1
|
Akamo AJ, Ojelabi AO, Akamo NM, Opowoye IO, Olagunju BA, Somade OT, Eteng OE, Adebisi AA, Oguntona TS, Akinsanya MA, Adenowo AF, Oladele TE, Taiwo AM, Kehinde IA, Akintunde JK, Ugbaja RN. Therapeutic potential of 2S-hesperidin against the hepatotoxic effects of dichlorvos in rats. Food Chem Toxicol 2024; 196:115231. [PMID: 39733793 DOI: 10.1016/j.fct.2024.115231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/07/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
Dichlorvos (DDVP) is an organophosphate insecticide that enhances food production and repels disease vectors. However, it provokes cytotoxicity. 2S-hesperidin (2S-HES) is a potent antioxidant, anti-inflammatory, and anti-lipidemic flavanone. Regardless, the 2S-HES impact on DDVP-occupied hepatic injury remains fuzzy. We evaluated the therapeutic potential of 2S-HES in a rat model of DDVP-elicited hepatic intoxication. Forty-two rats were randomly allotted to seven groups (n = 6/condition): control, DDVP (8 mg kg⁻1day⁻1), DDVP with 2S-HES (50 and 100 mg kg⁻1day⁻1), DDVP with atropine, and 2S-HES alone (50 and 100 mg kg⁻1day⁻1). DDVP was administered orally for 7 days, followed by 14 days of 2S-HES chemotherapy. 2S-HES intervention partially mitigated DDVP-triggered alterations in leakage enzymes (ALT, AST, ALP, LDH-5), total protein, albumin, globulin, bilirubin, electrolytes, ion-transporters, lipid profiles, and HMG-CoA reductase. Furthermore, 2S-HES partially reversed DDVP-provoked increases in hepatic H₂O₂, NO, and malondialdehyde; transposed DDVP-mediated decreased liver GSH amount and activities of GST, SOD, catalase, and GPx; attenuated DDVP-triggered upregulated NF-κB-p65 and caspase-3; and abated DDVP-engendered repressed interleukin-10 mRNA expression. Cytoarchitectural analyses authenticated the 2-HES reduction in DDVP-evoked hepatocellular vacuolation. Altogether, 2S-HES elicited promising alternative or adjunctive therapy for partially mitigating DDVP-incited hepatic injury by attenuating leakage enzymes, ionoregulatory disruptions, ion pump inhibition, dyslipidemias, oxidative stress, inflammation, and apoptosis.
Collapse
Affiliation(s)
- Adio J Akamo
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Lagos State University College of Medicine, Ikeja, Lagos State, Nigeria; Clinical Biochemistry and Mechanistic Toxicology Research Cluster, Department of Biochemistry, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria.
| | - Adetutu O Ojelabi
- Clinical Biochemistry and Mechanistic Toxicology Research Cluster, Department of Biochemistry, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Naomi M Akamo
- Department of Microbiology, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Ibiyemi O Opowoye
- Department of Animal Production and Health, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Boluwatife A Olagunju
- Clinical Biochemistry and Mechanistic Toxicology Research Cluster, Department of Biochemistry, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Oluwatobi T Somade
- Clinical Biochemistry and Mechanistic Toxicology Research Cluster, Department of Biochemistry, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Ofem E Eteng
- Clinical Biochemistry and Mechanistic Toxicology Research Cluster, Department of Biochemistry, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Adedayo A Adebisi
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Lagos State University College of Medicine, Ikeja, Lagos State, Nigeria
| | - Taiwo S Oguntona
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Lagos State University College of Medicine, Ikeja, Lagos State, Nigeria
| | - Mushafau A Akinsanya
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Lagos State University College of Medicine, Ikeja, Lagos State, Nigeria
| | - Abiola F Adenowo
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Lagos State University College of Medicine, Ikeja, Lagos State, Nigeria
| | - Tolani E Oladele
- Clinical Biochemistry and Mechanistic Toxicology Research Cluster, Department of Biochemistry, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Adewale M Taiwo
- Department of Environmental Management and Toxicology, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Iyabode A Kehinde
- Department of Pure and Applied Botany, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Jacob K Akintunde
