1
|
Tang S, Luo W, Li T, Chen X, Zeng Q, Gao R, Kang B, Peng C, Wang Z, Yang S, Li Q, Hu J. Individual cereals intake is associated with progression of diabetes and diabetic chronic complications. Diabetes Metab Syndr 2024; 18:103127. [PMID: 39332264 DOI: 10.1016/j.dsx.2024.103127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
BACKGROUND AND AIMS The relationship between cereals intake and diabetes is unclear. We aimed to explore associations between individual cereals intake and risks of incident and progression of diabetes. METHODS We included 502,490 participants from UK Biobank at baseline. A single touchscreen food frequency questionnaire was used to estimate the intake of individual cereals (bran, biscuit, oat, muesli, and other cereals). Main outcomes included incident diabetes and diabetic complications of cardiovascular disease (CVD), chronic kidney disease (CKD) and diabetic retinopathy (DR). Polygenic risk score (PRS) of glycosylated hemoglobin (HbA1c) was calculated for mediating effects analysis. RESULTS Among participants without diabetes, when compared to subjects who never had cereals, hazard ratios (95%CI) of developing diabetes in those who had ≥6 bowls/week were 0.72 (0.67-0.78) for bran, 0.86 (0.81-0.92) for biscuit, 0.75(0.66-0.84) for oat, and 0.57(0.53,0.61) for muesli. Among people with diabetes without CVD, a higher intake of aforementioned four individual cereals was associated with a 13%-32 % lower risk of developing CVD. Among people with diabetes without CKD, a higher intake of aforementioned four individual cereals was associated with a 9%-28 % lower risk of developing CKD. We observed a significant mediating effect of the PRS of HbA1c for the association between aforementioned four individual cereals and developing diabetes. CONCLUSION A higher consumption of cereals was significantly associated with lower risks of diabetes and diabetic complications. Polygenic of HbA1c mediates the effect of cereals on incident diabetes.
Collapse
Affiliation(s)
- Siying Tang
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Clinical Nutrition, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenjin Luo
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ting Li
- Department of Endocrinology and Metabolism, Chengdu Second People's Hospital, Chengdu, Sichuan, China
| | - Xiangjun Chen
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qinglian Zeng
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rufei Gao
- Department of Toxicology, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Bing Kang
- Department of Clinical Nutrition, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chuan Peng
- Department of Toxicology, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Zhihong Wang
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shumin Yang
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qifu Li
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Jinbo Hu
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Zhang S, Cui Z, Zhang H, Wang P, Wang F, Zhang J. Pea Albumin Extracted from Pea ( Pisum sativum L.) Seeds Ameliorates High-Fat-Diet-Induced Non-Alcoholic Fatty Liver Disease by Regulating Lipogenesis and Lipolysis Pathways. Nutrients 2024; 16:2232. [PMID: 39064674 PMCID: PMC11280122 DOI: 10.3390/nu16142232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is now recognized as the most prevalent liver disease globally. Pea albumin (PA) has demonstrated positive impacts on reducing obesity and improving glucose metabolism. In this research, a mouse model of NAFLD induced by a high-fat diet (HFD) was employed to examine the impact of PA on NAFLD and explore its potential mechanisms. The findings revealed that mice subjected to a HFD developed pronounced fatty liver alterations. The intervention with PA significantly lowered serum TC by 26.81%, TG by 43.55%, and LDL-C by 57.79%. It also elevated HDL-C levels by 1.2 fold and reduced serum ALT by 37.94% and AST by 31.21% in mice fed a HFD. These changes contributed to the reduction in hepatic steatosis and lipid accumulation. Additionally, PA improved insulin resistance and inhibited hepatic oxidative stress and inflammatory responses. Mechanistic studies revealed that PA alleviated lipid accumulation in HFD-induced NAFLD by activating the phosphorylation of AMPKα and ACC, inhibiting the expression of SREBF1 and FASN to reduce hepatic lipogenesis, and increasing the expression of ATGL, PPARα, and PPARγ to promote lipolysis and fatty acid oxidation. These results indicate that PA could serve as a dietary supplement for alleviating NAFLD, offering a theoretical foundation for the rational intake of PA in NAFLD intervention.
