1
|
Mercanti N, Macaluso M, Pieracci Y, Brazzarola F, Palla F, Verdini PG, Zinnai A. Enhancing wine shelf-life: Insights into factors influencing oxidation and preservation. Heliyon 2024; 10:e35688. [PMID: 39170578 PMCID: PMC11336860 DOI: 10.1016/j.heliyon.2024.e35688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
Background Understanding the shelf life of wine is complex and involves factors such as aroma preservation, flavour development and market acceptance. Ageing potential, crucial for flavour complexity, exposes wine to oxidation, influenced by oxygen, temperature and light, with an impact on quality. This type of oxidation is non-enzymatic, is catalyzed by metal ions and alters colour and flavour. Scope and approach This review examines the dynamics of wine preservation, focusing on oxidation and the impact of closure. Corks allow controlled oxygen transfer, while screw caps offer a nearly hermetic closure. Oxygen transfer rates vary, with natural corks having fluctuating rates and synthetic corks causing over-exposure. Additives such as sulphur dioxide and alternative substitute such as lysozyme and ascorbic acid are examined for their role in preventing oxidation and ensuring microbiological stability. Key findings and conclusions Closure choice significantly affects wine preservation. Balancing oxygen exposure, temperature, and light is vital. Effective management, including the strategic use of preservatives and additives, is crucial for maintaining quality and extending shelf life. This review underscores the delicate equilibrium necessary for preserving wine quality from production to consumption.
Collapse
Affiliation(s)
- Nicola Mercanti
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Monica Macaluso
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Ylenia Pieracci
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
- Department of Pharmacy, Via Bonanno 33, 56124, Pisa, Italy
| | | | - Fabrizio Palla
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pisa, Largo Bruno Pontecorvo, 3, Pisa, 56127, Italy
| | - Piero Giorgio Verdini
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pisa, Largo Bruno Pontecorvo, 3, Pisa, 56127, Italy
| | - Angela Zinnai
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
- Interdepartmental Research Centre “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| |
Collapse
|
2
|
Lesmana R, Tandean S, Christoper A, Suwantika AA, Wathoni N, Abdulah R, Fearnley J, Bankova V, Zulhendri F. Propolis as an autophagy modulator in relation to its roles in redox balance and inflammation regulation. Biomed Pharmacother 2024; 175:116745. [PMID: 38761422 DOI: 10.1016/j.biopha.2024.116745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/20/2024] Open
Abstract
Autophagy is a degradation process that is evolutionarily conserved and is essential in maintaining cellular and physiological homeostasis through lysosomal removal and elimination of damaged peptides, proteins and cellular organelles. The dysregulation of autophagy is implicated in various diseases and disorders, including cancers, infection-related, and metabolic syndrome-related diseases. Propolis has been demonstrated in various studies including many human clinical trials to have antimicrobial, antioxidant, anti-inflammatory, immune-modulator, neuro-protective, and anti-cancer. Nevertheless, the autophagy modulation properties of propolis have not been extensively studied and explored. The role of propolis and its bioactive compounds in modulating cellular autophagy is possibly due to their dual role in redox balance and inflammation. The present review attempts to discuss the activities of propolis as an autophagy modulator in biological models in relation to various diseases/disorders which has implications in the development of propolis-based nutraceuticals, functional foods, and complementary therapies.
Collapse
Affiliation(s)
- R Lesmana
- Physiology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Indonesia; Biological Activity Division, Central Laboratory, Universitas Padjadjaran, Indonesia.
| | - S Tandean
- Department of Neurosurgery, Faculty of Medicine, Universitas Sumatera Utara, Medan, Sumatera Utara 20222, Indonesia.
| | - A Christoper
- Postgraduate Program of Medical Science, Faculty of Medicine, Universitas Padjadjaran, Bandung 45363, Indonesia.
| | - A A Suwantika
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung 45363, Indonesia; Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia.
| | - N Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; Research Center of Biopolymers for Drug and Cosmetic Delivery, Bandung 45363, Indonesia.
| | - R Abdulah
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung 45363, Indonesia; Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia.
| | - J Fearnley
- Apiceutical Research Centre, Unit 3b Enterprise Way, Whitby, North Yorkshire YO18 7NA, UK.
| | - V Bankova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 9, Sofia 1113, Bulgaria.