- Clinical Biochemistry and Mechanistic Toxicology Research Cluster, Department of Biochemistry, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Regina N Ugbaja
- Clinical Biochemistry and Mechanistic Toxicology Research Cluster, Department of Biochemistry, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| |
Collapse
|
2
|
Buzdağlı Y, Eyipınar CD, Kacı FN, Tekin A. Effects of hesperidin on anti-inflammatory and antioxidant response in healthy people: a meta-analysis and meta-regression. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:1390-1405. [PMID: 35762134 DOI: 10.1080/09603123.2022.2093841] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Hesperidin is a prominent flavanone found in citrus fruits that has a broad range of biological effects, including anti-inflammatory and antioxidant capabilities. The study's objective was to evaluate the effects of hesperidin supplementation on anti-inflammatory and antioxidant parameters such as MDA, TAC, GSH, SOD, and CAT; CRP, TNF-α, IL-6, and IL-4 levels respectively, by analyzing human intervention trials. Google Scholar, PubMed, grey literature databases, and the ClinicalTrials website were scanned to identify eligible studies. For the meta-analysis, eighteen studies were chosen. Hesperidin supplementation had significant lowering effect on not only CRP, IL-6, and IL-4 levels but also MDA level (Meta-regression analysis revealed a non-significant direct relationship between hesperidin dosage and chance in CRP, IL-6, and MDA levels. As a result, it can be said that hesperidin supplementation contributes to the inflammatory and antioxidant response, but this contribution is independent of dosage.
Collapse
Affiliation(s)
- Yusuf Buzdağlı
- Department of Coaching Education, Faculty of Sport Sciences, Erzurum Technical University, Erzurum, Turkey
| | - Cemre Didem Eyipınar
- Department of Physical Education and Sports, Faculty of Sports Sciences, Gaziantep University, Gaziantep, Turkey
| | - Fatma Necmiye Kacı
- Department of Molecular Biology and Genetics, Faculty of Sciences, Erzurum Technical University, Erzurum, Turkey
- Faculty of Medicine and Health, University of Leeds, St. James' University Hospital, Leeds, UK
| | - Aslıhan Tekin
- Department of Physical Education and Sport, Faculty of Sport Sciences, İbrahim Çeçen University, Ağrı, Turkey
| |
Collapse
|
3
|
Gupta A, Jamal A, Jamil DA, Al-Aubaidy HA. A systematic review exploring the mechanisms by which citrus bioflavonoid supplementation benefits blood glucose levels and metabolic complications in type 2 diabetes mellitus. Diabetes Metab Syndr 2023; 17:102884. [PMID: 37939436 DOI: 10.1016/j.dsx.2023.102884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Citrus bioflavonoids are polyphenolic compounds that are derived from citrus fruits and vegetables. Although they are well known for their powerful antioxidant properties, their effects on glycemic control are not well understood. This review aims to highlight the potential benefits of using citrus bioflavonoids in patients with type 2 diabetes mellitus and its metabolic complications, as well as the medicinal effects of known subclasses of naturally occurring citrus bioflavonoids. METHODS In this systematic review, a survey of studies was conducted from January 2012 to February 2023 using various databases (PubMed, Medline, Google Scholar, and Scopus) to determine the effects of citrus bioflavonoid supplementation on reducing oxidative stress, improving lipid profiles, and glycemic index in patients with diabetes mellitus, as well as the proposed mechanisms of action. RESULTS The results of the survey indicate that citrus bioflavonoids may have a positive impact on reducing oxidative stress levels in patients with type 2 diabetes mellitus. In addition to reducing oxidative stress, citrus bioflavonoids may also have a positive impact on other markers of diabetes. For example, studies have shown that they can reduce non-enzymatic protein glycation, which is a process that occurs when glucose molecules bind to proteins in the body. CONCLUSION The reduction in oxidative stress that can be achieved using citrus bioflavonoids may help to maintain antioxidant levels in the body, thereby reducing the severity of diabetes and its complications. These findings suggest that citrus bioflavonoids may be a useful complementary therapy for patients with diabetes.