Collapse
Affiliation(s)
- Shucheng Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (S.Z.); (H.Z.)
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China;
| | - Zhengwu Cui
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China;
| | - Hao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (S.Z.); (H.Z.)
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China;
| | - Pengjie Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (S.Z.); (H.Z.)
| | - Fuqing Wang
- Tibet Tianhong Science and Technology Co., Ltd., Lhasa 850000, China;
| | - Jian Zhang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
3
|
Mun SL, Ter ZY, Ariff RM, Rahman NFA, Chang LS, Latip J, Babji AS, Lim SJ. Fractionation and characterisation of sialylated-mucin glycoprotein from edible birds' nest hydrolysates through anion exchange chromatography. Int J Biol Macromol 2024; 269:132022. [PMID: 38697414 DOI: 10.1016/j.ijbiomac.2024.132022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Edible bird's nest (EBN) is made up of sialylated-mucin glycoprotein with various health benefits due to its high antioxidative activity. However, as a macromolecule with distinct charged sialic acid and amino acids, fractions with different charges would have varied physicochemical properties and antioxidant activity, which have not been studied. Therefore, this study aimed to fractionate and purify the enzymatic hydrolysed of cleaned EBN (EBNhc) and EBN by-product (EBNhbyp) through anion exchange chromatography (AEC), and determine their molecular weights, physicochemical properties, and antioxidative activities. Overall, 26 fractionates were collected from enzymatic hydrolysate by AEC, which were classified into 5 fractions. It was found that the positively charged fraction of EBNhc (CF 1) and EBNhbyp (DF 1) showed the significantly highest (p < 0.05) soluble protein contents (22.86 and 18.40 mg/g), total peptide contents (511.13 and 800.47 mg/g) and ferric reducing antioxidant power (17.44 and 6.96 mg/g) among the fractionates. In conclusion, a positively charged fraction (CF 1 and DF 1) showed more desired physicochemical properties and antioxidative activities. This research suggests the potential of AEC fractionation as a technology to purify EBN and produce positively charged EBN fractionates with antioxidative potential that could be applied as food components to provide health benefits.
Collapse
Affiliation(s)
- Sue Lian Mun
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Zhi Yin Ter
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Rafidah Mohd Ariff
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia; International Institute for Halal Research and Training (INHART), International Islamic University Malaysia (IIUM), 53100 Jalan Gombak, Selangor, Malaysia
| | - Nur Farhana Abd Rahman
- School of Industrial Technology, Faculty of Applied Sciences, Universiti Teknologi MARA, UiTM Shah Alam, Shah Alam 40450, Selangor, Malaysia
| | - Lee Sin Chang
- Department of Food Science and Nutrition, Faculty of Applied Sciences, UCSI University Kuala Lumpur, No.1, Jalan Menara Gading, UCSI Heights 56000 Cheras, Kuala Lumpur, Malaysia; Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| | - Jalifah Latip
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| | - Abdul Salam Babji
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia; Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| | - Seng Joe Lim
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia; Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| |
Collapse
|
4
|
Gupta JK, Singh K. Pharmacological Potential of Bioactive Peptides for the Treatment of Diseases Associated with Alzheimer's and Brain Disorders. Curr Mol Med 2024; 24:962-979. [PMID: 37691200 DOI: 10.2174/1566524023666230907115753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023]
Abstract
Bioactive peptides are a promising class of therapeutics for the treatment of diseases associated with Alzheimer's and brain disorders. These peptides are derived from naturally occurring proteins and have been shown to possess a variety of beneficial properties. They may modulate neurotransmitter systems, reduce inflammation, and improve cognitive performance. In addition, bioactive peptides have the potential to target specific molecular pathways involved in the pathogenesis of Alzheimer's and brain disorders. For example, peptides have been shown to interact with amyloid-beta, a major component of amyloid plaques found in Alzheimer's disease, and have been shown to reduce its accumulation in the brain. Furthermore, peptides have been found to modulate the activity of glutamate receptors, which are important for memory and learning, as well as to inhibit the activity of enzymes involved in the formation of toxic amyloid-beta aggregates. Finally, bioactive peptides have the potential to reduce oxidative stress and inflammation, two major components of many neurological disorders. These peptides could be used alone or in combination with traditional pharmacological treatments to improve the management of diseases associated with Alzheimer's and brain disorders.