| | - F Zulhendri
- Kebun Efi, Kabanjahe, North Sumatra 22171, Indonesia; Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Indonesia.
| |
Collapse
|
3
|
Basile L, Condorelli RA, Calogero AE, Cannarella R, Barbagallo F, Crafa A, Aversa A, La Vignera S. Red Wine and Sexual Function in Men: An Original Point of View. J Clin Med 2023; 12:3883. [PMID: 37373577 DOI: 10.3390/jcm12123883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Red wine is a rich source of nutrients whose biological properties have inspired numerous scientific studies. Indeed, it has been widely reported that there is a correlation between the positive health effects of moderate consumption of red wine and its phenolic content, which, due to its antioxidant activity, has proved to be useful in the improvement of various diseases, such as cardiovascular diseases, metabolic syndrome, cognitive disorders, depression, and cancer. It is a common opinion that the antioxidant activity of red wine is to be ascribed to its entire content of polyphenols, which act synergistically and not as a single component. Furthermore, this health-promoting effect of red wine can also be linked to its ethanol content, which has shown a wide array of biological properties. Beyond this evidence, very little is known about a possible correlation between moderate consumption of red wine and male sexual function. This brief review aimed to evaluate the effects of moderate consumption of red wine on erectile function. To accomplish this, Pubmed and Google Scholar databases were searched to retrieve the most relevant studies on this topic. The evidence so far collected has shown that red wine, if consumed in moderation, can be potentially beneficial for patients with erectile dysfunction as well as can positively influence reproductive function through mechanisms that depend on the vasorelaxant properties of red wine and its antioxidant properties.
Collapse
Affiliation(s)
- Livia Basile
- Department of Clinical and Experimental Medicine, University of Catania, 95125 Catania, Italy
| | - Rosita A Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, 95125 Catania, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, 95125 Catania, Italy
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, 95125 Catania, Italy
| | - Federica Barbagallo
- Department of Clinical and Experimental Medicine, University of Catania, 95125 Catania, Italy
| | - Andrea Crafa
- Department of Clinical and Experimental Medicine, University of Catania, 95125 Catania, Italy
| | - Antonio Aversa
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, 95125 Catania, Italy
| |
Collapse
|
4
|
Chemical Profile and Hematoprotective Activity of Artisanal Jabuticaba (Plinia jabuticaba) Wine and Derived Extracts. FERMENTATION 2023. [DOI: 10.3390/fermentation9020157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The alcoholic fermentation of jabuticaba berries (Plinia spp.) originates from a beverage with an intense taste and aroma, popularly known as jabuticaba wine (JW). In addition, polyphenols transferred from fruit peels to the final product turn this beverage into a promising source of bioactive agents. Here, the chemical profile and antioxidant potential of artisanal JW and derivative extracts were determined. Volatile organic compounds were determined by HS-SPME/GC-MS analysis. The wine was dried by lyophilization and subjected to liquid-liquid partitioning (water: ethyl acetate), resulting in three fractions (JWF1-3). ABTS•+ and DPPH•+ scavenging assays were performed to evaluate the antioxidant capacity. In addition, the extracts’ hematoprotective activity was evaluated against oxidative stress. Finally, the extracts were analyzed by LC-HRMS/MS. HS-SPME/GC-MS analysis highlighted 1,8-cineole as the main compound that contributes to the camphor/mint flavor. JWF2 and JWF3 displayed the highest antioxidant capacity. JWF2 stood out for preventing oxidative damage in red blood cells at 7.8 µg·mL−1 The maximal protection of ascorbic acid occurred at 8.8 µg·mL−1. The LC-HRMS/MS analysis allowed the annotation of seventeen compounds, most of them with recognized antioxidant activity such as anthocyanins, catechins, flavanols, and phenolic acids. The results presented herein reinforce JW as a pleasant beverage with bioactive potential.