Collapse
Affiliation(s)
- Ankit Gupta
- School of Medicine, University of Tasmania, Hobart, TAS, 7000, Australia
| | - Abdulsatar Jamal
- Department of Microbiology, Anatomy, Physiology and Pharmacology & Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine & Environment, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Dina A Jamil
- Department of Microbiology, Anatomy, Physiology and Pharmacology & Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine & Environment, La Trobe University, Bundoora, VIC, 3086, Australia; New Medical Education Australia, Brisbane, QLD, 4007, Australia
| | - Hayder A Al-Aubaidy
- School of Medicine, University of Tasmania, Hobart, TAS, 7000, Australia; Department of Microbiology, Anatomy, Physiology and Pharmacology & Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine & Environment, La Trobe University, Bundoora, VIC, 3086, Australia; New Medical Education Australia, Brisbane, QLD, 4007, Australia.
| |
Collapse
|
4
|
Luque MZ, Aguiar AF, da Silva-Araújo AK, Zaninelli TH, Heintz OK, Saraiva-Santos T, Bertozzi MM, Souza NA, Júnior EO, Verri WA, Borghi SM. Evaluation of a preemptive intervention regimen with hesperidin methyl chalcone in delayed-onset muscle soreness in young adults: a randomized, double-blinded, and placebo-controlled trial study. Eur J Appl Physiol 2023; 123:1949-1964. [PMID: 37119360 DOI: 10.1007/s00421-023-05207-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/19/2023] [Indexed: 05/01/2023]
Abstract
PURPOSE Delayed-onset muscle soreness (DOMS) describes an entity characterized by ultrastructural muscle damage. Hesperidin methyl chalcone (HMC) is a synthetic flavonoid presenting analgesic, anti-inflammatory, and antioxidant properties. We evaluated the effects of HMC upon DOMS. METHOD In a preventive paradigm, 31 sedentary young men were submitted to a randomized, double-blinded parallel trial and received HMC 500 mg or one placebo capsule × 3 days before an intense dynamic exercise protocol (concentric/eccentric actions) applied for lower limbs for inducing muscle damage. Assessments were conducted at baseline, and 24 and 48 h after, comprising physical performance, and post-muscle soreness and damage, inflammation, recovery of muscle strength, and postural balance associated with DOMS. HMC safety was also evaluated. Thirty participants completed the study. RESULTS HMC improved the performance of participants during exercise (40.3 vs 51.3 repetitions to failure, p = 0.0187) and inhibited CPK levels (90.5 vs 57.9 U/L, p = 0.0391) and muscle soreness during passive quadriceps palpation (2.6 vs 1.4 VAS cm, p = 0.0439), but not during active actions, nor did it inhibit IL-1β or IL-10 levels. HMC improved muscle strength recovery, and satisfactorily refined postural balance, without inducing injury to kidneys or liver. CONCLUSIONS Preemptive HMC supplementation may be beneficial for boosting physical performance and for the amelioration of clinical parameters related to DOMS, including pain on muscle palpation, increased blood CPK levels, and muscle strength and proprioceptive deficits, without causing adverse effects. These data advance the understanding of the benefits provided by HMC for DOMS treatment, which supports its usefulness for such purpose.
Collapse
Affiliation(s)
- Mônica Z Luque
- Center for Research in Health Sciences, Biological and Health Sciences Center, University of Northern Paraná, Rua Marselha, 591, Jardim Piza, Londrina, Paraná State, 86041-140, Brazil
| | - Andreo F Aguiar
- Center for Research in Health Sciences, Biological and Health Sciences Center, University of Northern Paraná, Rua Marselha, 591, Jardim Piza, Londrina, Paraná State, 86041-140, Brazil
| | - Amanda K da Silva-Araújo
- Center for Research in Health Sciences, Biological and Health Sciences Center, University of Northern Paraná, Rua Marselha, 591, Jardim Piza, Londrina, Paraná State, 86041-140, Brazil
| | - Tiago H Zaninelli
- Department of Pathology, Biological Sciences Center, Londrina State University, Londrina, Paraná State, 86057-970, Brazil
| | - Olivia K Heintz
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Telma Saraiva-Santos
- Department of Pathology, Biological Sciences Center, Londrina State University, Londrina, Paraná State, 86057-970, Brazil
| | - Mariana M Bertozzi
- Department of Pathology, Biological Sciences Center, Londrina State University, Londrina, Paraná State, 86057-970, Brazil
| | - Natália A Souza
- Ribeirão Preto College of Nursing, São Paulo University, Ribeirão Preto, São Paulo State, 1404-902, Brazil
| | - Eros O Júnior
- Center for Research in Health Sciences, Biological and Health Sciences Center, University of Northern Paraná, Rua Marselha, 591, Jardim Piza, Londrina, Paraná State, 86041-140, Brazil
| | - Waldiceu A Verri
- Department of Pathology, Biological Sciences Center, Londrina State University, Londrina, Paraná State, 86057-970, Brazil
| | - Sergio M Borghi
- Center for Research in Health Sciences, Biological and Health Sciences Center, University of Northern Paraná, Rua Marselha, 591, Jardim Piza, Londrina, Paraná State, 86041-140, Brazil.