Collapse
Affiliation(s)
- Jeetendra Kumar Gupta
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Kuldeep Singh
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| |
Collapse
|
5
|
Su W, Xu W, Liu E, Su W, Polyakov NE. Improving the Treatment Effect of Carotenoids on Alzheimer's Disease through Various Nano-Delivery Systems. Int J Mol Sci 2023; 24:ijms24087652. [PMID: 37108814 PMCID: PMC10142927 DOI: 10.3390/ijms24087652] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
Natural bioactive compounds have recently emerged as a current strategy for Alzheimer's disease treatment. Carotenoids, including astaxanthin, lycopene, lutein, fucoxanthin, crocin and others are natural pigments and antioxidants, and can be used to treat a variety of diseases, including Alzheimer's disease. However, carotenoids, as oil-soluble substances with additional unsaturated groups, suffer from low solubility, poor stability and poor bioavailability. Therefore, the preparation of various nano-drug delivery systems from carotenoids is a current measure to achieve efficient application of carotenoids. Different carotenoid delivery systems can improve the solubility, stability, permeability and bioavailability of carotenoids to a certain extent to achieve Alzheimer's disease efficacy. This review summarizes recent data on different carotenoid nano-drug delivery systems for the treatment of Alzheimer's disease, including polymer, lipid, inorganic and hybrid nano-drug delivery systems. These drug delivery systems have been shown to have a beneficial therapeutic effect on Alzheimer's disease to a certain extent.
Collapse
Affiliation(s)
- Wenjing Su
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wenhao Xu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Enshuo Liu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Weike Su
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Nikolay E Polyakov
- Institute of Solid State Chemistry and Mechanochemistry, 630128 Novosibirsk, Russia
- Institute of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russia
| |
Collapse
|
6
|
Shan S, Zhou J, Yin R, Zhang L, Shi J, Qiao Q, Li Z. Millet Bran Protein Hydrolysate Displays the Anti-non-alcoholic Fatty Liver Disease Effect via Activating Peroxisome Proliferator-Activated Receptor γ to Restrain Fatty Acid Uptake. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1628-1642. [PMID: 36638159 DOI: 10.1021/acs.jafc.2c08169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a serious health problem worldwide. Impeding fatty acid uptake may be an attractive therapeutic strategy for NAFLD. In the current study, we found that millet bran protein hydrolysate (MBPH) prepared by in vitro gastrointestinal bionic digestion exhibits the potential of anti-NAFLD in vitro and in vivo, characterized by the alleviation of hepatic steatosis and the reduction of lipid accumulation. Further, MBPH significantly decreased the expression levels of fatty acid uptake related genes (FABP1, FABP2, FABP4, CD36, and CPT-1α) of liver tissue in a NAFLD mice model through activating peroxisome proliferator-activated receptor γ (PPARγ) and efficiently restrained the fatty acid uptake of liver tissue, thus exerting anti-NAFLD activity. As expected, the anti-NAFLD effect induced by MBPH, characterized by the alleviation of hepatic vacuolar degeneration, hepatic steatosis, and fibrosis, was effectively abrogated with PPARγ inhibitor (GW9662) treatment. These results indicate that the retardant of fatty acid uptake induced by PPARγ activation may be the critical factor for the anti-NAFLD effect of MBPH. Collectively, MBPH has the potential as a next-generation dietary supplementation for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Shuhua Shan
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Jiaqi Zhou
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Ruopeng Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Lizhen Zhang
- School of Life Science, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Jiangying Shi
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Qinqin Qiao
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Zhuoyu Li
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| |
Collapse
|
7
|
