1
|
Pal N, Banerjee K, Sarkar S, Mandal TK, Bhabak KP. Synthesis of Thiazolidinedione- and Triazole-Linked Organoselenocyanates and Evaluation of Anticancer Activities Against Breast Cancer with Mechanistic Investigations. Chemistry 2025; 31:e202403026. [PMID: 39630055 DOI: 10.1002/chem.202403026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Indexed: 12/13/2024]
Abstract
Organoselenocyanates are important classes of organoselenium compounds having potential pharmaceutical applications in cancer biology. In the present study, two different series of organoselenocyanates (15 a-15 c and 16 a-16 c) incorporating crucial heterocyclic pharmacophores such as 2,4-thiazolidine-1,3-dione and 1,2,3-triazole were rationally designed. The organoselenocyanates were synthesized using multi-step organic synthesis and investigated for their anticancer activities against triple-negative breast cancer cells. Based on the preliminary anti-proliferative activities and the selectivity index towards cancer cells over the normal cells, 2,4-thiazolidine-1,3-dione-based selenocyanate 15 a was identified as the lead analogue for detailed investigations. In addition to the anti-migratory activity, compound 15 a induced G1-phase arrest of the cell cycle and led to early apoptosis. Further studies on the redox balance of MDA-MB-231 cells indicated the antioxidant nature of 15 a with the quenching of ROS level and upregulation of TrxR1 expression. Detailed mechanistic investigations with the expression levels of key-cancer marker proteins revealed that the selenocyanate 15 a induced the activation of ERK pathway by upregulating p-ERK expression with the subsequent downregulation of p-Akt and c-Myc levels leading to the inhibition of cellular proliferation. Therefore, the primary outcomes of the study would be valuable in the development of chemotherapeutic agents towards the treatment of triple-negative breast cancer.
Collapse
Affiliation(s)
- Nikita Pal
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Guwahati, Assam, India
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, 781039, Guwahati, Assam, India
| | - Kaustav Banerjee
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Guwahati, Assam, India
| | - Shilpi Sarkar
- Department Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, Guwahati, Assam, India
| | - Tapas K Mandal
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, 781039, Guwahati, Assam, India
| | - Krishna P Bhabak
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Guwahati, Assam, India
| |
Collapse
|
2
|
Galarreta-Rodriguez I, Etxebeste-Mitxeltorena M, Moreno E, Plano D, Sanmartín C, Megahed S, Feliu N, Parak WJ, Garaio E, Gil de Muro I, Lezama L, Ruiz de Larramendi I, Insausti M. Preparation of Selenium-Based Drug-Modified Polymeric Ligand-Functionalised Fe 3O 4 Nanoparticles as Multimodal Drug Carrier and Magnetic Hyperthermia Inductor. Pharmaceuticals (Basel) 2023; 16:949. [PMID: 37513861 PMCID: PMC10385492 DOI: 10.3390/ph16070949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
In recent years, much effort has been invested into developing multifunctional drug delivery systems to overcome the drawbacks of conventional carriers. Magnetic nanoparticles are not generally used as carriers but can be functionalised with several different biomolecules and their size can be tailored to present a hyperthermia response, allowing for the design of multifunctional systems which can be active in therapies. In this work, we have designed a drug carrier nanosystem based on Fe3O4 nanoparticles with large heating power and 4-amino-2-pentylselenoquinazoline as an attached drug that exhibits oxidative properties and high selectivity against a variety of cancer malignant cells. For this propose, two samples composed of homogeneous Fe3O4 nanoparticles (NPs) with different sizes, shapes, and magnetic properties have been synthesised and characterised. The surface modification of the prepared Fe3O4 nanoparticles has been developed using copolymers composed of poly(ethylene-alt-maleic anhydride), dodecylamine, polyethylene glycol and the drug 4-amino-2-pentylselenoquinazoline. The obtained nanosystems were properly characterised. Their in vitro efficacy in colon cancer cells and as magnetic hyperthermia inductors was analysed, thereby leaving the door open for their potential application as multimodal agents.