Collapse
|
5
|
Curcumin treatment enhances bioactive metabolite accumulation and reduces enzymatic browning in soybean sprouts during storage. Food Chem X 2023; 17:100607. [PMID: 36974192 PMCID: PMC10039267 DOI: 10.1016/j.fochx.2023.100607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/15/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023] Open
Abstract
Curcumin is a natural polyphenol that is widely used in food and medicine. Here, we investigated the effects of curcumin on the antioxidant accumulation and enzymatic browning of soybean sprouts after storage at 4 °C for 2 weeks. Curcumin drastically reduced the water loss, browning index, and peroxide accumulation, increased the activities of superoxide dismutase, catalase, and peroxidase, decreased the activities of phenylalanine ammonia-lyase and polyphenol oxidase, elevated the contents of ascorbic acid, reduced glutathione, nonprotein thiol, phenolics and isoflavones, and enhanced the total antioxidant capacity of soybean sprouts during storage. These curcumin-induced changes were partly but dramatically attenuated by inhibition of NADPH oxidase (NOX). Curcumin induced NOX activity and H2O2 burst in soybean sprouts during the first 24 h after treatment. The curcumin-induced antioxidants and -inhibited enzymatic browning are closely associated with NOX-dependent H2O2 signaling. The findings provide a new method for improving soybean sprout quality during storage.
Collapse
|
6
|
Buljeta I, Pichler A, Šimunović J, Kopjar M. Beneficial Effects of Red Wine Polyphenols on Human Health: Comprehensive Review. Curr Issues Mol Biol 2023; 45:782-798. [PMID: 36825997 PMCID: PMC9955827 DOI: 10.3390/cimb45020052] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 01/18/2023] Open
Abstract
Polyphenols are secondary plant metabolites synthesized during the development of the grape berry as a response to stress conditions. They are important constituents in red wines that contribute to the sensory properties and antioxidant activity of wines. Due to the development of highly sophisticated analytical devices, it is now possible to characterize the structure of highly polymerized polyphenols and obtain a full polyphenol profile of red wines. Red wine polyphenols include the ones present in grapes as well as new polyphenol products formed during the winemaking process. Among them, the most important groups and their representatives are flavanols (catechin), stilbenes (trans-resveratrol), flavonols (quercetin) and hydroxybenzoic acids (gallic acid). It is known that polyphenols exhibit beneficial effects on human health, such as anti-inflammatory, anticarcinogenic and cardio-protective effects. Many studies have been conducted on the health effects of red wine polyphenols in cancer chemopreventive activities, neuroprotective effects and impact on cardiovascular diseases, gut microbiota in humans, etc. This review will provide major scientific findings on the impact of red wine polyphenols on human health as well as a review of polyphenols present in red wines and their main features.
Collapse
Affiliation(s)
- Ivana Buljeta
- Faculty of Food Technology, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia
| | - Anita Pichler
- Faculty of Food Technology, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia
| | - Josip Šimunović
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Mirela Kopjar
- Faculty of Food Technology, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia
- Correspondence:
| |
Collapse
|
7
|
Crescente G, Minervini G, Spagnuolo C, Moccia S. Cannabis Bioactive Compound-Based Formulations: New Perspectives for the Management of Orofacial Pain. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010106. [PMID: 36615298 PMCID: PMC9822121 DOI: 10.3390/molecules28010106] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/06/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
The management of orofacial pain to alleviate the quality of life of affected patients is becoming increasingly challenging for scientific research and healthcare professionals. From this perspective, in addition to conventional therapies, new alternatives are being sought, increasingly looking at the use of both natural and synthetic products. Cannabis sativa L. represents an interesting source of bioactive compounds, including non-psychoactive cannabinoids, flavonoids, and terpenes, many of which are effective in improving pain intensity. Here, we aim to analyze the possible mechanisms of action of the bioactive natural and synthetic hemp-derived compounds responsible for the modulatory effects on pain-related pathways. The ability of these compounds to act on multiple mechanisms through a synergistic effect, reducing both the release of inflammatory mediators and regulating the response of the endocannabinoid system, makes them interesting agents for alternative formulations to be used in orofacial pain.