| |
Collapse
|
5
|
Iwasaki Y, Yamada S, Sakuma S, Kanba S, Youda C, Ono M, Ito R, Kamei J, Akiyama H. Optimization of QuEChERS Extraction for Determination of Carotenoids, Polyphenols, and Sterols in Orange Juice Using Design of Experiments and Response Surface Methodology. Foods 2023; 12:3064. [PMID: 37628062 PMCID: PMC10453318 DOI: 10.3390/foods12163064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Several compounds with different physical properties are present in foods, biological components, and environmental samples, and there are cases in which these must be analyzed simultaneously. However, it is difficult to extract compounds with different physical properties from the same sample using a single method. In the present study, we examined the optimal conditions for the QuEChERS extraction of several kinds of compounds from orange juice using design of experiments (DoE) and response surface methodology (RSM) to determine the optimal ratio of organic solvent to sodium chloride. We determined the optimal extraction conditions, which were within the design space, using 100% tetrahydrofuran (THF) as the extraction organic solvent and NaCl:MgSO4 = 75:25 as the salt. The developed LC/MS/MS method using QuEChERS extraction achieved specific detection and precise quantification. Finally, we measured the polyphenols, sterols, and carotenoids in citrus juice using the optimized QuEChERS extraction method before LC/MS/MS analysis. Most of the analytes were quantifiable in orange juice. The optimized method achieved ease of operation, the extraction of analytes from food samples in a short time (within 30 min), minimization of analytical residues, and reliability. The DoE and RSM approach may contribute to better optimization of the extraction conditions for the lowest number of experiments.
Collapse
Affiliation(s)
- Yusuke Iwasaki
- Department of Analytical Chemistry, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo 142-8501, Japan
- Laboratory of Biopharmaceutics and Analytical Science, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo 142-8501, Japan
| | - Saki Yamada
- Laboratory of Biopharmaceutics and Analytical Science, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo 142-8501, Japan
| | - Shinya Sakuma
- Laboratory of Biopharmaceutics and Analytical Science, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo 142-8501, Japan
| | - Shunpei Kanba
- Department of Analytical Chemistry, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo 142-8501, Japan
- Laboratory of Biopharmaceutics and Analytical Science, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo 142-8501, Japan
| | - Chinatsu Youda
- Department of Analytical Chemistry, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo 142-8501, Japan
- Laboratory of Biopharmaceutics and Analytical Science, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo 142-8501, Japan
| | - Mizuki Ono
- Laboratory of Biopharmaceutics and Analytical Science, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo 142-8501, Japan
| | - Rie Ito
- Department of Analytical Chemistry, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo 142-8501, Japan
| | - Junzo Kamei
- Laboratory of Biopharmaceutics and Analytical Science, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo 142-8501, Japan
- Department of Biomolecular Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo 142-8501, Japan
- Juntendo Advanced Research Institute for Health Science, Juntendo University, Tokyo 113-8421, Japan
| | - Hiroshi Akiyama
- Department of Analytical Chemistry, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo 142-8501, Japan
| |
Collapse
|
6
|
Khorasanian AS, Fateh ST, Gholami F, Rasaei N, Gerami H, Khayyatzadeh SS, Shiraseb F, Asbaghi O. The effects of hesperidin supplementation on cardiovascular risk factors in adults: a systematic review and dose-response meta-analysis. Front Nutr 2023; 10:1177708. [PMID: 37502716 PMCID: PMC10369082 DOI: 10.3389/fnut.2023.1177708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/13/2023] [Indexed: 07/29/2023] Open
Abstract