Peng H, Yang X, Fang H, Zhang Z, Zhao J, Zhao T, Liu J, Li Y. Simultaneous effect of different chromatographic conditions on the chromatographic retention of pentapeptide derivatives (HGRFG and NPNPT). Front Chem 2023; 11:1171824. [PMID: 37143822 PMCID: PMC10151710 DOI: 10.3389/fchem.2023.1171824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/29/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction: Oligopeptides exhibit great prospects for clinical application and its separation is of great importance in new drug development. Methods: To accurately predict the retention of pentapeptides with analogous structures in chromatography, the retention times of 57 pentapeptide derivatives in seven buffers at three temperatures and four mobile phase compositions were measured via reversed-phase high-performance liquid chromatography. The parameters ( k H A , k A , and p K a ) of the acid-base equilibrium were obtained by fitting the data corresponding to a sigmoidal function. We then studied the dependence of these parameters on the temperature (T), organic modifier composition (φ, methanol volume fraction), and polarity ( P m N parameter). Finally, we proposed two six-parameter models with (1) pH and T and (2) pH and φ or P m N as the independent variables. These models were validated for their prediction capacities by linearly fitting the predicted retention factor k-value and the experimental k-value. Results: The results showed that log k H A and log k A exhibited linear relationships with 1 / T , φ or P m N for all pentapeptides, especially for the acid pentapeptides. In the model of pH and T, the correlation coefficient (R2) of the acid pentapeptides was 0.8603, suggesting a certain prediction capability of chromatographic retention. Moreover, in the model of pH and φ or P m N , the R2 values of the acid and neutral pentapeptides were greater than 0.93, and the average root mean squared error was approximately 0.3, indicating that the k-values could be effectively predicted. Discussion: In summary, the two six-parameter models were appropriate to characterize the chromatographic retention of amphoteric compounds, especially the acid or neutral pentapeptides, and could predict the chromatographic retention of pentapeptide compounds.
Collapse
Affiliation(s)
- Huan Peng
- Center for Brain Science, The First Affiliated Hospital of Xi’ an Jiaotong University, Xi’an, Shaanxi, China
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Xiangrong Yang
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
- Kangya of Ningxia Pharmaceutical Co., Ltd., Yinchuan, China
| | - Huanle Fang
- Medical College, Peihua University, Xi’an, Shaanxi, China
| | - Zhongqi Zhang
- Department of Polypeptide Engineering, Active Protein and Polypeptide Engineering Center of Xi’an Hui Kang, Xi’an, Shaanxi, China
| | - Jinli Zhao
- Department of Polypeptide Engineering, Active Protein and Polypeptide Engineering Center of Xi’an Hui Kang, Xi’an, Shaanxi, China
| | - Te Zhao
- College of Electronic Engineering, Xidian University, Xi’an, Shaanxi, China
| | - Jianli Liu
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
- Medical College, Peihua University, Xi’an, Shaanxi, China
- *Correspondence: Yan Li, ; Jianli Liu,
| | - Yan Li
- Center for Brain Science, The First Affiliated Hospital of Xi’ an Jiaotong University, Xi’an, Shaanxi, China
- *Correspondence: Yan Li, ; Jianli Liu,
| |
Collapse
|
8
|
Singhal SS, Garg R, Horne D, Singhal S, Awasthi S, Salgia R. RLIP: A necessary transporter protein for translating oxidative stress into pro-obesity and pro-carcinogenic signaling. Biochim Biophys Acta Rev Cancer 2022; 1877:188803. [PMID: 36150564 DOI: 10.1016/j.bbcan.2022.188803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/24/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022]
Abstract
Previously, we showed that knockout mice homozygous for deficiency of the mercapturic acid pathway (MAP) transporter protein, RLIP (RLIP-/-), are resistant to chemical carcinogenesis, inflammation, and metabolic syndrome (MetS). We also found that RLIP-/- mice are highly resistant to obesity caused by a high-fat diet (HFD). Interestingly, these studies showed that kinase, cytokine, and adipokine signaling that are characteristics of obesity were blocked despite the presence of increased oxidative stress in RLIP-/- mice. The deficiencies in obesity-inducing kinase, cytokine, and adipokine signaling were attributable to a lack of clathrin-dependent endocytosis (CDE), a process that is severely deficient in RLIP-/- mice. Because CDE is also necessary for carcinogenic signaling through EGF, WNT, TGFβ and other cancer-specific peptide hormones, and because RLIP-/- mice are cancer-resistant, we reasoned that depletion of RLIP by an antisense approach should cause cancer