Collapse
Affiliation(s)
| | - Giuseppe Minervini
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania, Luigi Vanvitelli, 80138 Naples, Italy
| | - Carmela Spagnuolo
- National Research Council, Institute of Food Sciences, 83100 Avellino, Italy
| | - Stefania Moccia
- National Research Council, Institute of Food Sciences, 83100 Avellino, Italy
- Correspondence: ; Tel.: +39-082-5299-423
| |
Collapse
|
8
|
Banc R, Popa DS, Cozma-Petruţ A, Filip L, Kiss B, Fărcaş A, Nagy A, Miere D, Loghin F. Protective Effects of Wine Polyphenols on Oxidative Stress and Hepatotoxicity Induced by Acrylamide in Rats. Antioxidants (Basel) 2022; 11:1347. [PMID: 35883838 PMCID: PMC9312107 DOI: 10.3390/antiox11071347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 12/10/2022] Open
Abstract
In recent years, it has been increasingly suggested that the consumption of natural polyphenols, in moderate amounts, is beneficial for health. The aim of this study was to investigate the efficacy of a red wine (the administered dose of 7 mL/kg/day being equivalent to ~16.5 mg/kg/day total polyphenols) compared to a white wine (the administered dose of 7 mL/kg/day being equivalent to ~1.7 mg/kg/day total polyphenols), on the prevention of acrylamide-induced subacute hepatic injury and oxidative stress in Wistar rats. Hepatic damage due to acrylamide intoxication (the administered dose being 250 µg/kg body weight, for 28 days, by intragastric gavage) was assessed by employing biochemical parameters (aspartate aminotransferase (AST) and alanine aminotransferase (ALT)) and by histopathological studies. Markers of oxidative damage were measured in terms of plasma malondialdehyde (MDA), hepatic Thiobarbituric Acid Reactive Substances (TBARS) and glutathione (GSH) levels, and liver antioxidant enzyme (superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx)) activities. Regarding hepatic enzyme activities, treatment with red wine significantly decreased the AST values (p < 0.05), while for the ALT values only a normalization tendency was observed. Treatment with red wine and white wine, respectively, significantly prevented the increase in MDA and TBARS levels (p < 0.05), as well as the depletion of GSH (p < 0.05). Red wine treatment normalized the activities of the antioxidant enzymes CAT and SOD in rats intoxicated with acrylamide, while supplementing the diet with white wine did not produce significant differences in the antioxidant enzyme activities. Histopathological findings revealed a moderate protective effect of red wine after four weeks of daily consumption. Our findings provide evidence that red wine, having a higher phenolic content than white wine, has a significant protective effect on oxidative stress and liver injury induced by acrylamide in rats, through its antioxidative activity.
Collapse
Affiliation(s)
- Roxana Banc
- Department of Bromatology, Hygiene, Nutrition, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania; (R.B.); (D.M.)
| | - Daniela-Saveta Popa
- Department of Toxicology, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania; (D.-S.P.); (B.K.); (F.L.)
| | - Anamaria Cozma-Petruţ
- Department of Bromatology, Hygiene, Nutrition, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania; (R.B.); (D.M.)
| | - Lorena Filip
- Department of Bromatology, Hygiene, Nutrition, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania; (R.B.); (D.M.)
| | - Béla Kiss
- Department of Toxicology, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania; (D.-S.P.); (B.K.); (F.L.)
| | - Anca Fărcaş
- Department of Mathematics-Informatics, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania;
| | - Andras Nagy
- Department of Veterinary Toxicology, University of Agricultural Sciences and Veterinary Medicine, 3-5 Mănăştur Street, 400372 Cluj-Napoca, Romania;
| | - Doina Miere
- Department of Bromatology, Hygiene, Nutrition, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania; (R.B.); (D.M.)
| | - Felicia Loghin
- Department of Toxicology, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania; (D.-S.P.); (B.K.); (F.L.)
| |
Collapse
|
9
|
Dai L, Zhong K, Ma Y, Cui X, Sun Y, Zhang A, Han G. Impact of the Acetaldehyde-Mediated Condensation on the Phenolic Composition and Antioxidant Activity of Vitis vinifera L. Cv. Merlot Wine. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092608. [PMID: 35565959 PMCID: PMC9105304 DOI: 10.3390/molecules27092608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/09/2022] [Accepted: 04/17/2022] [Indexed: 11/16/2022]
Abstract
Acetaldehyde is a critical reactant on modifying the phenolic profile during red wine aging, suggesting that the acetaldehyde-mediated condensation can be responsible for the variation of antioxidant activity during the aging of this beverage. The present study employs exogenous acetaldehyde at six levels of treatment (7.86 ± 0.10–259.02 ± 4.95 mg/L) before the bottle aging of Merlot wines to encourage phenolic modification. Acetaldehyde and antioxidant activity of wine were evaluated at 0, 15, 30, 45, 60 and 75 days of storage, while monomeric and polymeric phenolics were analyzed at 0, 30 and 75 days of storage. The loss of acetaldehyde was fitted to a first-order reaction model, the rate constant (k) demonstrated that different chemical reaction happened in wines containing a different initial acetaldehyde. The disappearance of monomeric phenolics and the formation of polymeric phenolics induced by acetaldehyde could be divided into two phases, the antioxidant activity of wine did not alter significantly in the first phase, although most monomeric phenolics vanished, but the second phase would dramatically reduce the antioxidant activity of wine. Furthermore, a higher level of acetaldehyde could shorten the reaction time of the first phase. These results indicate that careful vinification handling aiming at controlling the acetaldehyde allows one to maintain prolonged biological activity during wine aging.