Hesperidin is a naturally occurring bioactive compound that may have an impact on cardiovascular disease risks, but the evidence is not conclusive. To investigate further, this study aimed to explore the effects of hesperidin supplementation on cardiovascular risk factors in adults. A comprehensive search was conducted up to August 2022 using relevant keywords in databases such as Scopus, PubMed, Embase, Cochrane Library, and ISI Web of Science for all randomized controlled trials (RCTs). The results showed that hesperidin supplementation had a significant effect on reducing serum triglyceride (TG), total cholesterol (TC), low-density cholesterol (LDL), tumor necrosis factor-alpha (TNF-α), and systolic blood pressure (SBP), whereas weight was increased. However, no significant effect was observed on high-density cholesterol (HDL), waist circumference (WC), fasting blood glucose (FBG), insulin, homeostatic model assessment for insulin resistance (HOMA-IR), C-reactive protein (CRP), interleukin-6 (IL-6), body mass index (BMI), and diastolic blood pressure (DBP). The study also found that an effective dosage of hesperidin supplementation was around 1,000 mg/d, and a more effective duration of supplementation was more than eight weeks to decrease insulin levels. Furthermore, the duration of intervention of more than six weeks was effective in decreasing FBG levels.
Collapse
Affiliation(s)
- Atie Sadat Khorasanian
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Gholami
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Niloufar Rasaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Hadis Gerami
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayyed Saeid Khayyatzadeh
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, Faculty of Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Farideh Shiraseb
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Della Vedova L, Gado F, Vieira TA, Grandini NA, Palácio TLN, Siqueira JS, Carini M, Bombardelli E, Correa CR, Aldini G, Baron G. Chemical, Nutritional and Biological Evaluation of a Sustainable and Scalable Complex of Phytochemicals from Bergamot By-Products. Molecules 2023; 28:molecules28072964. [PMID: 37049725 PMCID: PMC10096399 DOI: 10.3390/molecules28072964] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
The present paper reports a sustainable raw material obtained from the by-products derived from the industrial production of bergamot (Citrus × Bergamia Risso & Poiteau) essential oils. The procedure to obtain the raw material is designed to maintain as much of the bioactive components as possible and to avoid expensive chemical purification. It consists of spray-drying the fruit juice obtained by squeezing the fruits, which is mixed with the aqueous extract of the pulp, i.e., the solid residue remained after fruit pressing. The resulting powder bergamot juice (PBJ) contains multiple bioactive components, in particular, among others, soluble fibers, polyphenols and amino-acid betaines, such as stachydrine and betonicine. LC-MS analysis identified 86 compounds, with hesperetin, naringenin, apigenin and eridictyol glucosides being the main components. In the second part of the paper, dose-dependent anti-inflammatory activity of PBJ and of stachydrine was found, but neither of the compounds were effective in activating Nrf2. PBJ was then found to be effective in an in vivo model of a metabolic syndrome induced by a high-sugar, high-fat (HSF) diet and evidenced by a significant increase of the values related to a set of parameters: blood glucose, triglycerides, insulin resistance, systolic blood pressure, visceral adipose tissue and adiposity index. PBJ, when given to control rats, did not significantly change these values; in contrast, they were found to be greatly affected in rats receiving an HSF diet. The in vivo effect of PBJ can be ascribed not only to bergamot polyphenols with well-known anti-inflammatory, antioxidant and lipid-regulating effects, but also to the dietary fibers and to the non-phenolic constituents, such as stachydrine. Moreover, since PBJ was found to affect energy homeostasis and to regulate food intake, a mechanism on the regulation of energy homeostasis through leptin networking should also be considered and deserves further investigation.
