo Y, Wen P, Gu J. Co-Treatment With Resveratrol and FGF1 Protects Against Acute Liver Toxicity After Doxorubicin Treatment via the AMPK/NRF2 Pathway. Front Pharmacol 2022; 13:940406. [PMID: 36110535 PMCID: PMC9468578 DOI: 10.3389/fphar.2022.940406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Doxorubicin (DOX), an anthracycline type of chemotherapy, is an effective therapy for several types of cancer, but serious side effects, such as severe hepatotoxicity, limit its use currently. Accordingly, an effective therapeutic strategy to prevent DOX-related hepatotoxicity is urgently needed. Through the inhibition of oxidative stress, fibroblast growth factor 1 (FGF1) is an effect therapy for a variety of liver diseases, but its use is limited by an increased risk of tumorigenesis due to hyperproliferation. Resveratrol (RES), a natural product, inhibits the growth of many cancer cell lines, including liver, breast, and prostate cancer cells. Therefore, this study explored whether and how RES in combination with FGF1 can alleviate DOX-induced hepatotoxicity. The results showed that RES or FGF1 alone improved DOX-induced hepatic inflammation, apoptosis and oxidative stress, and these adverse effects were further attenuated after treatment with both RES and FGF1. Mechanistically, both in vivo and in vitro results showed that RES/FGF1 reduced oxidative stress and thereby alleviated liver injury by promoting nuclear translocation of nuclear factor erythroid 2-related factor 2 (NRF2) and subsequently upregulating expression of antioxidant proteins in an adenosine monophosphate-activated protein kinase (AMPK)-dependent manner. Together, our results not only demonstrate that co-treatment with RES and FGF1 significantly inhibited DOX-induced hepatic inflammation and apoptosis, but also that co-treatment with RES and FGF1 markedly suppressed DOX-induced hepatic oxidative stress, via targeting the AMPK/NRF2 pathway and subsequently ameliorating hepatic dysfunction. Thus, the combination of RES and FGF1 may provide a new therapeutic strategy for limiting DOX-induced hepatotoxicity.
Collapse
Affiliation(s)
- Xianchou Xu
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, China
- Department of Gastrointestinal Surgery, Pingyang Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qingbo Liu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiahao Li
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mengjie Xiao
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ting Gao
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaohui Zhang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guangping Lu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jie Wang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuanfang Guo
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Peinan Wen
- Department of Gastrointestinal Surgery, Pingyang Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Junlian Gu, ; Peinan Wen,
| | - Junlian Gu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Junlian Gu, ; Peinan Wen,
| |
Collapse
|
10
|
High-Throughput Method for the Simultaneous Determination of Doxorubicin Metabolites in Rat Urine after Treatment with Different Drug Nanoformulations. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041177. [PMID: 35208967 PMCID: PMC8877250 DOI: 10.3390/molecules27041177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/28/2022] [Accepted: 02/06/2022] [Indexed: 11/23/2022]
Abstract
Doxorubicin (DOX) is one of the most effective cytotoxic agents against malignant diseases. However, the clinical application of DOX is limited, due to dose-related toxicity. The development of DOX nanoformulations that significantly reduce its toxicity and affect the metabolic pathway of the drug requires improved methods for the quantitative determination of DOX metabolites with high specificity and sensitivity. This study aimed to develop a high-throughput method based on high-performance liquid chromatography with fluorescence detection (HPLC-FD) for the quantification of DOX and its metabolites in the urine of laboratory animals after treatment with different DOX nanoformulations. The developed method was validated by examining its specificity and selectivity, linearity, accuracy, precision, limit of detection, and limit of quantification. The DOX and its metabolites, doxorubicinol (DOXol) and doxorubicinone (DOXon), were successfully separated and quantified using idarubicin (IDA) as an internal standard (IS). The linearity was obtained over a concentration range of 0.05–1.6 μg/mL. The lowest limit of detection and limit of quantitation were obtained for DOXon at 5.0 ng/mL and 15.0 ng/mL, respectively. For each level of quality control (QC) samples, the inter- and intra-assay precision was less than 5%. The accuracy was in the range of 95.08–104.69%, indicating acceptable accuracy and precision of the developed method. The method was applied to the quantitative determination of DOX and its metabolites in the urine of rats treated by novel nanoformulated poly(lactic-co-glycolic acid) (DOX-PLGA), and compared with a commercially available DOX solution for injection (DOX-IN) and liposomal-DOX (DOX-MY).
Collapse
|
11
|
Chemotherapy-Induced Myopathy: The Dark Side of the Cachexia Sphere. Cancers (Basel) 2021; 13:cancers13143615. [PMID: 34298829 PMCID: PMC8304349 DOI: 10.3390/cancers13143615] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/11/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary In addition to cancer-related factors, anti-cancer chemotherapy treatment can drive life-threatening body wasting in a syndrome known as cachexia. Emerging evidence has described the impact of several key chemotherapeutic agents on skeletal muscle in particular, and the mechanisms are gradually being unravelled. Despite this evidence, there remains very little research regarding therapeutic strategies to protect muscle during anti-cancer treatment and current global grand challenges focused on deciphering the cachexia conundrum fail to consider this aspect—chemotherapy-induced myopathy remains very much on the dark side of the cachexia sphere. This review explores the impact and mechanisms of, and current investigative strategies to protect against, chemotherapy-induced myopathy to illuminate this serious issue. Abstract Cancer cachexia is a debilitating multi-factorial wasting syndrome characterised by severe skeletal muscle wasting and dysfunction (i.e., myopathy). In the oncology setting, cachexia arises from synergistic insults from both cancer–host interactions and chemotherapy-related toxicity. The majority of studies have surrounded the cancer–host interaction side of cancer cachexia, often overlooking the capability of chemotherapy to induce cachectic myopathy. Accumulating evidence in experimental models of cachexia suggests that some chemotherapeutic agents rapidly induce cachectic myopathy, although the underlying mechanisms responsible vary between agents. Importantly, we highlight the capacity of specific chemotherapeutic agents to induce cachectic myopathy, as not all chemotherapies have been evaluated for cachexia-inducing properties—alone or in clinically compatible regimens. Furthermore, we discuss the experimental evidence surrounding therapeutic strategies that have been evaluated in chemotherapy-induced cachexia models, with particular focus on exercise interventions and adjuvant therapeutic candidates targeted at the mitochondria.
Collapse
|