Collapse
Affiliation(s)
- Lingmin Dai
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (L.D.); (K.Z.); (Y.M.); (X.C.); (Y.S.)
| | - Ke Zhong
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (L.D.); (K.Z.); (Y.M.); (X.C.); (Y.S.)
| | - Yan Ma
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (L.D.); (K.Z.); (Y.M.); (X.C.); (Y.S.)
| | - Xiaoqian Cui
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (L.D.); (K.Z.); (Y.M.); (X.C.); (Y.S.)
| | - Yuhang Sun
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (L.D.); (K.Z.); (Y.M.); (X.C.); (Y.S.)
| | - Ang Zhang
- Technology Centre of Qinhuangdao Customs, Qinhuangdao 066004, China;
| | - Guomin Han
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (L.D.); (K.Z.); (Y.M.); (X.C.); (Y.S.)
- Correspondence:
| |
Collapse
|
10
|
Rudrapal M, Khairnar SJ, Khan J, Dukhyil AB, Ansari MA, Alomary MN, Alshabrmi FM, Palai S, Deb PK, Devi R. Dietary Polyphenols and Their Role in Oxidative Stress-Induced Human Diseases: Insights Into Protective Effects, Antioxidant Potentials and Mechanism(s) of Action. Front Pharmacol 2022; 13:806470. [PMID: 35237163 PMCID: PMC8882865 DOI: 10.3389/fphar.2022.806470] [Citation(s) in RCA: 254] [Impact Index Per Article: 84.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/21/2022] [Indexed: 12/13/2022] Open
Abstract
Dietary polyphenols including phenolic acids, flavonoids, catechins, tannins, lignans, stilbenes, and anthocyanidins are widely found in grains, cereals, pulses, vegetables, spices, fruits, chocolates, and beverages like fruit juices, tea, coffee and wine. In recent years, dietary polyphenols have gained significant interest among researchers due to their potential chemopreventive/protective functions in the maintenance of human health and diseases. It is believed that dietary polyphenols/flavonoids exert powerful antioxidant action for protection against reactive oxygen species (ROS)/cellular oxidative stress (OS) towards the prevention of OS-related pathological conditions or diseases. Pre-clinical and clinical evidence strongly suggest that long term consumption of diets rich in polyphenols offer protection against the development of various chronic diseases such as neurodegenerative diseases, cardiovascular diseases (CVDs), cancer, diabetes, inflammatory disorders and infectious illness. Increased intake of foods containing polyphenols (for example, quercetin, epigallocatechin-3-gallate, resveratrol, cyanidin etc.) has been claimed to reduce the extent of a majority of chronic oxidative cellular damage, DNA damage, tissue inflammations, viral/bacterial infections, and neurodegenerative diseases. It has been suggested that the antioxidant activity of dietary polyphenols plays a pivotal role in the prevention of OS-induced human diseases. In this narrative review, the biological/pharmacological significance of dietary polyphenols in the prevention of and/or protection against OS-induced major human diseases such as cancers, neurodegenerative diseases, CVDs, diabetes mellitus, cancer, inflammatory disorders and infectious diseases have been delineated. This review specifically focuses a current understanding on the dietary sources of polyphenols and their protective effects including mechanisms of action against various major human diseases.