Collapse
Affiliation(s)
- Larissa Della Vedova
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
| | - Francesca Gado
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
| | - Taynara A. Vieira
- Medical School, Sao Paulo State University (Unesp), Botucatu 18618-687, Brazil
| | - Núbia A. Grandini
- Medical School, Sao Paulo State University (Unesp), Botucatu 18618-687, Brazil
| | | | - Juliana S. Siqueira
- Medical School, Sao Paulo State University (Unesp), Botucatu 18618-687, Brazil
| | - Marina Carini
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
| | | | - Camila R. Correa
- Medical School, Sao Paulo State University (Unesp), Botucatu 18618-687, Brazil
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
- Correspondence:
| | - Giovanna Baron
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
| |
Collapse
|
8
|
Martínez-Noguera FJ, Alcaraz PE, Carlos-Vivas J, Marín-Pagán C. 8 weeks of 2 S-hesperidin prevents a decrease in pO 2 at submaximal intensity in amateur cyclists in off-season: randomized controlled trial. Food Funct 2023; 14:2750-2767. [PMID: 36857626 DOI: 10.1039/d2fo03007a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Although chronic supplementation with 2S-hesperidin has been shown to improve performance, to date, the possible mechanisms underlying this effect have not been explored. Therefore, the aim of this study was to assess whether changes in gasometry may be associated with improved performance after the intake of 2S-hesperidin (500 mg d-1, 8 weeks). Forty amateur cyclists (n = 20 2S-hesperidin, n = 20 placebo) performed a rectangular test, during which capillary blood samples were taken at the baseline, FatMax1, ventilatory threshold 1 and 2 (VT1 and VT2), power maximum (PMAX), FatMax2 and excess post-exercise O2 consumption (EPOC) to measure gasometry parameters. Significantly increased CO2 and tCO2 was found at FatMax1, VT1, FatMax2 and EPOC (p = <0.05) after 8 weeks of 2S-hesperidin ingestion. Conversely, the placebo group had a significant decrease in pO2 at VT2 (p = 0.04) during the rectangular test, with no changes in the 2S-hesperidin group. Therefore, chronic supplementation with 2S-hesperidin prevents decreases in pO2 at submaximal intensities in amateur cyclists in an off-season period.
Collapse
Affiliation(s)
- Francisco Javier Martínez-Noguera
- Research Center for High Performance Sport, Catholic University of Murcia, Campus de los Jerónimos N° 135, UCAM, 30107, Murcia, Spain.
| | - Pedro E Alcaraz
- Research Center for High Performance Sport, Catholic University of Murcia, Campus de los Jerónimos N° 135, UCAM, 30107, Murcia, Spain.
| | - Jorge Carlos-Vivas
- Health, Economy, Motricity and Education Research Group (HEME), Faculty of Sport Sciences, University of Extremadura, Avda. de Elvas, s/n., 06006, Badajoz, Spain.
| | - Cristian Marín-Pagán
- Research Center for High Performance Sport, Catholic University of Murcia, Campus de los Jerónimos N° 135, UCAM, 30107, Murcia, Spain.
| |
Collapse
|
9
|
Antioxidants Supplementation During Exercise: Friends or Enemies for Cardiovascular Homeostasis? J Cardiovasc Transl Res 2023; 16:51-62. [PMID: 35921051 DOI: 10.1007/s12265-022-10297-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/23/2022] [Indexed: 10/16/2022]
Abstract
Exercise is a preferred strategy for improving cardiac function, especially for patients with cardiovascular diseases. Increasing evidence indicates that oxidative stress is involved in exercise-induced cardioprotection, while the underlying mechanism remains unclear. Furthermore, the effect of antioxidant supplementation during or post-exercise still exists despite divergences. To explore the effect of oxidative stress and antioxidant supplementation on cardiovascular homeostasis during or post-exercise, we take insights into the progress of exercise-induced oxidative stress, antioxidant supplementation, and cardiovascular homeostasis. In particular, antioxidants such as vitamin C or E, gamma-oryzanol, and other natural antioxidants are discussed concerning regulating exercise-associated oxidative stress. Additionally, our present study reviewed and discussed a meta-analysis of antioxidant supplementation during exercise. Overall, we take an insight into the essential biological adaptations in response to exercise and the effects of antioxidant supplementation on cardiac function, which aid us in giving recommendations on antioxidant supplementation for exercisers and exercised people. A better understanding of these issues will broaden our knowledge of exercise physiology.