regression in human cancer xenografts. This prediction has been confirmed in studies of xenografts from lung, kidney, prostate, breast, and pancreatic cancers and melanoma. Because these results suggested an essential role for RLIP in carcinogenesis, and because our studies have also revealed a direct interaction between p53 and RLIP, we reasoned that if RLIP played a central role in carcinogenesis, that development of lymphoma in p53-/- mice, which normally occurs by the time these mice are 6 months old, could be delayed or prevented by depleting RLIP. Recent studies described herein have confirmed this hypothesis, showing complete suppression of lymphomagenesis in p53-/- mice treated with anti-RLIP antisense until the age of 8 months. All control mice developed lymphoma in the thymus or testis as expected. These findings lead to a novel paradigm predicting that under conditions of increased oxidative stress, the consequent increased flux of metabolites in the MAP causes a proportional increase in the rate of CDE. Because CDE inhibits insulin and TNF signaling but promotes EGF, TGFβ, and Wnt signaling, our model predicts that chronic stress-induced increases in RLIP (and consequently CDE) will induce insulin-resistance and enhance predisposition to cancer. Alternatively, generalized depletion of RLIP would antagonize the growth of malignant cells, and concomitantly exert therapeutic insulin-sensitizing effects. Therefore, this review focuses on how targeted depletion or inhibition of RLIP could provide a novel target for treating both obesity and cancer.
Collapse
Affiliation(s)
- Sharad S Singhal
- Departments of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, United States of America.
| | - Rachana Garg
- Departments of Surgery, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, United States of America
| | - David Horne
- Departments of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, United States of America
| | - Sulabh Singhal
- College of Medicine, Drexel University, Philadelphia, PA 19129, United States of America
| | - Sanjay Awasthi
- Cayman Health, CTMH Doctors Hospital in Cayman Islands, George Town, Cayman Islands
| | - Ravi Salgia
- Departments of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, United States of America
| |
Collapse
|
9
|
Current Trends in Food-Derived Peptidic Antioxidants. Antioxidants (Basel) 2022; 11:antiox11050962. [PMID: 35624825 PMCID: PMC9137897 DOI: 10.3390/antiox11050962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 05/11/2022] [Indexed: 12/10/2022] Open
|
10
|
Kabir MT, Rahman MH, Shah M, Jamiruddin MR, Basak D, Al-Harrasi A, Bhatia S, Ashraf GM, Najda A, El-Kott AF, Mohamed HRH, Al-Malky HS, Germoush MO, Altyar AE, Alwafai EB, Ghaboura N, Abdel-Daim MM. Therapeutic promise of carotenoids as antioxidants and anti-inflammatory agents in neurodegenerative disorders. Biomed Pharmacother 2022; 146:112610. [PMID: 35062074 DOI: 10.1016/j.biopha.2021.112610] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/26/2021] [Accepted: 12/26/2021] [Indexed: 11/17/2022] Open
Abstract
Neurodegenerative disorders (NDs) including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, and multiple sclerosis have various disease-specific causal factors and pathological features. A very common characteristic of NDs is oxidative stress (OS), which takes place due to the elevated generation of reactive oxygen species during the progression of NDs. Furthermore, the pathological condition of NDs including an increased level of protein aggregates can further lead to chronic inflammation because of the microglial activation. Carotenoids (CTs) are naturally occurring pigments that play a significant role in averting brain disorders. More than 750 CTs are present in nature, and they are widely available in plants, microorganisms, and animals. CTs are accountable for the red, yellow, and orange pigments in several animals and plants, and these colors usually indicate various types of CTs. CTs exert various bioactive properties because of its characteristic structure, including anti-inflammatory and antioxidant properties. Due to the protective properties of CTs, levels of CTs in the human body have been markedly linked with the prevention and treatment of multiple diseases including NDs. In this review, we have summarized the relationship between OS, neuroinflammation, and NDs. In addition, we have also particularly focused on the antioxidants and anti-inflammatory properties of CTs in the management of NDs.