Collapse
Affiliation(s)
- Mithun Rudrapal
- Department of Pharmaceutical Chemistry, Rasiklal M. Dhariwal Institute of Pharmaceutical Education and Research, Pune, India
- *Correspondence: Mithun Rudrapal,
| | | | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah, Saudi Arabia
| | - Abdulaziz Bin Dukhyil
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohammad N. Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Fahad M. Alshabrmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Santwana Palai
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, OUAT, Bhubaneswar, India
| | - Prashanta Kumar Deb
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, India
| | - Rajlakshmi Devi
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, India
| |
Collapse
|
11
|
Lim HM, Park SH. Regulation of reactive oxygen species by phytochemicals for the management of cancer and diabetes. Crit Rev Food Sci Nutr 2022; 63:5911-5936. [PMID: 34996316 DOI: 10.1080/10408398.2022.2025574] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cancer and diabetes mellitus are served as typical life-threatening diseases with common risk factors. Developing therapeutic measures in cancers and diabetes have aroused attention for a long time. However, the problems with conventional treatments are in challenge, including side effects, economic burdens, and patient compliance. It is essential to secure safe and efficient therapeutic methods to overcome these issues. As an alternative method, antioxidant and pro-oxidant properties of phytochemicals from edible plants have come to the fore. Phytochemicals are naturally occurring compounds, considered promising agent applicable in treatment of various diseases with beneficial effects. Either antioxidative or pro-oxidative activity of various phytochemicals were found to contribute to regulation of cell proliferation, differentiation, cell cycle arrest, and apoptosis, which can exert preventive and therapeutic effects against cancer and diabetes. In this article, the antioxidant or pro-oxidant effects and underlying mechanisms of flavonoids, alkaloids, and saponins in cancer or diabetic models demonstrated by the recent studies are summarized.
Collapse
Affiliation(s)
- Heui Min Lim
- Department of Biological Science, Gachon University, Seongnam, Republic of Korea
| | - See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong, Republic of Korea
| |
Collapse
|
12
|
Shafreen RMB, Lakshmi SA, Pandian SK, Kim YM, Deutsch J, Katrich E, Gorinstein S. In Vitro and In Silico Interaction Studies with Red Wine Polyphenols against Different Proteins from Human Serum. Molecules 2021; 26:molecules26216686. [PMID: 34771095 PMCID: PMC8587719 DOI: 10.3390/molecules26216686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/23/2022] Open
Abstract
Previous reports have shown that consumption of wine has several health benefits; however, there are different types of wine. In the present study, red wines were investigated for their compositions of active ingredients. The interaction of each component in terms of its binding mode with different serum proteins was unraveled, and the components were implicated as drug candidates in clinical settings. Overall, the study indicates that red wines have a composition of flavonoids, non-flavonoids, and phenolic acids that can interact with the key regions of proteins to enhance their biological activity. Among them, rutin, resveratrol, and tannic acid have shown good binding affinity and possess beneficial properties that can enhance their role in clinical applications.
Collapse
Affiliation(s)
- Raja Mohamed Beema Shafreen
- Department of Biotechnology, Dr. Umayal Ramanathan College for Women, Algappapuram, Karaikudi 630003, India;
| | - Selvaraj Alagu Lakshmi
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi 630003, India; (S.A.L.); (S.K.P.)
| | - Shunmugiah Karutha Pandian
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi 630003, India; (S.A.L.); (S.K.P.)
| | - Young-Mo Kim
- Industry Academic Collaboration Foundation, Kwangju Women’s University, Gwangju 62396, Korea;
| | - Joseph Deutsch
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (J.D.); (E.K.)
| | - Elena Katrich
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (J.D.); (E.K.)
| | - Shela Gorinstein
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (J.D.); (E.K.)