Collapse
Affiliation(s)
- Itziar Galarreta-Rodriguez
- Departamento Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, University of the Basque Country (UPV/EHU), Sarriena s/n, 48940 Leioa, Spain
| | - Mikel Etxebeste-Mitxeltorena
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
- The Navarra Medical Research Institute (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
| | - Esther Moreno
- Tropical Health Institute of the University of Navarra (ISTUN), University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
- Fachbereich Physik, Universität Hamburg, 22761 Hamburg, Germany
- Physics Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| | - Daniel Plano
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
- The Navarra Medical Research Institute (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
| | - Carmen Sanmartín
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
- The Navarra Medical Research Institute (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
| | - Saad Megahed
- Fachbereich Physik, Universität Hamburg, 22761 Hamburg, Germany
- Physics Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| | - Neus Feliu
- Center for Applied Nanotechnology CAN, Fraunhofer Institute for Applied Polymer Research IAP, 20146 Hamburg, Germany
| | | | - Eneko Garaio
- Departamento de Ciencias, Universidad Pública de Navarra, Campus Arrosadía, 31006 Pamplona, Spain
- Institute for Advanced Materials and Mathematics (INAMAT2), Universidad Pública de Navarra, Campus de Arrosadía, 31006 Pamplona, Spain
| | - Izaskun Gil de Muro
- Departamento Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, University of the Basque Country (UPV/EHU), Sarriena s/n, 48940 Leioa, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Luis Lezama
- Departamento Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, University of the Basque Country (UPV/EHU), Sarriena s/n, 48940 Leioa, Spain
| | - Idoia Ruiz de Larramendi
- Departamento Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, University of the Basque Country (UPV/EHU), Sarriena s/n, 48940 Leioa, Spain
| | - Maite Insausti
- Departamento Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, University of the Basque Country (UPV/EHU), Sarriena s/n, 48940 Leioa, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| |
Collapse
|
3
|
Astrain-Redin N, Raza A, Encío I, Sharma AK, Plano D, Sanmartín C. Novel Acylselenourea Derivatives: Dual Molecules with Anticancer and Radical Scavenging Activity. Antioxidants (Basel) 2023; 12:1331. [PMID: 37507871 PMCID: PMC10376326 DOI: 10.3390/antiox12071331] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Oxidative stress surrounding cancer cells provides them with certain growth and survival advantages necessary for disease progression. In this context, Se-containing molecules have gained attention due to their anticancer and antioxidant activity. In our previous work, we synthesized a library of 39 selenoesters containing functional groups commonly present in natural products (NP), which showed potent anticancer activity, but did not demonstrate high radical scavenger activity. Thus, 20 novel Se derivatives resembling NP have been synthesized presenting acylselenourea functionality in their structures. Radical scavenger activity was tested using DPPH assay and in vitro protective effects against ROS-induced cell death caused by H2O2. Additionally, antiproliferative activity was evaluated in prostate, colon, lung, and breast cancer cell lines, along with their ability to induce apoptosis. Compounds 1.I and 5.I showed potent cytotoxicity against the tested cancer cell lines, along with high selectivity indexes and induction of caspase-mediated apoptosis. These compounds exhibited potent and concentration-dependent radical scavenging activity achieving DPPH inhibition similar to ascorbic acid and trolox. To conclude, we have demonstrated that the introduction of Se in the form of acylselenourea into small molecules provides strong radical scavengers in vitro and antiproliferative activity, which may lead to the development of promising dual compounds.