Collapse
|
10
|
Bojarczuk A, Dzitkowska-Zabielska M. Polyphenol Supplementation and Antioxidant Status in Athletes: A Narrative Review. Nutrients 2022; 15:nu15010158. [PMID: 36615815 PMCID: PMC9823453 DOI: 10.3390/nu15010158] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Antioxidants in sports exercise training remain a debated research topic. Plant-derived polyphenol supplements are frequently used by athletes to reduce the negative effects of exercise-induced oxidative stress, accelerate the recovery of muscular function, and enhance performance. These processes can be efficiently modulated by antioxidant supplementation. The existing literature has failed to provide unequivocal evidence that dietary polyphenols should be promoted specifically among athletes. This narrative review summarizes the current knowledge regarding polyphenols' bioavailability, their role in exercise-induced oxidative stress, antioxidant status, and supplementation strategies in athletes. Overall, we draw attention to the paucity of available evidence suggesting that most antioxidant substances are beneficial to athletes. Additional research is necessary to reveal more fully their impact on exercise-induced oxidative stress and athletes' antioxidant status, as well as optimal dosing methods.
Collapse
|
11
|
Ruiz-Iglesias P, Estruel-Amades S, Massot-Cladera M, Franch À, Pérez-Cano FJ, Castell M. Rat Mucosal Immunity following an Intensive Chronic Training and an Exhausting Exercise: Effect of Hesperidin Supplementation. Nutrients 2022; 15:nu15010133. [PMID: 36615791 PMCID: PMC9824398 DOI: 10.3390/nu15010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Stressful situations such as a high-intensity exercise or exhausting training programs can act as immune disruptors leading to transitory immunodepression status, which can be accompanied by alterations of the gastrointestinal functions. Hesperidin intake has demonstrated ergogenic activity and is able to influence the intestinal ecosystem and immunity. We aimed to investigate the effect of hesperidin consumption in rats submitted to an intense training and a final exhaustion test, focusing on the functionality of the intestinal immune system and on the cecal microbiota. Rats, supplemented or not with hesperidin, were intensively trained on a treadmill for 5 weeks. Samples were obtained 24 h after a regular training session, and immediately and 24 h after a final exhaustion test. Cecal microbiota and composition and function of mesenteric lymph node (MLN) lymphocytes and mucosal immunoglobulin A (IgA) were determined. Results showed that chronic intense exercise followed by an exhausting test induced changes in the intestinal immune compartment such as the distribution and function of MLN lymphocytes. Although the hesperidin supplementation did not prevent these alterations, it was able to enhance IgA synthesis in the intestinal compartment. This could be important in enhancing the immune intestinal barrier in this stressful situation.
Collapse
Affiliation(s)
- Patricia Ruiz-Iglesias
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, 08921 Santa Coloma de Gramenet, Spain
| | - Sheila Estruel-Amades
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, 08921 Santa Coloma de Gramenet, Spain
| | - Malén Massot-Cladera
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, 08921 Santa Coloma de Gramenet, Spain
| | - Àngels Franch
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, 08921 Santa Coloma de Gramenet, Spain
| | - Francisco J. Pérez-Cano
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, 08921 Santa Coloma de Gramenet, Spain
- Correspondence: (F.J.P.-C.); (M.C.); Tel.: +34-934-024-505 (F.J.P.-C. & M.C.)
| | - Margarida Castell
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, 08921 Santa Coloma de Gramenet, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (F.J.P.-C.); (M.C.); Tel.: +34-934-024-505 (F.J.P.-C. & M.C.)
| |
Collapse
|
12
|
Ruiz-Iglesias P, Massot-Cladera M, Pérez-Cano FJ, Castell M. Influence of Diets Enriched with Flavonoids (Cocoa and Hesperidin) on the Systemic Immunity of Intensively Trained and Exhausted Rats. Biomolecules 2022; 12:1893. [PMID: 36551321 PMCID: PMC9775336 DOI: 10.3390/biom12121893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
The aim of this study was to establish the influence of flavonoid-enriched diets on the immune alterations induced by an intensive training and a final exhaustion test in rats. A flavanol-enriched diet (with 10% cocoa, C10 diet) and a flavanol and flavanone-enriched diet (C10 plus 0.5% hesperidin, CH diet) were used. Lewis rats were fed either a standard diet, C10 diet or CH diet while they were submitted to an intensive running training on a treadmill. After 6 weeks, samples were obtained 24 h after performing a regular training (T groups) and after carrying out a final exhaustion test (TE groups). The C10 diet attenuated the increase in plasma cortisol induced by exhaustion, while both the C10 and the CH diets prevented the alterations in the spleen Th cell proportion. The experimental diets also induced an increase in serum immunoglobulin concentration and an enhancement of spleen natural killer cytotoxicity, which may be beneficial in situations with a weakened immunity. Most of the effects observed in the CH groups seem to be due to the cocoa content. Overall, a dietary intervention with flavonoids enhances immune function, partially attenuating the alterations in systemic immunity induced by intensive training or exhausting exercise.