- Correspondence: ; Tel.: +972-2-6758690
| |
Collapse
|
13
|
Chedea VS, Tomoiagǎ LL, Macovei ŞO, Mǎgureanu DC, Iliescu ML, Bocsan IC, Buzoianu AD, Voşloban CM, Pop RM. Antioxidant/Pro-Oxidant Actions of Polyphenols From Grapevine and Wine By-Products-Base for Complementary Therapy in Ischemic Heart Diseases. Front Cardiovasc Med 2021; 8:750508. [PMID: 34805304 PMCID: PMC8595212 DOI: 10.3389/fcvm.2021.750508] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/11/2021] [Indexed: 12/28/2022] Open
Abstract
Grape pomace and grape seeds, by-products of the wine industry, and grapevine cane resulting from grapevine pruning are cheap matrices containing important amounts of polyphenols. While there is a continuous need of introducing new ways of these by-products valorization, we propose their use as a source of bioactive polyphenols for complementary therapy in ischemic heart diseases. As oxidative stress plays an important role in these diseases, by their antioxidant/pro-oxidant properties, these compounds, mainly flavan-3-ols, procyanidins, and resveratrol may counteract the damage of the oxidative stress. For instance, to some extent, the grape seed extract, considered as an antioxidant nutritive supplement, may have pro-oxidant activity as well, depending on dose, duration of administration, and other dietary components. In vitro studies confirm that the antioxidant activity of this extract might be mediated by pro-oxidant o-quinones and oxidation products of the polyphenols from grape and winery byproducts, indicating that quinones, as oxidation products, are involved in the modulation of the antioxidant/pro-oxidant balance at the cellular level in the case of catechin-type compounds, in the absence or presence of oxidative stress inducers. In vivo, studies indicate that a grape pomace-rich diet results in a significant increase of the total antioxidant status in the plasma, liver, spleen, and kidneys. Also, the administration of grape pomace shows antioxidant activity with positive effects on health. In this context, the present review aims to present the most recent research focused on the antioxidant/pro-oxidant actions of the bioactive polyphenols from grapevine and wine byproducts, in conditions of ischemic heart diseases as assessed in vitro or in vivo.
Collapse
Affiliation(s)
| | | | | | | | - Maria Lucia Iliescu
- Research Station for Viticulture and Enology Blaj (SCDVV Blaj), Blaj, Romania
| | - Ioana Corina Bocsan
- Department of Pharmacology, Toxicology and Clinical Pharmacology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Anca Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | | - Raluca Maria Pop
- Department of Pharmacology, Toxicology and Clinical Pharmacology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
14
|
Truong VL, Jeong WS. Cellular Defensive Mechanisms of Tea Polyphenols: Structure-Activity Relationship. Int J Mol Sci 2021; 22:ijms22179109. [PMID: 34502017 PMCID: PMC8430757 DOI: 10.3390/ijms22179109] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/13/2022] Open
Abstract
Tea is particularly rich in polyphenols, including catechins and theaflavins, thearubigins, flavonols, and phenolic acids, which are believed to contribute to the health benefits of tea. The health-promoting effects of tea polyphenols are believed to be related to their cellular defensive properties. This review is intended to briefly summarize the relationship between the chemical structures of tea polyphenols and their biological activities. Tea polyphenols appear as direct antioxidants by scavenging reactive oxygen/nitrogen species; chelating transition metals; and inhibiting lipid, protein, and DNA oxidations. They also act directly by suppressing “pro-oxidant” enzymes, inducing endogenous antioxidants, and cooperating with vitamins. Moreover, tea polyphenols regulate cellular signaling transduction pathways, importantly contributing to the prevention of chronic diseases and the promotion of physiological functions. Apparently, the features in the chemical structures of tea polyphenols are closely associated with their antioxidant potentials.
Collapse
|
15
|
Stiller A, Garrison K, Gurdyumov K, Kenner J, Yasmin F, Yates P, Song BH. From Fighting Critters to Saving Lives: Polyphenols in Plant Defense and Human Health. Int J Mol Sci 2021; 22:8995. [PMID: 34445697 PMCID: PMC8396434 DOI: 10.3390/ijms22168995] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 02/08/2023] Open
Abstract
Polyphenols, such as flavonoids and phenolic acids, are a group of specialized metabolites in plants that largely aid in plant defense by deterring biotic stressors and alleviating abiotic stress. Polyphenols offer a wide range of medical applications, acting as preventative and active treatments for diseases such as cancers and diabetes. Recently, researchers have proposed that polyphenols may contribute to certain applications aimed at tackling challenges related to the COVID-19 pandemic. Understanding the beneficial impacts of phytochemicals, such as polyphenols, could potentially help prepare society for future pandemics. Thus far, most reviews have focused on polyphenols in cancer prevention and treatment. This review aims to provide a comprehensive discussion on the critical roles that polyphenols play in both plant chemical defense and human health based on the most recent studies while highlighting prospective avenues for future research, as well as the implications for phytochemical-based applications in both agricultural and medical fields.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bao-Hua Song
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (A.S.); (K.G.); (K.G.); (J.K.); (F.Y.); (P.Y.)
| |
Collapse
|