Collapse
Affiliation(s)
- Nora Astrain-Redin
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, 31008 Pamplona, Spain
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Asif Raza
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Ignacio Encío
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, 31008 Pamplona, Spain
- Departamento de Ciencias de la Salud, Universidad Pública de Navarra, Avda. Barañain s/n, 31008 Pamplona, Spain
| | - Arun K Sharma
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Daniel Plano
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, 31008 Pamplona, Spain
| | - Carmen Sanmartín
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, 31008 Pamplona, Spain
| |
Collapse
|
4
|
Badirujjaman M, Pal N, Bhabak KP. Small-molecule organoselenocyanates: Recent developments toward synthesis, anticancer, and antioxidant activities. Curr Opin Chem Biol 2023; 75:102337. [PMID: 37276751 DOI: 10.1016/j.cbpa.2023.102337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 06/07/2023]
Abstract
Cellular redox homeostasis is very important for the overall cellular development, function, and oxidative stress often disrupts the process. Small-molecule organoselenium compounds exert key roles in maintaining the redox homeostasis during oxidative stress and cancer owing to their notable antioxidant activities. Among different organoselenium compounds, small-molecule organoselenocyanates have attracted much research attention due to their synthetic utilities and therapeutic potentials. Therefore, the development of convenient synthetic methodologies to different classes of organoselenocyanates from various precursors was explored over the years as useful synthetic building blocks. Additionally, considering their inherent redox and antioxidant properties, the development of biologically relevant organoselenocyanates upon their conjugation with the existing drugs and natural products has been chosen for enhancing the drug potencies and in ameliorating the drug-induced side-effects. In the present report, we have discussed some of the very recent and relevant developments on these aspects in a very concise manner.
Collapse
Affiliation(s)
- Md Badirujjaman
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Nikita Pal
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Krishna P Bhabak
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India; Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
5
|
Radomska D, Czarnomysy R, Szymanowska A, Radomski D, Domínguez-Álvarez E, Bielawska A, Bielawski K. Novel Selenoesters as a Potential Tool in Triple-Negative Breast Cancer Treatment. Cancers (Basel) 2022; 14:cancers14174304. [PMID: 36077839 PMCID: PMC9454901 DOI: 10.3390/cancers14174304] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 12/02/2022] Open
Abstract
Disturbing cancer statistics, especially for breast cancer, are becoming a rationale for the development of new anticancer therapies. For the past several years, studies have been proving a greater role of selenium in the chemoprevention of many cancers than previously considered; hence, a trend to develop compounds containing this element as potential agents with anticancer activity has been set for some time. Therefore, our study aimed to evaluate the anticancer activity of novel selenoesters (EDA-71, E-NS-4) in MCF-7 and MDA-MB-231 human breast cancer cells. The assays evaluating proliferation and cell viability, and flow cytometer analysis of apoptosis/autophagy induction, changes in mitochondrial membrane potential, disruption of cell cycle phases, and protein activity of mTOR, NF-κB, cyclin E1/A2, and caspases 3/7, 8, 9, 10 were performed. The obtained results indicate that the tested selenoesters are highly cytotoxic and exhibit antiproliferative activity at low micromolar doses (<5 µM) compared with cisplatin. The most active compound—EDA-71—highly induces apoptosis, which proceeds via both pathways, as evidenced by the activation of all tested caspases. Furthermore, we observed the occurrence of autophagy (↓ mTOR levels) and cell cycle arrest in the S or G2/M phase (↓ cyclin E1, ↑ cyclin A2).
Collapse
Affiliation(s)
- Dominika Radomska
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
- Correspondence: ; Tel.: +48-85-748-57-00; Fax: +48-85-879-57-18
| | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Anna Szymanowska
- Department of Biotechnology, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Dominik Radomski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Enrique Domínguez-Álvarez
- Instituto de Química Orgánica General (IQOG-CSIC), Consejo Superior de Investigaciones Científicas, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| |
Collapse
|
6
|
Banerjee K, Bhattacherjee D, Raina K, Thummer RP, Bhabak KP. Benzimidazole-based ionic and non-ionic organoselenium compounds: innovative synthetic strategies, structural characterization and preliminary anti-proliferative activities. NEW J CHEM 2022. [DOI: 10.1039/d2nj01322c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rational design of and efficient synthesis of innovative benzimidazole-based ionic and non-ionic organoselenium compounds is described. The compounds were studied for their anti-proliferative activities against triple-negative breast cancer cells.
Collapse
Affiliation(s)
- Kaustav Banerjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Debojit Bhattacherjee
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Khyati Raina
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Rajkumar P. Thummer
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Krishna Pada Bhabak
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| |
Collapse
|