Collapse
Affiliation(s)
- Patricia Ruiz-Iglesias
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona (UB), 08921 Santa Coloma de Gramenet, Spain
| | - Malén Massot-Cladera
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona (UB), 08921 Santa Coloma de Gramenet, Spain
| | - Francisco J. Pérez-Cano
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona (UB), 08921 Santa Coloma de Gramenet, Spain
| | - Margarida Castell
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona (UB), 08921 Santa Coloma de Gramenet, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
13
|
Martínez Noguera FJ, Alcaraz PE, Carlos Vivas J, Chung LH, Marín Cascales E, Marín Pagán C. 8 weeks of 2 S-Hesperidin supplementation improves muscle mass and reduces fat in amateur competitive cyclists: randomized controlled trial. Food Funct 2021; 12:3872-3882. [PMID: 33977947 DOI: 10.1039/d0fo03456h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
2S-Hesperidin is the main flavonoid of orange (Citrus sinensis). Previous researches have pointed its effects in muscle development and fat accumulation reduction, although most of these results have not been assessed in humans. The objective of this study is to evaluate the effect of chronic (8-weeks) intake of 2S-hesperidin on amateur cyclists' body composition. A double-blind, parallel and randomized trial, was carried out with 40 amateur cyclists that were divided in two groups, one taking 2S-hesperidin (500 mg d-1, n = 20) and another taking placebo (500 mg d-1 microcellulose, n = 20) for 8 weeks. Dual-energy X-ray absorptiometry (DXA) and anthropometric measurements were used to assess the effect of both treatments on body composition. In addition, the resting metabolic rate was measured. In comparison to placebo, DXA analysis showed a decrease in percentage body fat (%BF) (-10.4%; p = 0.035) and lower limb fat mass (-10.5%; p = 0.029) in favour of 2S-hesperidin. After evaluation of anthropometric data, a decrease in %BF (-3.7%; p = 0.006), total body fat (-3.0%; p = 0.047), ∑ of 8 skinfolds (-6.1%; p = 0.008) was observed in 2S-hesperidin group, but not in placebo. Additionally, there was an increase in muscle mass percentage (1.0%; p = <0.001) and total muscle mass (1.7%; p = 0.011) after ingestion of 2S-hesperidin, with no changes in placebo. Chronic intake of 2S-hesperidin decreased fat mass in amateur cyclists, evaluated through different body composition measurement methodologies (DXA and anthropometry). In addition, 2S-hesperidin supplementation showed a promoting effect on muscle development.
Collapse
Affiliation(s)
| | - Pedro E Alcaraz
- Research Center for High Performance Sport. University of Murcia, Campus de los Jerónimos, Guadalupe 30107, Murcia, Spain.
| | - Jorge Carlos Vivas
- Health, Economy, Motricity and Education Research Group (HEME), Faculty of Sport Sciences, University of Extremadura, Avda. de la Universidad, s/n., 10003 (Cáceres), Spain
| | - Linda H Chung
- Research Center for High Performance Sport. University of Murcia, Campus de los Jerónimos, Guadalupe 30107, Murcia, Spain.
| | - Elena Marín Cascales
- Research Center for High Performance Sport. University of Murcia, Campus de los Jerónimos, Guadalupe 30107, Murcia, Spain.
| | - Cristian Marín Pagán
- Research Center for High Performance Sport. University of Murcia, Campus de los Jerónimos, Guadalupe 30107, Murcia, Spain.
| |
Collapse
|