Collapse
Affiliation(s)
- Md Tanvir Kabir
- Department of Pharmacy, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh; Department of Global Medical Science, Yonsei University Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, South Korea.
| | - Muddaser Shah
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | | | - Debasish Basak
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL 33169, United States
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616 Birkat Al Mauz, Nizwa, Oman
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616 Birkat Al Mauz, Nizwa, Oman; School of Health Science, University of Petroleum and Energy Studies, Prem Nagar, Dehradun, Uttarakhand, 248007, India
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Agnieszka Najda
- Department of Vegetable and Herbal Crops, University of Life Sciences in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland.
| | - Attalla F El-Kott
- Biology Department, Faculty of Science, King Khalid University, Abha 61421, Saudi Arabia; Zoology Department, College of Science, Damanhour University, Damanhour 22511, Egypt
| | - Hanan R H Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Hamdan S Al-Malky
- Regional Drug Information Center, Ministry of Health, Jeddah, Saudi Arabia
| | - Mousa O Germoush
- Biology Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia
| | - Ahmed E Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia
| | - Esraa B Alwafai
- Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Nehmat Ghaboura
- Department of Pharmacy Practice, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| |
Collapse
|
11
|
Pezzotti G, Zhu W, Hashimoto Y, Marin E, Masumura T, Sato YI, Nakazaki T. Raman Fingerprints of Rice Nutritional Quality: A Comparison between Japanese Koshihikari and Internationally Renowned Cultivars. Foods 2021; 10:foods10122936. [PMID: 34945487 PMCID: PMC8701134 DOI: 10.3390/foods10122936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/25/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022] Open
Abstract
Raman spectroscopy was applied to characterize at the molecular scale the nutritional quality of the Japanese Koshihikari rice cultivar in comparison with other renowned rice cultivars including Carnaroli from Italy, Calrose from the USA, Jasmine rice from Thailand, and Basmati from both India and Pakistan. For comparison, two glutinous (mochigome) cultivars were also investigated. Calibrated and validated Raman analytical algorithms allowed quantitative determinations of: (i) amylopectin and amylose concentrations, (ii) fractions of aromatic amino acids, and (iii) protein content and secondary structure. The Raman assessments non-destructively linked the molecular composition of grains to key nutritional parameters and revealed a complex intertwine of chemical properties. The Koshihikari cultivar was rich in proteins (but with low statistical relevance as compared to other investigated cultivars) and aromatic amino acids. However, it also induced a clearly higher glycemic impact as compared to long-grain cultivars from Asian countries. Complementary to genomics and wet-chemistry analyses, Raman spectroscopy makes non-destructively available factual and data-driven information on rice nutritional characteristics, thus providing customers, dietitian nutritionists, and producers with a solid science-consolidated platform.
Collapse
Affiliation(s)
- Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (W.Z.); tennis-0319-@outlook.com (Y.H.); (E.M.)
- Department of Orthopedic Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
- The Center for Advanced Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita 565-0854, Japan
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
- Correspondence:
| | - Wenliang Zhu
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (W.Z.); tennis-0319-@outlook.com (Y.H.); (E.M.)
| | - Yuuki Hashimoto
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (W.Z.); tennis-0319-@outlook.com (Y.H.); (E.M.)
| | - Elia Marin
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (W.Z.); tennis-0319-@outlook.com (Y.H.); (E.M.)
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Takehiro Masumura
- Laboratory of Genetic Engineering, Kyoto Prefectural University, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-8522, Japan;
| | - Yo-Ichiro Sato
- Research Center for Japanese Food Culture, Kyoto Prefectural University, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-8522, Japan;
| | - Tetsuya Nakazaki
- Experimental Farm, Graduate School of Agriculture, Kyoto University, Kizugawa 619-0218, Japan;
| |
Collapse
|